List of Tables

Table 1 Civil Engineering Major ... 128
Table 2 Computer Engineering Major .. 129
Table 3 Electrical Engineering Major ... 130
Table 4 Mechanical Engineering Major .. 132
Technical Stream Required Courses Table .. 133
Technical Stream Elective Courses Table ... 133
Table 5 Ocean and Naval Architectural Engineering Major 134
Table 6 Process Engineering Major .. 135
Petroleum Technical Stream ... 136
Process Technical Stream ... 136
The Faculty of Engineering and Applied Science supports the highest standards of academic and professional ethics. Ethical behaviour encompasses integrity, conduct, respect, and professionalism, and also means that we will take responsibility for our learning and contribute to the University’s global impact. Research in the Faculty of Engineering and Applied Science has a strong focus on research and development opportunities associated with the general technological needs of our society. The Faculty maintains a very strong sense of identity and cooperation among students, faculty, and staff, and prides itself on its strong linkages with industry and the engineering profession.

Additional information regarding the Faculty of Engineering and Applied Science is available at www.mun.ca/engineering.

Students must meet all regulations of the Faculty in addition to those stated in the general regulations. For information concerning admission/readmission to the University and general academic regulations (undergraduate), refer to UNIVERSITY REGULATIONS. For information concerning fees and charges, see the Financial and Administrative Services website at www.mun.ca/finance/fees/.

For information concerning scholarships, bursaries and awards, see www.mun.ca/scholarships/scholarships.

3.3 Academic and Professional Ethics

The Faculty of Engineering and Applied Science supports the highest standards of academic and professional ethics. Ethical behaviour encompasses integrity, conduct, respect, and professionalism, and also means that we will take responsibility for our learning and pursue academic goals in an honest and engaged manner. It is the principles, values, and expectations that we espouse as members of the Faculty and future professional engineers.
When participating in coursework or representing the Faculty on work-terms, in competitions, at conferences, and other research and academic activities, we consider ethical behaviour as important as our performance, conduct, and quality of work. In decision-making, teamwork, and individual expression, we seek to understand the significance of justice, fairness, individual rights, and care in striving to achieve our own personal best.

Guidelines for Academic Integrity and an Engineering Student Code of Conduct are available at the Faculty of Engineering and Applied Science website.

4 Description of Program

The Bachelor of Engineering Degree at Memorial University of Newfoundland is a Co-operative Program in which regular full-time academic study is supplemented by four months period of full-time work in positions related to the student's future career. The Bachelor of Engineering degree program is available in the following six majors: Civil Engineering, Computer Engineering, Electrical Engineering, Mechanical Engineering, Ocean and Naval Architectural Engineering, and Process Engineering.

Engineering One, the first-year of the engineering program, comprises courses in mathematics and basic science (physics and chemistry), as well as courses covering engineering fundamentals which are common to each of the majors. The engineering courses in Engineering One introduce students to engineering problem-solving, analysis, design, communication, and teamwork. Students will develop an understanding of the different engineering specialities, as well as the interdisciplinary nature of engineering practice.

The specialized major programs of Civil Engineering, Computer Engineering, Electrical Engineering, Mechanical Engineering, Ocean and Naval Architectural Engineering, and Process Engineering are offered in academic terms 3 through 8.

Electives can be tailored to meet the needs of those who plan to go straight into industry and those who wish to join the increasing number of our graduates who are pursuing advanced degrees.

All courses of the Faculty are designated by the abbreviation ENGI.

4.1 Program of Study

1. Courses in the engineering program are normally taken in Academic Terms as shown in the appropriate program table. Students must satisfy the criteria for promotion as described below under Promotion Regulations to remain in the Engineering program.

2. The Engineering Program consists of eight academic terms and four to six work terms. The first-year of the Engineering Program, known as Engineering One, forms a core that is common to all majors. All students must successfully complete the requirements of Engineering One prior to being promoted to Academic Term 3 as indicated under Promotion Regulations, Promotion Status (Engineering One).

3. To be eligible for registration for ENGI 001W in the Spring semester after completing Engineering One, students are expected to complete the prerequisite ENGI 200W in the Fall semester of Engineering One. All other Engineering One students are expected to complete ENGI 200W in the Winter semester of Engineering One.

4. In 1000 level Engineering courses, registration priority is given to students who have been admitted to Engineering One. Other students will be admitted to these courses only with the approval of the Associate Dean (Undergraduate Studies).

5. In these program regulations, including the program tables, wherever reference is made to English 1090 or the former English 1080 or Chemistry 1050, these courses may be replaced by courses deemed equivalent by the relevant academic unit.

6. Upon entering Academic Term 3, students begin to specialize in their academic program, in one of the following six majors: Civil Engineering, Computer Engineering, Electrical Engineering, Mechanical Engineering, Ocean and Naval Architectural Engineering, or Process Engineering.

7. Upon entering Academic Term 6, students in the Computer Engineering and Electrical Engineering majors may choose to enter the Biomedical stream. Upon entering Academic Term 6, students in the Mechanical Engineering major choose one of five technical streams: Biomedical, Mechanics and Materials, Mechatronics, Petroleum, and Thermo-Fluids. Upon entering Academic Term 6, students in the Process Engineering major may choose one of two technical streams: Petroleum and Process.

8. Engineering courses are restricted to students who have been admitted or promoted to the appropriate academic term and major (e.g., Academic Term 3 for 3000 level courses, restricted by major; Engineering One for 1000 level courses). Other students will be admitted to these courses only with the permission of the Head of the appropriate Department for courses at the 3000 level and higher, or the Associate Dean (Undergraduate Studies) (or delegate) for 1000 level courses.

Some of the courses offered in academic terms 3 to 8 are taken by all Engineering students, others are offered for more than one major, but most technical courses in academic terms 3 to 8 are specific to the individual majors. Students should refer to the program descriptions for the detailed course requirements in each phase of their program.

9. Technical elective courses may be offered in terms other than those indicated in the program tables.

10. A student who has previously met a technical elective requirement in a given semester or wishes to defer it, may request an exemption or deferral by applying to the Head of the appropriate Department. A minimum grade of 60% is required for credit to be given towards a student's engineering program for any technical elective taken outside the normal Academic Terms as shown in the tables.

11. A minimum grade of 60% is required for credit to be given towards a student's engineering program for any course beyond Engineering One that is taken outside the normal Academic Terms as shown in the tables.

12. Transfer credit cannot be awarded for project or design courses in Academic Terms 7 or 8 of the Engineering program.

13. Students registered in Academic Term 7 of any Engineering major are eligible to apply for admission to a Master of Engineering Fast-Track Option (M.Eng.). The purpose of the Option is to encourage students interested in pursuing graduate studies to begin their graduate program while still registered as an undergraduate student. While enrolled in the Option, a student may complete some of the M.Eng. Degree requirements and potentially be able to graduate earlier from the M.Eng. Program. For further details and the regulations regarding the option, refer to the School of Graduate Studies, Regulations Governing the Degree of Master of Engineering.

4.2 Complementary Studies

1. The Complementary Studies component has been developed to make students aware of the function and responsibilities of the Professional Engineer in society and the impact that engineering in all its forms has on environmental, economic, social and cultural aspects of our society. This complements the technical expertise and communications skills developed in all components of the program.

2. The Complementary Studies component is the same for all programs and consists of a minimum of 21 credit hours as follows:

- English 1090 or the former English 1080 or English 1020
- Engineering 3101
- Engineering 4102 must be completed before Term 6 in the Civil and Process majors, and must be completed before Term 7 in all other majors
- One 3 credit hour course that deals with the effect of technology on society and the environment. The course is to be chosen from Engineering 6101, Engineering 8151, Sociology 2120, Sociology 4107, Philosophy 2330 or the former 2571, or the former 2801
- Engineering 8152
- One Elective course of a 3 credit hour value chosen from the arts, humanities, social sciences and management and approved by the Associate Dean (Undergraduate Studies) of the Faculty of Engineering and Applied Science. List A is an approved list of courses maintained by the Office of the Associate Dean (Undergraduate Studies) of the Faculty of Engineering and Applied Science and is available at the website www.mun.ca/engineering.
- One Elective course of a 3 credit hour value chosen from the humanities and social sciences and approved by the Associate Dean (Undergraduate Studies) of the Faculty of Engineering and Applied Science. This course must be second-year or higher and it is intended to provide experience with the central issues, methodologies and thought processes of the humanities and social sciences. List B is an approved list of courses maintained by the Office of the Associate Dean (Undergraduate Studies) of the Faculty of Engineering and Applied Science and is available at the website www.mun.ca/engineering.

3. In order to graduate, the student must obtain an overall average of at least 60% in the 21 credit hours in Complementary Studies courses required in the program.

4.3 Bachelor of Engineering Majors

The Bachelor of Engineering degree program is available in the following six majors: Civil Engineering, Computer Engineering, Electrical Engineering, Mechanical Engineering, Ocean and Naval Architectural Engineering, and Process Engineering.

4.3.1 Civil Engineering

www.mun.ca/engineering/civil

Civil Engineering deals with the planning, design, and construction of roads, railways, harbours, docks, tunnels, bridges, buildings, water supplies, hydroelectric power development, and sewage collection, treatment, and disposal systems.

The Civil Engineering major provides a broad introduction to the scientific principles and engineering techniques necessary for an understanding of the fundamental problems tackled by civil engineers.

4.3.2 Computer Engineering

www.mun.ca/engineering/ece

Computer Engineering is the design and analysis of computer systems applied to the solution of practical problems. It encompasses both hardware and software design in applications ranging from telecommunications and information systems to process control and avionics. Computer Engineering students learn the mathematics of discrete and continuous systems, the design of digital machines such as processors and memories, the fundamentals of software design, and the principles used in communications systems such as telephone networks and the Internet.

Computer Engineering shares many fundamentals with Electrical Engineering, which are covered in a common curriculum up to and including Academic Term 3. In recognition of the considerable diversity of careers available to computer engineers, students are given latitude in the final three academic terms to choose from a wide range of electives in various specialty areas. In Academic Term 6, students may choose to enter the Biomedical stream which provides focus on electives relevant to the field of biomedical engineering. Making use of their elective course choices, students in the Computer Engineering major also have the opportunity to undertake a minor in Physics.

4.3.3 Electrical Engineering

www.mun.ca/engineering/ece

Electrical Engineering is a broad field encompassing the study of control systems, electromagnetics and antennas, power systems, electronics, communications, and computer hardware and software.

Electrical Engineering shares many fundamentals with Computer Engineering, which are covered in a common curriculum up to and including Academic Term 3. In recognition of the considerable diversity of careers available to electrical engineers, students are given latitude in the final three academic terms to choose from a wide range of electives in various specialty areas. In Academic Term 6, students may choose to enter the Biomedical stream which provides focus on electives relevant to the field of biomedical engineering. Making use of their elective course choices, students in the Electrical Engineering major also have the opportunity to undertake a minor in Physics.

4.3.4 Mechanical Engineering

www.mun.ca/engineering/mech

Mechanical Engineering is a highly diversified discipline encompassing the design, analysis, testing and manufacture of products that are used in every facet of modern society. Mechanical engineers analyse and design using the principles of motion, energy, and force to ensure that the product functions safely, efficiently, reliably, and can be manufactured at a competitive cost. This activity requires a thorough knowledge of materials, mathematics, and the physical sciences, and an ability to apply this knowledge to the synthesis of economical and socially acceptable solutions to engineering problems.

Mechanical Engineering is designed to provide students with a knowledge in the following four areas: design and dynamics, emphasizing solid mechanics, material science, dynamics, vibrations and machine component design; thermo-fluids, focusing on thermodynamics, heat transfer and fluid mechanics; mechatronics, dealing with electro-mechanical systems, control, robotics, and automation; and manufacturing/industrial, which encompasses CAD/CAM, production and operation management. In Academic Term 6, students select one of five Technical Streams, which provide focus to the wide range of electives in various specialty areas in Academic Terms 7 and 8.

4.3.5 Ocean and Naval Architectural Engineering

www.mun.ca/engineering/ona

Ocean and Naval Architectural Engineering covers aspects of both naval architecture and ocean engineering. The Ocean and Naval
Architectural Engineering major is the only accredited undergraduate program specifically in naval architecture/ocean engineering in Canada. The major is designed to provide education to work in marine transport, ship and boat building, offshore engineering, submersibles design and many related marine areas. The undergraduate program is also a comprehensive preparation for graduate studies, research and consulting in ocean engineering.

Naval Architecture is primarily concerned with the design and construction of ships, offshore structures and other floating equipment and facilities. Ocean Engineering extends this focus to cover virtually all aspects of engineering related to the world’s oceans. Topics including sub-sea systems and oceanographic science add core ocean engineering content to the program.

Students in the Ocean and Naval Architectural Engineering major also have the opportunity to undertake a minor in Mathematics.

4.3.6 Process Engineering

www.mun.ca/engineering/process

Process Engineering is a diversified discipline encompassing new development, design, optimization, and operation of sustainable processes for human needs. A process engineer uses biological, chemical, and physical processing of substances to modify their nature, their properties, and/or the composition of mixtures to produce useful products. This activity requires a thorough knowledge of materials, chemical and physical sciences, and mathematics and an ability to apply this knowledge in an economical and sustainable way to engineering development.

The Process Engineering major is designed to provide students with a specialization in the areas of minerals and metals processing, and downstream oil and gas processing. In Academic Term 6, a student may select to continue in the Process Stream with emphasis on sustainable processing or in the Petroleum Stream with emphasis on upstream oil and gas including petroleum geology, drilling, reservoir and production engineering. Throughout the major and within each area of specialization, emphasis is placed on green and clean processes which are environmentally benign and inherently safe. The goal of this major is to prepare graduates with knowledge and ability to implement this knowledge in a sustainable manner to larger-scale industrial development.

4.4 Work Terms

www.mun.ca/coop/programs/engineering

Engineering work term registration, grading, and tuition fee charges and payments are governed by the UNIVERSITY REGULATIONS in this Calendar and those outlined below. Engineering work term placement and opt-outs, conduct, and evaluation are governed by the Engineering Student Co-op Handbook which is available at www.mun.ca/coop/programs/engineering/enghandbook.pdf. Any changes to the Engineering Student Co-op Handbook require the approval of the Committee on Undergraduate Studies.

A student must complete successfully a minimum of four work terms in order to graduate with a Bachelor of Engineering degree. The Bachelor of Engineering degree offers the opportunity to complete up to five work terms beyond academic term 3. A student is expected to complete as many of these work terms as possible. A student who expects to complete the Engineering One requirements by the end of the Winter semester may apply to the Committee on Undergraduate Studies to undertake a work term during the Spring semester of Engineering One. Academic performance is the basis for approving such requests.

All students in academic terms 3 to 7 and any student approved to complete a work term during the Spring semester of Engineering One will be registered automatically during the regular registration period for the next scheduled work term unless the student has opted-out. A student may opt out of up to two work terms beyond Academic Term 3 by completing the procedures outlined in the Engineering Student Co-op Handbook. Opt outs normally are approved only in cases where a student has successfully completed a minimum of four work terms.

4.4.1 General Information

- During work terms a student is brought into direct contact with the engineering profession, exposed to the workplace setting, expected to assume ever-increasing responsibility in employment situations as the student's education advances, and introduced to experiences beyond the scope of those which could be provided in the classroom.
- A student is responsible for finding suitable work placements. The Office of Co-operative Education provides resources to assist in this process. A student who obtains a work placement outside the job competition must have that work placement approved by the Office of Co-operative Education prior to accepting it.
- A student who cannot meet the demands of the work term may be required by the Faculty to withdraw from the work term until the student can demonstrate an ability to continue in the program.
- Following the date of automatic registration for a work term, only a student who is registered for that work term will be permitted to continue in, or subsequently join, the job placement process and be approved to begin a work placement.
- A student in the job competition who refuses all job offers without the prior consent of the Office of Co-operative Education may be subject to penalties that may include the assignment of a grade of FAL (fail) for that work term.
- A student is not permitted to drop work terms without prior approval of the Committee on Undergraduate Studies, on the recommendation of the Office of Co-operative Education. A student who drops a work term without permission, or who fails to honour an agreement to work with an employer, will be assigned a grade of FAL (fail) for that work term.
- A student who conducts him or herself in such a manner as to cause termination from the job, will normally be assigned a grade of FAL (fail) for that work term.
- A student who is registered for a work term and who does not opt out from that work term must complete that work term successfully as a requirement for graduation.
- A student who opts out from a work term is not permitted to work for a co-op employer during that work term.
- A student who opts out from a work term and who works for a co-op employer during that work term may be considered to have committed an academic offence and will be subject to the penalties listed under the UNIVERSITY REGULATIONS, Academic Offences.
- A student in a work term who does not meet the deadlines stated by the Office of Co-operative Education for the submission of forms and documentation may be awarded a reduced grade for one or both components of that work term.
- The work term performance grade is assigned by the student’s Coordinator based upon feedback from the employer and other information gathered from contact with the student.

4.4.2 Evaluation of Work Terms

Two components are considered in work term evaluation: work performance and a communications component, as described in the Engineering Student Co-op Handbook which is available at www.mun.ca/coop/programs/engineering/enghandbook.pdf.
Each component is evaluated separately and equally weighted resulting in one of the following classifications: Outstanding, Above Expectations, Satisfactory, Marginal Pass, Fail. Both evaluations will be recorded on the transcript. Overall evaluation of the work term will result in the assignment of one of the following final grades:

- Pass with distinction (PWD): To receive a PWD, a student must obtain an evaluation of Outstanding in both the communications and work performance components of the work term.
- Pass (PAS): To receive a PAS, a student must achieve an evaluation of Marginal Pass or better in the communications component and in the performance component of the work term.
- Fail (FAL): A student receiving a Fail in either the communications or performance component of the work term will receive a FAL. For promotion from the work term, a student must obtain PWD or PAS.

4.5 Continuing Engineering Education
The Faculty of Engineering and Applied Science has a firm commitment to continuing engineering education and offers a variety of seminars and short courses in St. John's and in other centres for practising engineers. For applicability of courses towards diplomas and certificates in Engineering, contact the Continuing Engineering Education office through the Faculty of Engineering and Applied Science website.

5 Admission/Readmission Regulations for the Faculty of Engineering and Applied Science
In addition to meeting UNIVERSITY REGULATIONS, students must meet the admission/readmission regulations for the Faculty of Engineering and Applied Science.

5.1 General Information
1. The Bachelor of Engineering program requires completion of a minimum of four co-operative education work terms. Prospective applicants should review the information about work term expectations at Work Terms.
2. Entry to the Bachelor of Engineering program is competitive for a limited number of placements. Meeting the minimum admission requirements does not guarantee acceptance into the Engineering program. The final decision on admission or readmission to the Bachelor of Engineering program rests with the Admissions Committee of the Faculty. Students are admitted to a common/general Engineering Program and are allocated a major in Academic Term 3.
3. Admission or readmission to the University does not necessarily constitute admission or readmission to the Bachelor of Engineering program.
4. The primary criterion used in reaching decisions on applications for admission or readmission is the judgement of the Admissions Committee on the likelihood of an applicant succeeding in the program.
5. Up to three positions per year in the Faculty of Engineering and Applied Science may be designated for applicants of Aboriginal ancestry who have met the admission requirements of the program. Applicants must send a letter of request at the time of application and provide documentation of Aboriginal ancestry.
6. The Admissions Committee allocates majors to students after promotion or readmission to Academic Term 3 of the Bachelor of Engineering program. Information on promotion from Engineering One is available at: Promotion Regulations, Promotion Status (Engineering One).

5.2 Application Forms and Deadlines
The application for admission or readmission to programs offered by the Faculty of Engineering and Applied Science is submitted online; current and returning Memorial University of Newfoundland applicants should apply using the Admissions menu within Memorial Self-Service at www.mun.ca/admit/twbkwbis.P_WWWLogin. Applicants who are new to Memorial University of Newfoundland should follow the application instructions at www.mun.ca/undergrad/apply.

5.2.1 Admission
1. A student applying for admission to the Bachelor of Engineering program is required to submit an online application.
2. Applications for admission to Engineering One will normally be considered for admission to the Fall semester of each year. The deadline for submission of applications for admission to the Fall semester is March 1. The deadline for receipt of all documents pertaining to an application for the Fall semester is July 31.
3. Applications for admission to the Winter and Spring semesters will be considered for Memorial University of Newfoundland students only, who have successfully completed or are currently registered for two or more of the following courses: Mathematics 1000, Mathematics 1001, Mathematics 2050, Physics 1050, Physics 1051, Chemistry 1050, English 1090 or the former English 1080. The deadline for application to the Winter semester is October 1 and to the Spring semester is February 1.
4. Applications received after the relevant deadline may be considered as time and space permit. The Admissions Committee for the Faculty will only consider applications that are complete.

5.2.2 Readmission
A student applying for readmission to Academic Term 3 and beyond is required to submit an online application. Applications will only be considered for applicants who have been previously admitted to the Academic Term for which readmission is applied.
1. Academic Term 3: The deadline for submission of an application for readmission to Academic Term 3 is March 1. Applicants will be considered for readmission to Academic Term 3 based on their Promotion Status (Engineering One).
2. Beyond Academic Term 3: The deadlines for submission of an application for readmission to an academic term beyond Academic Term 3 are: June 1 for the Fall semester, October 1 for the Winter semester, and February 1 for the Spring semester.
3. Applications received after the relevant deadline may be considered as time and space permit. The Admissions Committee for the Faculty will only consider applications that are complete.

5.3 Admission Requirements to the Faculty Program
An applicant must be eligible for admission or readmission to the University in a category as defined in the Calendar section UNIVERSITY REGULATIONS - Admission/Readmission to the University (Undergraduate), Categories of Applicants, Admission...
5.3.1 High School Applicants

- The Faculty of Engineering and Applied Science encourages applications for admission to the Bachelor of Engineering program from high school students who are new to post-secondary education, have an interest in pursuing an engineering degree and have achieved a good academic performance during high school. In addition to meeting the requirements under UNIVERSITY REGULATIONS - Admission/Readmission to the University (Undergraduate), Applicants Who Have Followed the High School Curriculum of Newfoundland and Labrador, Admission Criteria, performance in advanced mathematics, chemistry, physics and English is of particular interest, and grades above 80% are normally required for consideration.
- Applicants who have not successfully completed either chemistry or physics but who have performed well in the other subjects may be considered.
- Applicants must meet the English language proficiency requirements as noted in English Language Proficiency Requirements.
- With careful planning the course load for the Engineering One requirements can be spread out over three semesters, to provide flexibility and additional time for a successful transition to the University and the Bachelor of Engineering program. However, as some courses are not offered in some semesters, a student should check with the appropriate academic unit to determine in which semester(s) each course is offered.
- An applicant who is not admitted to the Bachelor of Engineering program is encouraged to contact the University’s Academic Advising Centre or the Office of the Associate Dean (Undergraduate Studies) to discuss an appropriate first-year program.

5.3.2 Memorial University of Newfoundland Applicants

- To be eligible for consideration for admission to the Bachelor of Engineering program, a student who is attending or has previously attended this University must have a cumulative average of at least 70%, and obtained a grade of at least 70% in two or more of the following courses: Mathematics 1000, Mathematics 1001, Mathematics 2050, Physics 1050, Physics 1051, Chemistry 1050, English 1090 or the former English 1080.
- Applicants must meet the English language proficiency requirements as noted in English Language Proficiency Requirements.

5.3.3 Transfer Applicants

- Transfer applicants are eligible to apply for admission to the Fall semester of Engineering One only, by the deadline of March 1.
- An applicant seeking admission to the Bachelor of Engineering program through transfer from recognized post-secondary institutions must have achieved a minimum overall average of 70% or GPA of 3.0, or equivalent.
- Applicants must have obtained a grade of at least 70% in two or more courses that have been deemed equivalent for transfer credit purposes: Mathematics 1000, Mathematics 1001, Mathematics 2050, Physics 1050, Physics 1051, Chemistry 1050, English 1090 or the former English 1080.
- Where it is determined, at the time of admission, that an applicant has met all the requirements for promotion from Engineering One, advanced placement in Academic Term 3 or beyond, and requirements needed to complete the program, will be determined on an individual basis following transfer credit evaluation. A transfer applicant must complete a majority of the credit hours in the program at Memorial University of Newfoundland.
- Applicants must meet the English language proficiency requirements as noted in English Language Proficiency Requirements.

5.4 English Language Proficiency Requirements

Applicants who have not met the University specified requirements for study at an English Language Secondary or Post-Secondary Institution (see UNIVERSITY REGULATIONS, Admission/Readmission to the University (Undergraduate) - English Language Proficiency Requirements) are required to:

1. Possess higher than University minimum scores in one of the following standardized tests:
 a. Test of English as a Foreign Language (TOEFL). A minimum score of 90, with at least 20 in each of Reading and Listening, and no less than 25 in Speaking and Writing, is required on the TOEFL;
 b. International English Language Testing System (IELTS). A minimum overall band score of 6.5, with at least band 6.5 in each of Writing and Speaking, and 6.0 in Reading and Listening is required on the IELTS;
 c. Canadian Academic English Language Assessment (CAEL). A minimum overall score of 70, with at least 60 per band, and no less than 70 in Writing and Speaking is required on the CAEL; and

2. Successfully complete an e-proctored English test or an interview.

5.5 Other Information

1. The Faculty will notify each applicant in writing regarding an admission decision to the Faculty program.
2. Decisions will be made when grades are available for courses currently being completed. For current high school students decisions are based on current course registrations and final grades in courses previously completed.
3. A student admitted to the program in any term, without receiving credit for all courses required up to that level, must complete those courses successfully prior to graduation.
4. A student who has been admitted to one major offered by the Faculty and who wishes to change to another major within the Faculty must submit a new application for admission to the program. This application must be submitted to the Office of the Registrar by the appropriate deadline date as outlined above in Application Forms and Deadlines and will be considered in competition with all other applications.
5. A student admitted full-time to the program and who declines the offer of admission or who fails to register for the appropriate courses during the term of admission will be considered withdrawn from the program. Such a student, if subsequently wishing to be considered for admission, must submit a new application for admission to the program. This application must be submitted to the Office of the Registrar by the appropriate deadline date in Application Forms and Deadlines above and will be considered in competition with other applications.
6 Program Regulations

6.1 Civil Engineering Program Regulations

6.1.1 Civil Engineering Major

- The full-time 141 credit hour Bachelor of Engineering (Co-operative), Civil Engineering Major, requires eight academic terms and four work terms.
- The 141 credit hours shall normally be taken in the academic terms and order as set out in Table 1 Civil Engineering Major.
- Work terms shall normally be taken in the order as set out in Table 1 Civil Engineering Major.

Table 1 Civil Engineering Major

<table>
<thead>
<tr>
<th>Term</th>
<th>Required Courses</th>
<th>Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering One</td>
<td>Chemistry 1050
English 1090 or the former 1080
ENGI 1010, 1020, 1030, 1040
Mathematics 1000, 1001, 2050
Physics 1050, 1051</td>
<td>Students who are expecting to complete the Engineering One requirements by the end of the Winter semester may apply to undertake a work term during the Spring semester. In this case, the prerequisite course ENGI 200W is expected to be completed during the Fall semester. All other students are expected to complete ENGI 200W in the Winter semester of Engineering One.</td>
</tr>
</tbody>
</table>

In addition to meeting the requirements outlined below, a student must successfully complete four Complementary Studies courses as described under Description of Program, Complementary Studies.

<table>
<thead>
<tr>
<th>Fall Academic Term 3</th>
<th>ENGI 3101, 3425, 3610, 3703, 3731, 3934</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>001W or 002W</td>
<td></td>
</tr>
<tr>
<td>Spring Academic Term 4</td>
<td>ENGI 4312, 4421, 4425, 4717, 4723</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>001W or 002W or 003W</td>
<td></td>
</tr>
<tr>
<td>Winter Academic Term 5</td>
<td>ENGI 5312, 5434, 5706, 5713, 5723</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>002W or 003W or 004W</td>
<td></td>
</tr>
<tr>
<td>Fall Academic Term 6</td>
<td>ENGI 6322, 6705, 6707, 6713, 6749</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>003W or 004W or 005W (optional)</td>
<td></td>
</tr>
<tr>
<td>Spring Academic Term 7</td>
<td>ENGI 7704, 7713, 7745</td>
<td>6 credit hours from: ENGI 7706, 7707, 7716, 7718, 7723, 7748 or other courses as specified by the Head of the Department of Civil Engineering</td>
</tr>
<tr>
<td>Fall</td>
<td>004W or 005W (optional) or 006W (optional)</td>
<td></td>
</tr>
<tr>
<td>Winter Academic Term 8</td>
<td>ENGI 8152, 8700, 8740</td>
<td>9 credit hours from: ENGI 8705, 8708, 8713, 8717, 8751 other courses as specified by the Head of the Department of Civil Engineering</td>
</tr>
</tbody>
</table>
6.2 Computer Engineering Program Regulations

6.2.1 Computer Engineering Major

- The full-time 141 credit hour Bachelor of Engineering (Co-operative), Computer Engineering Major, requires eight academic terms and four work terms.
- The 141 credit hours shall normally be taken in the academic terms and order as set out in Table 2 Computer Engineering Major.
- Work terms shall normally be taken in the order as set out in Table 2 Computer Engineering Major.
- The requirements for a minor in Physics in the Computer Engineering program are detailed under Faculty of Science, Minor in Physics. Students wishing to undertake a minor in Physics must obtain approval from the Head of the Department of Electrical and Computer Engineering for their course selection.

<table>
<thead>
<tr>
<th>Term</th>
<th>Required Courses</th>
<th>Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering One</td>
<td>Chemistry 1050</td>
<td>Students who are expecting to complete the Engineering One requirements by the end of the Winter semester may apply to undertake a work term during the Spring semester. In this case, the prerequisite course ENGI 200W is expected to be completed during the Fall semester. All other students are expected to complete ENGI 200W in the Winter semester of Engineering One.</td>
</tr>
<tr>
<td></td>
<td>English 1090 or the former 1080</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGI 1010, 1020, 1030, 1040</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 1000, 1001, 2050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 1050, 1051</td>
<td></td>
</tr>
</tbody>
</table>

In addition to meeting the requirements outlined below, a student must successfully complete four Complementary Studies courses as described under Description of Program, Complementary Studies.

<table>
<thead>
<tr>
<th>Term</th>
<th>Required Courses</th>
<th>Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Academic Term 3</td>
<td>ENGI 3101, 3424, 3821, 3861, 3891</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 3000</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>001W or 002W</td>
<td></td>
</tr>
<tr>
<td>Spring Academic Term 4</td>
<td>ENGI 4424, 4823, 4854, 4862, 4892</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>001W or 002W or 003W</td>
<td></td>
</tr>
<tr>
<td>Winter Academic Term 5</td>
<td>ENGI 5420, 5821, 5865, 5892, 5895</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>002W or 003W or 004W</td>
<td></td>
</tr>
<tr>
<td>Fall Academic Term 6</td>
<td>ENGI 6861, 6871, 6876, 6893</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students in the Biomedical Stream:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Kinetics and Recreation 2311</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All other students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 credit hours from: ENGI 6855 or other courses as specified by the Head of the Department of Electrical and Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>003W or 004W or 005W (optional)</td>
<td></td>
</tr>
<tr>
<td>Spring Academic Term 7</td>
<td>ENGI 7804, 7824, 7894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students in the Biomedical Stream:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medicine 6250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 credit hours from: ENGI 7825, 7854, 7864, 7952, other courses as specified by the Head of the Department of Electrical and Computer Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All other students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 credit hours from: ENGI 7825, 7854, 7864, 7952, 8680, other courses as specified by the Head of the Department of Electrical and Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>004W or 005W (optional) or 006W (optional)</td>
<td></td>
</tr>
<tr>
<td>Winter Academic Term 8</td>
<td>ENGI 8152, 8854, 8894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students in the Biomedical Stream:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Kinetics and Recreation 4703</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 credit hours from: ENGI 8814, 8821, 8868, other courses as specified by the Head of the Department of Electrical and Computer Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All other students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One free elective which must be a 3000-level or higher Engineering course, or a 2000-level or higher course from any other academic unit. Selection of a course must be approved by the Head of the Department of Electrical and Computer Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 credit hours from: ENGI 7680, 8814, 8821, 8863, 8868, 8879, 8801-8805, or other courses as specified by the Head of the Department of Electrical and Computer Engineering</td>
<td></td>
</tr>
</tbody>
</table>
6.3 Electrical Engineering Program Regulations

6.3.1 Electrical Engineering

- The full-time 141 credit hour Bachelor of Engineering (Co-operative), Electrical Engineering Major, requires eight academic terms and four work terms.
- The 141 credit hours shall normally be taken in the academic terms and order as set out in Table 3 Electrical Engineering Major.
- Work terms shall be taken in the order as set out in Table 3 Electrical Engineering Major.
- The requirements for a minor in Physics in the Electrical Engineering program are detailed under Faculty of Science, Minor In Physics. Students wishing to undertake a minor in Physics must obtain approval from the Head of the Department of Electrical and Computer Engineering for their course selection.

Table 3 Electrical Engineering Major

<table>
<thead>
<tr>
<th>Term</th>
<th>Required Course</th>
<th>Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering One</td>
<td>Chemistry 1050</td>
<td>Students who are expecting to complete the Engineering One requirements</td>
</tr>
<tr>
<td></td>
<td>English 1090 or the former 1080</td>
<td>by the end of the Winter semester may apply to undertake a work term</td>
</tr>
<tr>
<td></td>
<td>ENGI 1010, 1020, 1030, 1040</td>
<td>during the Spring semester. In this case, the prerequisite course ENGI 200W</td>
</tr>
<tr>
<td></td>
<td>Mathematics 1000, 1001, 2050</td>
<td>is expected to be completed during the Fall semester. All other students are</td>
</tr>
<tr>
<td></td>
<td>Physics 1050, 1051</td>
<td>expected to complete ENGI 200W in the Winter semester of Engineering One.</td>
</tr>
</tbody>
</table>

In addition to meeting the requirements outlined below, a student must successfully complete four Complementary Studies courses as described under Description of Program, Complementary Studies.

Fall Academic Term 3

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGI 3101, 3424, 3821, 3861, 3891, Physics 3000</td>
<td></td>
</tr>
</tbody>
</table>

Winter

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>001W or 002W</td>
<td></td>
</tr>
</tbody>
</table>

Spring Academic Term 4

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGI 4430, 4823, 4841, 4854, 4862</td>
<td></td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>001W or 002W or 003W</td>
<td></td>
</tr>
</tbody>
</table>

Winter Academic Term 5

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGI 5420, ENGI 5800, 5812, 5821, 5854</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>002W or 003W or 004W</td>
<td></td>
</tr>
</tbody>
</table>

Fall Academic Term 6

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGI 6813, 6843, 6855, 6871</td>
<td></td>
</tr>
</tbody>
</table>

Winter

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>003W or 004W or 005W (optional)</td>
<td></td>
</tr>
</tbody>
</table>

Spring Academic Term 7

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGI 7803, 7824</td>
<td></td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>004W or 005W (optional) or 006W (optional)</td>
<td></td>
</tr>
</tbody>
</table>

Winter Academic Term 8

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGI 8152, 8826, 8853</td>
<td></td>
</tr>
</tbody>
</table>

Students in the Biomedical Stream:

Human Kinetics and Recreation 2311

All other students:

- 3 credit hours from: ENGI 6856, 6876, other courses as specified by the Head of the Department of Electrical and Computer Engineering

All other students:

- 9 credit hours from: ENGI 7811, 7825, 7844, 7854, 7855, 7856, 7857, 8680, other courses as specified by the Head of the Department of Electrical and Computer Engineering

Students in the Biomedical Stream:

Human Kinetics and Recreation 4703

All other students:

- One free elective which must be a 3000-level or higher Engineering course, or a 2000-level or higher course from any other academic unit. Selection of a course must be approved by the Head of the Department of Electrical and Computer Engineering.

All other students:

- 6 credit hours from: ENGI 8865, 7680, 8821, 8845, 8879, 8806-8809, other courses as specified by the Head of the Department of Electrical and Computer Engineering.
6.3.2 Minor in Applied Science - Electrical Engineering for Physics Majors and Honours

For Physics Majors and Honours students, a Minor in Applied Science - Electrical Engineering will consist of ENGI 3821 (or Physics 3550), ENGI 4854, Physics 3000, and 15 credit hours chosen from ENGI 3861, 4823, 4841, 4862, 5800, and 6813 (or Physics 4500), or other courses subject to approval by the Head of the Department of Physics and Physical Oceanography and the Head of the Department of Electrical and Computer Engineering.

Completion of the Minor in Applied Science - Electrical Engineering does not qualify persons to hold the designation "Professional Engineer" as defined by various provincial acts governing the Engineering Profession.
6.4 Mechanical Engineering Program Regulations

6.4.1 Mechanical Engineering Major

- The full-time 141 credit hour Bachelor of Engineering (Co-operative), Mechanical Engineering Major, requires eight academic terms and four work terms.
- The 141 credit hours shall normally be taken in the academic terms and order as set out in Table 4 Mechanical Engineering Major.
- Work terms shall normally be taken in the order as set out in Table 4 Mechanical Engineering Major.

<table>
<thead>
<tr>
<th>Term</th>
<th>Required Courses</th>
<th>Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering One</td>
<td>Chemistry 1050, English 1090 or the former 1080, ENGI 1010, 1020, 1030, 1040, Mathematics 1000, 1001, 2050, Physics 1050, 1051</td>
<td>Students who are expecting to complete the Engineering One requirements by the end of the Winter semester may apply to undertake a work term during the Spring semester. In this case, the prerequisite course ENGI 200W is expected to be completed during the Fall semester. All other students are expected to complete ENGI 200W in the Winter semester of Engineering One.</td>
</tr>
</tbody>
</table>

In addition to meeting the requirements outlined below, a student must successfully complete four Complementary Studies courses as described under Description of Program, Complementary Studies.

<table>
<thead>
<tr>
<th>Term</th>
<th>Required Courses</th>
<th>Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Academic Term 3</td>
<td>ENGI 3101, 3424, 3901, 3911, 3934, 3941</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>001W or 002W</td>
<td></td>
</tr>
<tr>
<td>Spring Academic Term 4</td>
<td>ENGI 4430, 4901, 4932, 4934, 4961</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>001W or 002W or 003W</td>
<td></td>
</tr>
<tr>
<td>Winter Academic Term 5</td>
<td>ENGI 4421, 5911, 5931, 5952, 5962</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>002W or 003W or 004W</td>
<td></td>
</tr>
<tr>
<td>Fall Academic Term 6</td>
<td>ENGI 6901, 6928, 6929, 6933, 6951</td>
<td>Students in the Biomedical Technical Stream must also take Human Kinetics and Recreation 2311 in Academic Term 6. Students in the Petroleum Technical Stream must also take ENGI 6602 in Academic Term 6.</td>
</tr>
<tr>
<td>Winter</td>
<td>003W or 004W or 005W (optional)</td>
<td></td>
</tr>
<tr>
<td>Spring Academic Term 7</td>
<td>ENGI 7926, 7930</td>
<td>6 credit hours from Technical Stream Required Courses, Academic Term 7. For students in the Biomedical Technical Stream or Stream, one Technical Stream Required Course is replaced by Human Kinetics and Recreation 2311, taken in Academic Term 6. For students in the Petroleum Technical Stream, one Technical Stream Required Course is replaced by ENGI 6602, taken in Academic Term 6. 3 credit hours from Technical Stream Elective Courses. One free elective which must be a 3000-level or higher Engineering course, or a 2000-level or higher course from any other academic unit. Selection of a course must be approved by the Head of the Department of Mechanical Engineering and must be completed before Academic Term 8.</td>
</tr>
<tr>
<td>Fall</td>
<td>004W or 005W (optional) or 006W (optional)</td>
<td></td>
</tr>
<tr>
<td>Winter Academic Term 8</td>
<td>ENGI 8152, 8926</td>
<td>3 credit hours from Technical Stream Required Courses, Academic Term 8. 6 credit hours from Technical Stream Elective Courses</td>
</tr>
</tbody>
</table>

Table 4 Mechanical Engineering Major
6.4.1.1 Technical Streams

- A student must select one of the Technical Streams in the areas of Biomedical, Mechanics and Materials, Mechatronics, Petroleum, and Thermo-Fluids.
- Technical Stream required courses must be chosen according to the student’s stream as outlined below in the Technical Stream Required Courses Table.
- Technical Stream elective courses must be chosen according to the student’s stream as outlined below in the Technical Stream Elective Courses Table.

A student must choose one course in Academic Term 7 and two courses in Academic Term 8 according to the student’s stream from the Technical Stream Elective Courses Table or other courses as approved by the Head of the Department of Mechanical Engineering.

- The selection of a course as a technical stream course from outside these lists requires the approval of the Head of the Department of Mechanical Engineering.

Technical Stream Required Courses Table

<table>
<thead>
<tr>
<th>Term</th>
<th>Biomedical</th>
<th>Mechanics and Materials</th>
<th>Mechatronics</th>
<th>Petroleum</th>
<th>Thermo-Fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Term 6</td>
<td>Human Kinetics and Recreation 2311</td>
<td></td>
<td></td>
<td>ENGI 6602</td>
<td></td>
</tr>
<tr>
<td>Academic Term 7</td>
<td>Medicine 6250</td>
<td>ENGI 7911</td>
<td>ENGI 7929</td>
<td>ENGI 8691</td>
<td>ENGI 7901</td>
</tr>
<tr>
<td>Academic Term 8</td>
<td>Human Kinetics and Recreation 4703</td>
<td>ENGI 8933</td>
<td>ENGI 8946</td>
<td>ENGI 8690</td>
<td>ENGI 8903</td>
</tr>
</tbody>
</table>

Technical Stream Elective Courses Table

<table>
<thead>
<tr>
<th>Biomedical</th>
<th>Mechanics and Materials</th>
<th>Mechatronics</th>
<th>Petroleum</th>
<th>Thermo-Fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGI 7854</td>
<td>ENGI 7934</td>
<td>ENGI 7825</td>
<td>ENGI 7903</td>
<td>ENGI 7934</td>
</tr>
<tr>
<td>ENGI 7934</td>
<td>ENGI 8911</td>
<td>ENGI 7854</td>
<td>ENGI 8671</td>
<td>ENGI 8947</td>
</tr>
<tr>
<td>ENGI 7952</td>
<td>ENGI 8935</td>
<td>ENGI 7952</td>
<td>ENGI 8673</td>
<td>ENGI 8964</td>
</tr>
<tr>
<td>ENGI 7953</td>
<td>ENGI 8937</td>
<td>ENGI 8814</td>
<td>ENGI 8676</td>
<td>ENGI 8965</td>
</tr>
<tr>
<td>ENGI 8814</td>
<td>ENGI 8971</td>
<td>ENGI 8826</td>
<td>ENGI 8692</td>
<td>ENGI 8970</td>
</tr>
<tr>
<td>ENGI 8947</td>
<td>ENGI 8982</td>
<td>ENGI 8937</td>
<td>ENGI 8694</td>
<td>ENGI 8970</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENGI 8911</td>
<td>ENGI 8970</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENGI 8970</td>
<td>ENGI 8984</td>
</tr>
</tbody>
</table>
6.5 Ocean and Naval Architectural Engineering Program Regulations

6.5.1 Ocean and Naval Architectural Engineering Major

- The full-time 141 credit hour Bachelor of Engineering (Co-operative), Ocean and Naval Architectural Engineering Major, requires eight academic terms and four work terms.
- The 141 credit hours shall normally be taken in the academic terms and order as set out in Table 5 Ocean and Naval Architectural Engineering Major.
- Work terms shall normally be taken in the order as set out in Table 5 Ocean and Naval Architectural Engineering Major.
- Ocean and Naval Architectural Engineering students may complete a minor in Mathematics as outlined under Faculty of Science, Mathematics, Minor in Mathematics.

<table>
<thead>
<tr>
<th>Table 5 Ocean and Naval Architectural Engineering Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
</tr>
<tr>
<td>Engineering One</td>
</tr>
</tbody>
</table>

In addition to meeting the requirements outlined below, a student must successfully complete four Complementary Studies courses as described under Description of Program, Complementary Studies.

<table>
<thead>
<tr>
<th>Term</th>
<th>Required Courses</th>
<th>Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Academic Term 3</td>
<td>ENGI 3001, 3054, 3101, 3901, 3934 Mathematics 2000</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>001W or 002W</td>
<td></td>
</tr>
<tr>
<td>Spring Academic Term 4</td>
<td>ENGI 4007, 4011, 4020, 4312 Mathematics 2260</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>001W or 002W or 003W</td>
<td></td>
</tr>
<tr>
<td>Winter Academic Term 5</td>
<td>ENGI 5020, 5022, 5034 Mathematics 3202 Physics 3300</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>002W or 003W or 004W</td>
<td></td>
</tr>
<tr>
<td>Fall Academic Term 6</td>
<td>ENGI 6002, 6005, 6036, 6046, 6055</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>003W or 004W or 005W (optional)</td>
<td></td>
</tr>
<tr>
<td>Spring Academic Term 7</td>
<td>ENGI 7000, 7002, 7033, 7036</td>
<td>3 credit hours from ENGI 7003, 7046, other courses as specified by the Head of the Department of Ocean and Naval Architectural Engineering</td>
</tr>
<tr>
<td>Fall</td>
<td>004W or 005W (optional) or 006W (optional)</td>
<td></td>
</tr>
<tr>
<td>Winter Academic Term 8</td>
<td>ENGI 8000, 8152</td>
<td>One free elective which must be a 3000-level or higher Engineering course, or a 2000-level or higher course from any other academic unit. Selection of a course must be approved by the Head of the Department of Ocean and Naval Architectural Engineering. 9 credit hours from ENGI 8034, 8046, 8054, 8055, 8074, 8075, 8150, 8671 or other courses as specified by the Head of the Department of Ocean and Naval Architectural Engineering</td>
</tr>
</tbody>
</table>
6.6 Process Engineering Program Regulations

6.6.1 Process Engineering Major

- The full-time 141 credit hour Bachelor of Engineering (Co-operative), Process Engineering Major, requires eight academic terms and four work terms.
- The 141 credit hours shall normally be taken in the academic terms and order as set out in Table 6 Process Engineering Major.
- Beginning in Academic Term 6, a student will follow either the Process Stream or Petroleum Stream with elective course options as outlined in Table 6 Process Engineering Major.
- Work terms shall normally be taken in the order as set out in Table 6 Process Engineering Major.
- Process Engineering students may complete a minor in Chemistry as outlined under Faculty of Science, Chemistry, Minor in Chemistry.

<table>
<thead>
<tr>
<th>Term</th>
<th>Required Courses</th>
<th>Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering One</td>
<td>Chemistry 1050, English 1090 or the former 1080, ENGI 1010, 1020, 1030, 1040, Mathematics 1000, 1001, 2050, Physics 1050, 1051</td>
<td>Students who are expecting to complete the Engineering One requirements by the end of the Winter semester may apply to undertake a work term during the Spring semester. In this case, the prerequisite course ENGI 200W is expected to be completed during the Fall semester. All other students are expected to complete ENGI 200W in the Winter semester of Engineering One.</td>
</tr>
</tbody>
</table>

In addition to meeting the requirements outlined below, a student must successfully complete four Complementary Studies courses as described under Description of Program, Complementary Studies.

<table>
<thead>
<tr>
<th>Fall Academic Term 3</th>
<th>Chemistry 1051, 3101, 3424, 3600, 3901, 3911</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>001W or 002W</td>
</tr>
<tr>
<td>Spring Academic Term 4</td>
<td>ENGI 4430, 4602, 4621, 4625, 4661</td>
</tr>
<tr>
<td>Fall</td>
<td>001W OR 002W OR 003W</td>
</tr>
<tr>
<td>Winter Academic Term 5</td>
<td>ENGI 4421, 5601, 5602, 5671, 5911</td>
</tr>
<tr>
<td>Spring</td>
<td>002W or 003W or 004W</td>
</tr>
<tr>
<td>Fall Academic Term 6</td>
<td>ENGI 6621, 6631, 6671, 6661</td>
</tr>
<tr>
<td>Winter</td>
<td>003W or 004W or 005W (optional)</td>
</tr>
<tr>
<td>Spring Academic Term 7</td>
<td>ENGI 7621, 7640, 8677</td>
</tr>
<tr>
<td>Fall</td>
<td>004W or 005W (optional) or 006W (optional)</td>
</tr>
<tr>
<td>Winter Academic Term 8</td>
<td>ENGI 8152, 8640</td>
</tr>
</tbody>
</table>
6.6.1.1 Technical Streams
- Technical Streams are available in the areas of Petroleum and Process.
- A student may experience scheduling difficulties if courses are selected from more than one Technical Stream.
- The selection of a course as a technical stream course from outside these lists requires the approval of the Head of the Department of Process Engineering.

<table>
<thead>
<tr>
<th>Petroleum Technical Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Academic Term 6</td>
</tr>
<tr>
<td>Academic Term 7</td>
</tr>
<tr>
<td>Academic Term 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process Technical Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Academic Term 6</td>
</tr>
<tr>
<td>Academic Term 7</td>
</tr>
<tr>
<td>Academic Term 8</td>
</tr>
</tbody>
</table>

6.6.2 Minor in Applied Science - Process Engineering for Chemistry Majors or Honours Students
For Chemistry Majors or Honours students, a Minor in Applied Science - Process Engineering will consist of Chemistry 1051, ENGI 3600, 4621, 4602 (or Chemistry 2301), 4625, and 4961 and 6 credit hours chosen from ENGI 5601, 6621, 6631, 6651, 7621, and 8671.
Completion of the Minor in Applied Science - Process Engineering does not qualify persons to hold the designation “Professional Engineer” as defined by various provincial acts governing the Engineering Profession.

6.7 Advanced Standing
Students are occasionally admitted to later terms in Engineering from other institutions. Such entry is normally based on a detailed analysis of the student’s record and is handled on a case-by-case basis. Such students should contact the Office of the Associate Dean (Undergraduate Studies).

7 Promotion Regulations
7.1 General Information
1. Engineering One consists of eleven required courses: Mathematics 1000, Mathematics 1001, Mathematics 2050, Physics 1050, Physics 1051, Chemistry 1050, English 1090 or the former English 1080, ENGI 1010, ENGI 1020, ENGI 1030 and ENGI 1040.
2. Students are assigned majors for Academic Term 3, which is offered in the Fall semester only.
3. In addition to meeting the promotion regulations for the Faculty of Engineering and Applied Science, all students must meet the general academic regulations (undergraduate). For further information refer to the UNIVERSITY REGULATIONS - General Academic Regulations (Undergraduate).
4. Success in the programs depends on meeting the requirements of both academic terms and work terms.

7.2 Promotion Status (Engineering One)
1. The minimum requirements for promotion to Academic Term 3 are:
 a. an Engineering One promotion average of at least 65%. The promotion average is defined as the overall average of the following nine courses: Mathematics 1001, Mathematics 2050, Physics 1051, Chemistry 1050, English 1090 or the former English 1080, ENGI 1010, ENGI 1020, ENGI 1030 and ENGI 1040; and
 b. a grade of at least 55% in each of the above nine courses.
2. Meeting the minimum Engineering One promotion requirements does not guarantee promotion to Academic Term 3.
3. A student who meets the promotion requirements and has an Engineering One promotion average of at least 70% will be guaranteed promotion to Academic Term 3.
4. A student who meets the promotion requirements and has an Engineering One promotion average of less than 70% will be promoted to Academic Term 3 as Faculty capacity permits.
5. To be considered for promotion to Academic Term 3 no required course in Engineering One may be failed more than once. If a student fails one of the Engineering One courses more than once the student will be withdrawn from the Engineering program.
6. In order to remain in the Engineering program, a student admitted to Engineering One must complete the requirements for promotion to Academic Term 3 before the end of the academic year following the academic year of admission. Therefore, a student in
Engineering One will have at most two years to complete all requirements for promotion to Academic Term 3.

7. A student who fails to meet the requirements for promotion to Academic Term 3 before the end of the academic year following the academic year of admission will be withdrawn from the Engineering program.

8. Promotion from Engineering One guarantees admission to one of the six majors, but not necessarily to a student’s preferred major. The Faculty reserves the right to establish the capacity of each major. The Faculty also reserves the right to guarantee admission into a particular major at the time of admission into the Engineering program. A student promoted to Academic Term 3 with an Engineering One promotion average of 75% and greater is guaranteed a preferred major.

9. A student is required to submit a Major Preference form, indicating a preferences for major in rank order, by April 1 in the academic year in which the student expects to complete the requirements of Engineering One.

7.3 Promotion Status (Beyond Engineering One)

A student’s eligibility for promotion from semesters beyond Engineering One will be determined at the end of each term. In order to be considered for promotion a student must complete all courses required in that Academic term. Promotion from each academic term will be based upon the student’s Promotion Average for the semester. The Promotion Average, which will appear on the transcript, is calculated to be the overall average of required courses completed in the academic term excluding complementary studies and free elective courses. Promotion from work terms will be determined based upon the grade awarded in that work term.

A student’s promotion status will be determined beyond Engineering One and at the end of each academic term in one of the following three categories:

7.3.1 Clear Promotion

Clear Promotion means that a student can proceed to the next term without restrictions.

1. A student completing or repeating an academic term will receive a Clear Promotion by obtaining a promotion average of at least 60% and a numeric grade of at least 50% in each of the courses included in the calculation of the promotion average in that academic term.

2. A student completing a work term will receive a Clear Promotion by obtaining an overall grade of PAS or PWD in that work term.

7.3.2 Probationary Promotion

A student who is not eligible for Clear Promotion from an academic term but who achieves a promotion average of at least 60% in that term will be granted Probationary Promotion.

1. A student’s Probationary Promotion status will be reflected on the University Transcript under the Promotion Average for the semester.

2. A student with Probationary Promotion from an academic term may continue to the subsequent work term under the condition that entry into the next academic term is not allowed until the student’s status is changed to Clear Promotion.

3. A student with Probationary Promotion at the end of the final academic term will not be recommended for graduation until the student’s status is changed to Clear Promotion.

4. To change Probationary Promotion to Clear Promotion for an academic term the student must satisfy the Faculty that he or she is competent in the subject of the ENGI course(s) in which the student has failed to achieve 50%. This will normally entail re-examination(s) prescribed by the Faculty as a condition of probation, after which the student will be declared to have passed or failed a test of competency in the subject(s) concerned. No numerical grade will be assigned in a re-examination. Upon passing a re-examination, the original grade submitted for the course will be changed to PAS, but the promotion average will not change and a note of the original grade will remain on the transcript.

5. Re-examination will be at a time determined by the Faculty, normally in the first week of the subsequent academic term. A re-examination is cumulative in nature, covers the entire course and, as such, may be different in scope from the original final examination for that course.

6. In order to qualify for a re-examination in a failed ENGI course, a student must obtain a grade of at least 40% in that course and must have completed any laboratory and/or project work in that course. Re-examinations are not normally available for senior project courses or for other courses in which the final examination is worth less than 40% of the grade.

7. A student who has failed the communications component of a work term and who, in the opinion of the Office of Co-operative Education, can benefit from a remedial program, may be permitted an extension of time, not to exceed the end of the registration period of the subsequent academic term, to complete the requirements of the work term.

8. A student will be permitted to write a maximum of four re-examinations for the duration of the student’s program.

9. To change Probationary Promotion to Clear Promotion for an academic term the student must repeat successfully any non-ENGI course(s) which count towards the promotion average and in which the student has failed to achieve 50%.

10. A student may apply for a deferred re-examination on a similar basis to the deferral of a final examination.

11. A student with Probationary Promotion who does not complete a prescribed re-examination will be deemed to have failed that re-examination. Upon failing a prescribed re-examination the original course grade will be retained and a comment confirming failure of the re-examination will be added to the transcript.

12. A student with Probationary Promotion who fails in the re-examination(s) or who does not qualify for the re-examination(s) must repeat the corresponding failed course(s) successfully in order to change the Probationary Promotion to Clear Promotion.

13. A student with Probationary Promotion from any of Academic Terms 3 to 7 who does not meet the requirements for Clear Promotion by the end of the registration period for the subsequent academic term must withdraw from the program. Permission to register for ENGI courses to be repeated may be subject to the approval of the Faculty. Such students may apply for readmission to the Bachelor of Engineering program when they have satisfied the requirements for Clear Promotion.

7.3.3 Promotion Denied

Promotion Denied status is awarded when a student does not meet the requirements for Clear Promotion or Probationary Promotion.

The student’s Promotion Denied status will be reflected on the University Transcript under the Promotion Average for the academic term.

1. A student with Promotion Denied status will be required to withdraw from the Faculty.

2. A student with Promotion Denied status may apply for readmission to the program after two semesters. Subject to space being available, a student will be readmitted into the term from which promotion was denied. An academic term may be repeated only
once, and not more than two academic terms may be repeated in the entire program.

3. A student who is denied promotion for failing a work term may be considered for readmission. A student readmitted under this clause must successfully complete four work terms prior to graduation.

4. A work term may be repeated only once, and not more than two work terms may be repeated in the entire program.

5. A student who is denied promotion from an academic term will be required to repeat all required courses in which the student obtained a numeric grade of less than 60% in that term. In addition, the Admissions Committee may design a remedial program to address the student’s specific area(s) of weakness. A technical elective course in which the student obtained a numeric grade of less than 60% may be replaced by a course acceptable in the student’s program.

6. A student who is denied promotion from an academic term may not continue to the subsequent work term unless both the employer and the Office of Co-operative Education grant permission.

7. A student with Promotion Denied status at the end of the final academic term will not be recommended for graduation until the student’s status is changed to Clear Promotion.

7.4 Other Information

1. The appropriate Department will make a recommendation to Faculty Council on each student’s promotion status at the end of each of Academic Terms 3 to 8.

2. To be recommended for graduation, a student must have Clear Promotion from Academic Term 8, must have successfully completed the four mandatory work terms and any elective work terms undertaken and must have an average of at least 60% in the 21 credit hours in complementary studies as described in Description of Program, Complementary Studies.

3. The Office of Co-operative Education will make a recommendation to Faculty Council on each student’s promotion status at the end of each work term.

4. A student must have completed at least one work term successfully, in order to be promoted to Academic Term 5.

5. A student must have completed at least two work terms successfully, in order to be promoted to Academic Term 6.

6. A student must have completed at least three work terms successfully, in order to be promoted to Academic Term 7.

7. A student must have completed four work terms successfully, in order to be promoted to Academic Term 8.

8. A student denied promotion shall be permitted only one readmission to the same term and a total of no more than two readmissions to the Faculty.

9. A student is permitted one failure only in each of the courses required in Engineering One.

10. No course required in any of Academic Terms 3 to 8 of the program may be attempted more than twice.

11. A student may be required to withdraw from their program at any time, if, in the opinion of the Faculty, the student is unlikely to benefit from continued attendance.

8 Graduation

Upon meeting the qualifications for any of the programs of the Faculty of Engineering and Applied Science a student must apply by the appropriate deadline date to graduate on the prescribed “Application for Graduation” form. This form may be obtained on-line at the Memorial Self-Service at www3.mun.ca/admit/twbkwbis.P_WWWLogin. Additional information is available from the Office of the Registrar at www.mun.ca/regoff/graduation.

9 Waiver of Faculty Regulations

Every student has the right to request a waiver of Faculty regulations. Students seeking a waiver of University academic regulations should refer to the UNIVERSITY REGULATIONS - General Academic Regulations Undergraduate, Waiver of Regulations.

1. The Faculty Council reserves the right in special circumstances to modify, alter, or waive any Faculty regulation in its application to individual students, where merit and equity so warrant in the judgment of the appropriate Committee of the Faculty Council.

2. All requests must be submitted to the Office of the Associate Dean (Undergraduate Studies) for submission to the appropriate Committee of the Faculty. Students must submit their request in writing. Medical and/or other documentation to substantiate the request must be provided.

3. Requests for waivers of admission requirements will be submitted to the Admissions Committee who will make a recommendation for action to the Committee on Undergraduate Studies of the Faculty.

4. Requests for a waiver of a course(s) required in academic terms 3 to 8 should be made prior to the commencement of the academic term and will be considered by the Committee on Undergraduate Studies, upon recommendation of the Head of the appropriate Department.

5. Requests for a waiver of a work term will be considered by the Committee on Undergraduate Studies upon recommendation of the Office of Co-operative Education. Any waiver granted does not reduce the total number of work terms required for the degree below an absolute minimum of three.

10 Appeal of Regulations

10.1 General Information

In accordance with UNIVERSITY REGULATIONS - General Academic Regulations (Undergraduate), Appeal of Decisions, the Appeals Committee of the Faculty of Engineering and Applied Science considers appeals of promotion, admission and readmission decisions related to undergraduate programs offered by the Faculty of Engineering and Applied Science. A student wishing to appeal related decisions should review the General Academic Regulations (Undergraduate), Appeal of Decisions, Route for Questioning Grades carefully. Individual course grades may not be appealed as a student will normally have had the opportunity of contesting grades immediately after notification as outlined under UNIVERSITY REGULATIONS - General Academic Regulations (Undergraduate), Appeal of Decisions, Route for Questioning Grades.

All appeals must be directed to the Secretary of the Appeals Committee, c/o the Undergraduate Studies Office of the Faculty of Engineering and Applied Science. All letters of appeal must state clearly and fully the grounds for the appeal and the resolution being sought.
10.2 Appeals of Admission Decisions
An appeal of a decision concerning admission or readmission must be made in writing within fourteen days of the date of notification of the decision to the Secretary of the Appeals Committee, c/o the Undergraduate Studies Office of the Faculty of Engineering and Applied Science.

10.3 Appeals of Promotion Decisions
1. Appeals of promotion decisions must be submitted to the Secretary of the Appeals Committee, c/o the Undergraduate Studies Office of the Faculty of Engineering and Applied Science within one month of the notification by the Faculty of the promotion decision. Appeal submissions shall contain the following:
 - Student name,
 - Current address and telephone number,
 - Memorial University of Newfoundland e-mail address,
 - Student ID number,
 - A copy of the decision giving rise to the appeal,
 - A description of the matter under appeal,
 - The grounds of appeal,
 - Supporting documentation; and
 - The resolution being sought.
2. When a student has requested a re-read of an examination paper which may affect an appeal, that appeal must nevertheless be submitted within one month of the issue of the original decision and consideration of the appeal will be delayed until the result of the re-read is available.
3. A student may request additional time to gather supporting documentation. Such a request will not be unreasonably denied.
4. For assistance in the appeals process, a student is advised to consult with the Associate Dean (Undergraduate Studies) whose advice shall include the provision of a list of others within the Faculty and elsewhere in the University who can advise the student during the appeals process.
5. A student is encouraged to review UNIVERSITY REGULATIONS - General Academic Regulations (Undergraduate) - Appeal of Decisions, Information Required in Letters of Appeal.
6. The terms of reference for the Appeals Committee of the Faculty of Engineering and Applied Science, including procedures followed by the Committee, are posted on the Faculty website at www.mun.ca/engineering.

10.4 Other Appeals
Any student whose request for waiver of Faculty regulations has been denied has the right to appeal. For further information refer to the UNIVERSITY REGULATIONS - General Academic Regulations (Undergraduate) - Appeal of Decisions.

11 Course Descriptions
All courses of the Faculty are designated by ENGI.

11.1 Work Terms and Non-Credit Courses
001W Engineering Work Term 1 provides opportunity for an introductory experience in an engineering work environment. Students are expected to learn, develop and practise the basic standards of behaviour, discipline and performance normally found in a professional work environment. They are expected to learn the basics of technical writing and to become familiar with the various communications tools used in an engineering work environment.
CH: 0
LC: 0
PR: ENGI 200W

002W Engineering Work Term 2 requires students, under supervision, to contribute positively to the engineering and problem solving processes practised in the work environment. They are expected to set objectives, take direction, work independently as required, learn professional behaviours, and function as effective team members. An ability to investigate work-related concepts should be demonstrated. Students should become better familiarized with the use of engineering tools, data analysis, prioritization of assignments, and effective communication of technical information.
CH: 0
LC: 0
PR: ENGI 001W, ENGI 3101

003W Engineering Work Term 3 requires greater participation in the students' engineering discipline. They become more experienced and proficient in problem solving and use of appropriate design processes. They should demonstrate speed and accuracy in their work, accept greater responsibility and be able to function with less direct supervision. Good judgement, increased initiative and improved analytical skills are expected to develop at this stage. Students should better appreciate the attitudes, responsibilities, and ethics expected of engineers.
CH: 0
LC: 0

004W Engineering Work Term 4 requires students to engage in complex problem solving and use of appropriate design processes. They should demonstrate speed and accuracy in their work, accept greater responsibility and be able to function with less direct supervision. Good judgement, increased initiative and improved analytical skills are expected to develop at this stage. Students should better appreciate the attitudes, responsibilities, and ethics expected of engineers.

005W Engineering Work Term 5 requires students to continue to engage in advanced facets of engineering. Participation in their selected engineering discipline is expected. Students should apply skills independently in engineering analysis, contribute to a safe work environment, and utilize engineering tools while understanding their limitations. They will contribute significantly to design and/or problem solving processes and demonstrate project management and leadership abilities. The level of responsibility should be commensurate with their academic background and experience.
CH: 0
LC: 0
PR: ENGI 004W

006W Engineering Work Term 6 requires students to further engage in various advanced facets of engineering. Participation in their selected engineering discipline is expected. Students should gain further appreciation of the use and importance of acquired analytical skills in engineering analysis, and significantly contribute to design and/or problem solving processes. The level of responsibility should be commensurate with their academic background and experience. Work scope should be mostly independent, with longer timelines, and with the possibility of leadership opportunities.
CH: 0
11.2 Engineering One Courses

1010 Engineering Statics is the first course in Engineering mechanics. Forces and moments are described with vector algebra, leading to a description of the equilibrium conditions for particles and solid bodies. The importance of free body diagrams is highlighted. This knowledge is then applied to the analysis of trusses, frames and machines. Additional topics include an examination of friction and the concepts of centre of force, centroids and second moments of area.

Engineering Mathematics includes ordinary differential equations of first order and first degree; linear ordinary differential equations of higher order, methods of undetermined coefficients and variation of parameters; applications to electric circuits and mass-spring systems; Laplace transforms; partial differentiation; convergence of series; Taylor and binomial series; remainder term; and an introduction to Fourier series.

1020 Introduction to Programming is an introduction to algorithmic problem solving techniques and computer programming, including basic program control structures (sequence, call, branch, loop) and data representations, functional decomposition, and design by contract. Exercises and examples are drawn from a variety of engineering disciplines and are implemented using a standard modern programming language.

1030 Engineering Graphics and Design provides two complementary competencies. Firstly, it provides an introduction to the fundamentals of graphic communication, including orthographic projections, three dimensional pictorials, sectioning and dimensioning. Both sketching and CAD are utilized. Secondly, the course introduces students to standard design methodologies. The graphics and design competencies are reinforced through lab and project exercises.

1040 Mechanics and Electric Circuits is offered in two serial modules, including laboratory and workshop practice, and a team project to expose students to the concept of system integration involving electrical and mechanical systems. The electrical module provides an introduction to dc circuits, with an analysis of dc circuits used in control, measurement and instrumentation systems. The mechanism module provides an introduction to machine components such as belts, pulleys, gears, and simple linkages. The laboratory and workshop component introduces students to hands-on practice in basic laboratory instruments, tools and safety procedures. A team project involves the construction, assembly and testing of a simple mechanism.

11.3 Academic Term 3 Courses

3001 Ocean/Naval Design introduces design and operation for ships and marine structures. Technology evolution in ship and offshore structures is reviewed, emphasizing service needs. Structural concepts, materials and construction methods are examined, including design for manufacturing. The design spiral and trade-offs between design characteristics are explored and morphing tools as tools in the design process are introduced. There is a minimum of six laboratory sessions including ship tours, a design project or research paper.

3054 Ocean Engineering Hydrostatics is an introductory course to naval architecture and marine engineering. It discusses the basic principles of the state of rigid floating or submerged structures. These include: ships, offshore platforms and submersibles. Methods of analysis of the hydrostatics, stability and trim, damage stability and the statics of mooring systems are introduced. Applications are also discussed.

3101 Engineering Professionalism I examines issues associated with professional engineering practice and with functioning effectively in the workplace. Topics include communication, workplace and professional ethics, information literacy, equity, gender, diversity, and occupational health and safety (including first-aid). This is a writing-intensive course with a critically-reflective component. Current accreditation graduate attributes are introduced for further development throughout the program.

4324 Engineering Mathematics includes ordinary differential equations of first order and first degree; linear ordinary differential equations of higher order, methods of undetermined coefficients and variation of parameters; applications to electric circuits and mass-spring systems; Laplace transforms; partial differentiation; convergence of series; Taylor and binomial series; remainder term; and an introduction to Fourier series.

3425 Mathematics for Civil Engineering I includes sequences & series, functions of a single parameter, conic sections, partial differential, multiple integration, introduction to first order ordinary differential equations.

4360 Introduction to Process Engineering familiarizes students with the principles and the practical aspects of organic, inorganic, and biochemical processes including the major unit operations and equipment. It emphasizes process flow sheeting, process variable identification, component and overall material balances, and process design. The course uses extensive examples from industrial processes. In laboratory sessions students are introduced to the laboratory scale process equipment and use HYSYS software to study process characteristics.

3610 Earth Sciences for Civil Engineering is an introduction to basic concepts in geology with emphasis on applications in Civil, Geological, Mining and Environmental Engineering through the study of basic concepts and case histories. It includes the study of rocks, minerals, sediments and their physical properties in laboratory exercises.

3703 Surveying and Geomatics includes distance, elevation, and angle measurements; plane and geodetic surveying; satellite, GPS and geographical information systems (GIS). A surveying field school to introduce students to the use of surveying equipment and mapping will be held in the first two weeks of the term.

3731 Materials for Construction includes structure of metals and non-metals; strengthening mechanisms used, iron and steel; brick masonry; concrete masonry; mortar grout and plaster; wood and wood products.

3821 Circuit Analysis begins with a review of basic circuit analysis including dependent sources, then considers wye-delta transformation, bridge circuits, transient analysis of first- and second-order circuits, sinusoidal steady state analysis, phasor diagrams, sinusoidal steady-state power, complex power and maximum power transfer.

AR = Attendance requirement; CH = Credit hours are 3 unless otherwise noted; CO = Co-requisite(s); CR = Credit can be retained for only one course from the set(s) consisting of the course being described and the course(s) listed; LC = Lecture hours per week; LH = Laboratory hours per week; OR = Other requirements of the course such as tutorials, practical sessions, or seminars; PR = Prerequisite(s); UL = Usage limitation(s).
11.4 Academic Term 4 Courses

4007 Marine Materials examines the properties and uses of steel, aluminum and composite materials in marine applications. Topics include: review of mechanics of materials, Hooke’s Law, material failure models; carbon steel - fundamentals; processes, preparation, design, drawings, certification; joining of aluminum; riveting and welding; corrosion phenomena; composites - classification, production, and mechanical properties.

CR: the former ENGI 7007

LH: at least 4 three-hour sessions per semester
PR: CHEM 1050

4011 Resistance and Propulsion examines the phenomena resisting the motions of ships and some factors considered in the design of the marine screw propeller. The topics include the resistance due to friction, wave making, form appendage, wind and waves, squat, blockage, and shallow water effects, and also include the estimation of powering using methodical series and statistical methods. Topics covered in the design of the marine screw propeller: the theory, blade sections, blade strength, methodical series charts, efficiency elements, lifting line calculations, cavitation, and propellers in non-uniform flow.

CR: the former ENGI 5011

LH: 3
OR: tutorial 1 hour per week
PR: ENGI 3054

4020 Marine Fluid Dynamics includes fluid statics; fluid flow phenomena, in general and in marine applications; control volume analysis of fluid motion; conservation of mass, momentum and energy; differential approach to fluid analysis; head losses; applications of conservation laws; external vs. internal flow; dimensional analysis and scaling; fluid-structure interaction concepts; potential flow theory, lift and Kutta-Joukowski theorem; viscous flow, boundary layers and drag.

LH: at least 4 three-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 3054

4102 Engineering Economics is an introduction to the concepts in the determination of the economic feasibility of engineering projects; time value of money – interest rates, depreciation, annual, present and future worth analysis; benefit-cost analysis, tangible and intangible benefits and costs; economic risk and sensitivity analysis, economic optimization.

4312 Mechanics of Solids I examines force analysis of structures and structural components, free body diagrams of structure, components and section of a components, definition of a stress at point, stress notation, complementary property of shear stress, definition of strain, normal strain, shear strain, thermal strain, mechanical properties of materials, analysis of prismatic members due to axial, bending and torsion loading, analysis of beams, shear force and bending moment diagrams, combined loads; and the transformation of stresses and strains.

CR: ENGI 4934
LH: four 1-hour sessions per semester
OR: up to ten 1-hour tutorials per semester
PR: ENGI 1010

4421 Probability and Statistics includes probability, probability distributions, probability densities, sampling distribution, hypothesis testing, regression and correlation.

CR: the former ENGI 3423, STAT 2550, the former STAT 2510
OR: tutorial 1 hour per week
PR: Mathematics 1001

4424 Discrete Mathematics for Computer Engineering is an introduction to discrete mathematics including a selection of topics such as propositional logic, introductory predicate logic, mathematical reasoning, induction, sets, relations, functions, integers, graphs, trees, and models of computation.

CR: the former ENGI 3422, Mathematics 2320, Computer Science 1002, or the former Computer Science 2740
OR: tutorial 1 hour per week
PR: Mathematics 2050

4425 Mathematics for Civil Engineering II examines the analytical solutions of ordinary differential equations of the first and higher orders and numerical methods; errors, round off and stability, solution to nonlinear equations, curve fitting and interpolation methods, numerical differentiation and integration.

CH: 4
CR: the former ENGI 4422
LC: 4
OR: tutorial 1 hour per week
PR: ENGI 3425

4430 Advanced Calculus for Engineering includes parametric vector functions; polar curves; gradient, divergence and curl; multiple integration; vector calculus, theorems of Green, Stokes and Gauss; an introduction to partial differential equations; and application of advanced calculus to relevant engineering problems.

CR: the former ENGI 5432
OR: tutorial 1 hour per week
PR: ENGI 3424

4602 Process Engineering Thermodynamics extends the study started in ENGI 3901 of thermodynamics, with special reference to chemical process applications: basic laws, thermodynamic properties of pure fluids and mixtures, heat engines, multicomponent systems, thermal/mechanical equilibrium, chemical equilibrium, and thermodynamics of chemical processes. Special emphasis is placed on the application of thermodynamics to practical problems in chemical engineering such as phase equilibria, solutions and reaction equilibria in separations and reaction engineering.

CR: the former Chemistry 2300, the former Chemistry 3300
PR: ENGI 3901

4621 Process Mathematical Methods introduces numerical methods in chemical engineering processes, solution of sets of linear algebraic equations, solution of non-linear equations, curve fitting and interpolation, numerical integration, numerical differentiation, first order and higher order ordinary differential equations, boundary value problems and partial differential equations. It provides applications of the methods to different aspects of process engineering such as reactor design, separation, process modeling, equipment design and analysis.

CO: ENGI 4625
LH: eight 2.5-hour sessions per semester
PR: ENGI 3424 (or Mathematics 2000, Mathematics 2050, and Mathematics 2260)

4625 Process Engineering Calculations is an introduction to the analysis of chemical processes with an emphasis on mass and energy balances. Stoichiometric relationships, ideal and real gas behaviour are also covered. The course will help Process Engineering majors in their second year to develop a framework for the analysis of flow sheet problems and will present systematic approaches for manual and computer-aided solution of full scale balance problems.

CO: ENGI 4602. There is no co-requisite for students completing a minor in Applied Science - Process Engineering.
PR: ENGI 3901. Students completing a minor in Applied Science - Process Engineering must complete Chemistry 2391 as the prerequisite instead of ENGI 3901.

AR = Attendance requirement; CH = Credit hours are 3 unless otherwise noted; CO = Co-requisite(s); CR = Credit can be retained for only one course from the set(s) consisting of the course being described and the course(s) listed; LC = Lecture hours per week are 3 unless otherwise noted; LH = Laboratory hours per week; OR = Other requirements of the course such as tutorials, practical sessions, or seminars; PR = Prerequisite(s); UL = Usage limitation(s).
11.5 Academic Term 5 Courses

5020 Marine Propulsion is a second course in marine propellers and ship powering. Design and analysis of marine screw propellers and other propulsion devices are covered. Conventional and unconventional propulsion systems are introduced. Methods and philosophy of propeller design are included. Design of fixed-pitch propellers based on lifting line theory and the design of ducted propellers are emphasized. Design of other propulsion systems such as waterjets and sails is also incorporated.

CR: the former ENGI 6020

LH: at least two 3-hour sessions per semester
PR: ENGI 4020

5022 Probability and Random Processes in Ocean Engineering includes basic concepts in probability, random variables, multiple random variables, descriptive statistics. The random processes component reviews mathematics of functions, introduces system input-output relations of continuous-time systems; contrasts time vs frequency domain representations; introduces frequency response plots and the Fourier transform. A probabilistic approach to ship damage, response to waves (in time and frequency domains), Response Amplitude Operators (RAO), and acceptable levels of risk for design are introduced and applied.

CR: tutorial one hour per week
PR: ENGI 4020, Mathematics 2260 or the former Mathematics 2360

5034 Marine Vibrations provides an introduction to mechanical vibration and noise in ships, focusing on the vibration of marine machinery and on the dynamic response of marine structures. Topics include: single degree of freedom systems – free vibration, energy methods, response to harmonic excitation, response to arbitrary inputs; multi degree of freedom systems – natural frequencies and mode shapes, response to harmonic excitation; frequency response functions; on-board sources of vibration, vibration measurement techniques and instrumentation.

CR: ENGI 6933, the former ENGI 5932

LH: at least four 2-hour sessions per semester
PR: ENGI 3934

5312 Mechanics of Solids II includes a review of earlier concepts; strain energy, stress analysis of beams and thin-walled structures; first and second order differential equations, stability, vibrations, applications of conservation laws; finite element methods, boundary value problems, applications of eigenvalue problems.

CR: ENGI 4312

LH: at least three 1.5-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 3901

4932 Mechanisms and Machines includes an overview of mechanisms and machines; analytical and computer-aided methods for power transmission, kinematics and dynamics of planar mechanisms; static and dynamic loads on mechanisms and an introduction to mechanism synthesis. Students will complete an analysis project.

CR: the former ENGI 3933
OR: tutorial 1 hour per week
PR: ENGI 3934

4934 Mechanics of Solids I examines stress and strain analysis applied to bars and beams in axial, torsion and bending; beam deflection, plane stress and strain, stress and strain transformations in two dimensions and Mohr's circle.

CR: ENGI 4312

LH: at least four 1-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 1010

4961 Fluid Mechanics I (same as the former ENGI 5961) examines fluid statics; fluid flow phenomena; control volume analysis; conservation of mass, momentum, and energy; Bernoulli equation; head losses, applications of conservation laws; measurement devices; parallel and serial; momentum devices, dimensional analysis, boundary layer phenomena, lift and drag.

CR: ENGI 4661, the former ENGI 4913, the former ENGI 5961

LH: five 1-hour sessions per semester
OR: tutorial 1 hour per week
5601 Mass Transfer covers diffusive as well as convective mass transfer, mass transfer correlations, and the application to absorption and membrane separations.

LH: at least seven 2-hour sessions per semester
PR: ENGI 4602 (or Chemistry 2301)

5602 Process Heat Transfer is a study of concepts involved in heat transfer. The course includes applications of continuity and energy equations, fundamentals of heat transfer, modes of heat transfer, conduction, convection and radiation heat transfer, boiling and condensation, evaporation, and heat exchanger analysis and design.

CR: ENGI 4601
LH: one 3-hour session per semester
PR: ENGI 4602, ENGI 4611 or ENGI 4612 or the former ENGI 5611

5671 Fluid Mechanics examines fluid properties; fluid statics; buoyancy and stability; kinematics; pressure measurement; continuity, energy and momentum principles; control volume analysis; energy and hydraulic grade lines; free jets; laminar and turbulent flow; dimensional analysis; drag on immersed bodies; flow measurement; head loss in pipes; and an introduction to flow in pipe systems.

CR: ENGI 4691, the former ENGI 4913, the former ENGI 5611
LH: five 2-hour sessions per semester
OR: twelve 1-hour tutorials per semester
PR: ENGI 4432

5723 Geotechnical Engineering II examines shear strength of soil; types of laboratory and in-situ soil shear strength tests; lateral earth pressure on retaining structures; slope stability analysis; soil bearing capacity for shallow foundations; introduction to pile foundations and limit state design in geotechnical engineering.

CR: the former ENGI 6723
LH: 3
OR: twelve 1-hour tutorials per semester
PR: ENGI 4723

5800 Electrical Engineering Design students work, normally in pairs, on small design projects that require them to follow a hierarchical design process including general product definition, specifications and requirements, block-diagram sections in design, postulation of functional blocks, for circuit-level synthesis and implementation, system integration, simulation or modelling, testing and verification. The small projects are designed to encourage and motivate students to learn and practise the process of design. The course culminates in a large design project.

CO: ENGI 5821, ENGI 5854
LC: 18 lecture hours per semester
LH: ten 3-hour sessions per semester
OR: meetings with project supervisor as required
PR: ENGI 4841, ENGI 4854, ENGI 4862

5812 Basic Electromagnetics includes a review of relevant vector calculus, including the divergence, gradient and curl operators in Cartesian, cylindrical and spherical coordinates, divergence theorem, Stokes' theorem, and Laplace's and Poisson's equations. Topics in electrostatics include Coulomb's law, potential and energy, conductors, dielectrics, capacitance and electric field boundary conditions. Topics for magnetism include the static magnetic field, the Biot-Savart law and Ampère's law.

CR: Physics 3500
OR: tutorial 1 hour per week
PR: ENGI 3821, ENGI 4430

5821 Control Systems I includes an introduction to control systems with negative feedback; mathematical modelling and transfer functions of electromechanical systems; block diagram and signal flow graphs; controller realization; transient response analysis; Routh's stability criterion; basic control actions and response of control systems; root locus analysis and design; frequency response analysis; Bode diagram; gain and phase margins; compensator design in frequency domain; Nyquist stability criterion; digital implementations of analog compensators; and an introduction to PID controller tuning methods.

LH: four 3-hour sessions per semester
PR: ENGI 4823

5854 Electronic Circuits II provides an introduction to circuits using operational amplifiers. Topics covered include operational amplifier configurations, analysis, and design; transient and frequency response of active circuits; feedback amplifier analysis and design; stability and compensation techniques; noise and distortion in electronic circuits; analysis and design of data converters; and an introduction to analog filter design. CAD tools are used to illustrate the analysis and design of electronic circuits.

PR: ENGI 4823
OR: tutorial 1 hour per week
LH: eight 3-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 4823, ENGI 4854

5865 Digital Systems includes concepts, language, tools, and issues pertaining to specification, modelling, analysis, simulation, testing and synthesis of digital systems, including PLD, FPGA, and ASIC devices. Industry standard CAD tools will be used in this course to facilitate system design and testing.

LH: four 3-hour sessions per semester
PR: ENGI 3891, ENGI 4862

5892 Algorithms: Correctness and Complexity (same as the former ENGI 6892) presents fundamental theories and practices for the design of correct and efficient computing systems, including specification of computing systems and their components, correctness with respect to specifications; methods of verification; algorithmic problem solving strategies (divide and conquer, dynamic programming); tractability and intractability of computational problems.

CR: the former ENGI 6892
OR: tutorial one hour per week
PR: ENGI 4424, ENGI 4892

5895 Software Design examines the development process: requirement analysis, design, iterative development, design documentation; an introduction to the Unified Modelling Language: use cases, class diagrams and sequence diagrams; an introduction to software design patterns; creation patterns, structural patterns and behavioural patterns; object oriented, modular decomposition. The course includes a major design project.

LC: 25 lecture hours per semester
LH: six 3-hour sessions per semester
OR: meetings with project supervisor as required
PR: ENGI 4892

5911 Chemistry and Physics of Engineering Materials II examines aspects of chemical and physical processes and microscopic structure relevant to the production and use of engineering materials, focussing on metals, alloys, silicates, Portland cement, plastics and adhesives, composites, and wood. Topics include solid-state solutions and compounds, allotropic structures, phase diagrams, reaction rates, solid-state transformations, polymerization, oxidation and corrosion, hardness, creep, fatigue, fracture toughness and visco-elastic deformation.

CR: the former ENGI 3205
LH: at least four 3-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 3911

5931 Mechanics of Solids II examines stresses due to combined loads, asymmetric bending, transformation of stresses and strains, principal stresses and strains (in two and three dimensions), static failure theories, stress concentration, energy methods, method of superposition, buckling of columns, thin- and thick-walled pressure vessels and contact stresses.

OR: ENGI 5312
LH: at least four 1-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 4934

5952 Mechatronics I involves modelling of electro-mechanical systems and introduction to basic analog and digital electronic devices. Topics covered include lumped-parameter modelling of electro-mechanical systems, basic electronic components and semiconductors, introduction to op amps, digital logic and number systems, microcontroller technology and interfacing (switches, LEDs, steppers, solenoids, A/D and D/A conversion).

CR: the former ENGI 4951
LH: five 3-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 1040, ENGI 3424

5962 Fluid Mechanics II examines differential analysis of fluid motion; conservation of mass; continuity equation; conservation of momentum; Navier-Stokes equations; conservation of energy; basic film lubrication
theory, boundary layer flows; compressible flows.
CR: ENGI 6661, the former ENGI 5913, the former ENGI 6961
LH: at least three 1-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 4961 or the former ENGI 5961

11.6 Academic Term 6 Courses

6002 Ship Structures I examines longitudinal strength, still water and wave bending moment, shear and bending moment curves, Smith Correction, section modulus calculation, torsion and rocking forces; bulkhead and girder scantlings; strength analysis by moment distribution and energy method; in finite element analysis and the use of Classification Society rules for design of midship section. Laboratory sessions cover use of analysis software to illustrate structural behaviour concepts.
CR: the former ENGI 5003
LH: at least five 3-hour sessions per semester
PR: ENGI 4312

6005 Floating Ocean Structures Design introduces floating structures used in the offshore petroleum industry, along with functional requirements, such as drilling and production, of the platforms. Field development criteria are discussed in the context of platform concept selection and synthesis. Environmental loads are examined, focusing on wave loads and ice loads. Diffraction theory and its application on offshore structures is presented. Offshore safety is discussed in terms of major hazards, risk management, and case studies.
CR: the former ENGI 7005
LH: 1
PR: ENGI 4305

6036 Dynamics of Marine Vehicles examines applications of the linearized equations of motion to ocean vehicle problems with single and multiple degrees of freedom in waves; dynamics of marine vehicles: motions in waves; hydrodynamics effects such as added mass, radiation and viscous damping; ship theory; irregular seaway and motions.
CR: the former ENGI 6030, the former ENGI 7035
LH: at least two 3-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 3054, ENGI 4020

6046 Marine Engineering Systems (same as the former ENGI 7045) examines shafting system design; shafting system vibration analysis, study of exciting forces and moments, and balancing of reciprocating and rotating machinery; heat transfer and marine heat exchangers; incompressible fluid flow; and piping system design and selection of appropriate pumping devices.
CH: 4
CO: ENGI 6933
CR: the former ENGI 7045
LC: 4
LH: 1
PR: ENGI 3901

6055 Marine Cybernetics examines propulsion and motion control of ships, submarines and offshore structures. Building upon the students' knowledge of mathematics, mechanics and hydromechanics provides an introduction to control systems and mathematical modeling of marine systems. Course components include: basic control actions and response of control systems; simulation and design of control systems; dynamic positioning; power management; marine automation.
LH: at least four 2-hour sessions per semester
PR: ENGI 4011

6101 Assessment of Technology deals with the issues of the impact of technology on society from an economic, environmental and sociological point of view. Public safety as an engineering responsibility will also be covered. Students will be expected to participate in group discussions, write a number of essays and give oral presentations.

6322 Thermal Sciences examines fundamental concepts associated with thermodynamics, fluid dynamics and heat transfer; first and second laws of thermodynamics; heat transfer; fluid flow features of unit operations.
CR: the former ENGI 4322
PR: ENGI 5312

6602 Offshore Petroleum Geology and Technology introduces basic concepts in geology and geophysics of the offshore environment. An outline of petroleum geology is presented, following a path from the origins of hydrocarbon generation in the Earth's crust to the application of exploration and production methods for offshore oil and gas reservoirs. The course includes a study of the historical development of the offshore industry, including the role of environmental factors, exploration process and technology, and the economic considerations involved in offshore development.
CR: the former ENGI 4322
PR: ENGI 5312

6621 Process Modelling and Analysis (same as the former ENGI 5621) is designed to introduce the concepts of process model building and its application in design and process operations. It includes fundamentals of process modelling, lumped parameter dynamic models, distributed parameter dynamic models, advanced dynamic model development, application of process models, and computer aided process design. The course also introduces model linearization, degrees of freedom analysis, stability, stiffness, observability, and controllability.
CR: the former ENGI 5621
LH: five 3-hour sessions per semester
PR: ENGI 4621, ENGI 4625

6631 Chemical Reaction Engineering will cover the fundamentals of chemical kinetics and reaction rate expressions as well as the types of reactors, homogeneous and heterogeneous (catalytic) reactors, and the interrelation between transport phenomena and reaction engineering as it applies to process design. It also includes an overview of non-ideal reactors and an introduction to bio reactors.
LH: four 2-hour sessions per semester
PR: ENGI 4621, ENGI 4661 or ENGI 4961 or the former ENGI 5961

6651 Sustainable Engineering in Processing Industries will introduce students to sustainable development and its application to processing operations. Areas such as traditional economic growth, materials cycles, methods for measuring environmental impact, life cycle analysis, waste treatment technologies and recycling technologies will be covered. In addition, the concept of industrial ecology will be included.
PR: ENGI 4625, ENGI 5601

6661 Process Fluid Dynamics II builds upon the materials introduced in Process Fluid Dynamics I. The course covers important aspects of fluid dynamics principles and applications in process engineering, including: continuity equation; differential governing equations of fluid momentum; conservation laws in chemical process engineering; ideal compressible and incompressible flow; boundary layer theory for laminar and turbulent flow; multiphase flow; introduction to CFD; turbomachinery; fluid flow features of unit operations.
CR: ENGI 5962, the former ENGI 5913, the former ENGI 6961
LH: three 1-hour sessions per semester
PR: ENGI 4661, ENGI 4961 or the former ENGI 5961

6671 Process Equipment Design II will cover design and operation of equilibrium stage separation processes including distillation, extraction, and leaching. It will also cover advanced concept of equipment design such as heterogenous system, multiphase system, absorption, and adsorption operation and computer assisted design. Course will use HYSYS and other process design software tools.
LH: at least four 2-hour sessions per semester
PR: ENGI 5601, ENGI 5671

7005 Structural Analysis I examines structure classification and loads, building code provisions, the analysis of statically determinate frames, arches and cables, stability and determinacy of planar structures, shear and moment diagrams for frames, matrix method for statically determinate structures, the force method of analysing indeterminate structures, the slope deflection method, and moment distribution method.
LH: six 3-hour sessions per semester
OR: twelve 1-hour tutorials per semester
PR: ENGI 5312

7007 Design of Concrete and Masonry Structures examines the design of slender columns, design methods for reinforced concrete two-way slabs, two-way slabs supported on walls and stiff beams, direct design method, design of foundation systems, footing design, design for concrete reinforced walls, engineered masonry, mortar stress, analysis and design of flexural members, axial load and bending in unreinforced and reinforced walls.
LH: 2
OR: twelve 1-hour tutorials per semester
PR: ENGI 5706

7173 Hydraulics examines flow in pipe systems and networks; uniform and non-uniform flow in open channels; hydraulic machinery and associated conduits; design and analysis of culverts; and pipeline/pump system optimization.
LH: four 3-hour sessions per semester
PR: ENGI 4102, ENGI 5713

7179 Construction Planning Equipment and Methods includes construction equipment selection and utilization; earthmoving including use of explosives; case studies of major civil projects; principles of project planning and control; computer applications to the construction industry.
CR: the former ENGI 8749
PR: ENGI 4102, completion of Academic Term 5 of the Civil Engineering program

8613 Electromagnetic Fields is a continuation of the topics started in Engineering 5812, including a review of electrostatics and magnetostatics,
Maxwell’s equations, Lorentz force, Poingy’s theorem, plane waves, and applications including two-wire transmission lines.

CR: Physics 4500
OR: tutorial 1 hour per week
PR: ENGI 5812. Students completing a Minor in Applied Science - Electrical Engineering may complete Physics 3500 as the prerequisite instead of ENGI 5812.

6843 Rotating Machines examines the fundamentals of rotating machines; design of machine windings, polyphase and single phase induction motors, theory and applications; synchronous machine theory; stability and control of synchronous generators; introduction to permanent magnet machines; introduction to AC motor drives.

LH: six 3-hour sessions per semester
OR: eight 1-hour tutorial sessions per semester
PR: ENGI 4841

6855 Industrial Controls and Instrumentation examines control and instrumentation system components; transducers and signal processing circuits; inputs and output devices; digital controllers; power amplifiers; power electronics; power system modeling; power system simplification; power system simulation; power system control; power system design; power system analysis; power system stability; power system optimization; power system planning; power system operation; power system reliability.

CR: ENGI 6030
PR: ENGI 6855

6856 Power Electronics is an overview of power semiconductor switches, an introduction to energy conversion and control techniques and examination of controlled rectifiers; phase-controlled converters; switch-mode dc/dc converters; variable frequency dc/ac inverters; ac/ac converters; gate and base drive circuits, design of driver and snubber circuits; thermal models and heat sink design.

CR: the former ENGI 7846
LH: eight 3-hour sessions per semester
OR: eight 1-hour tutorial sessions per semester
PR: ENGI 5854

6861 Computer Architecture begins with a review of microprocessors and computer organization. Topics include fundamentals of computer design: performance metrics and cost; instruction set architecture; memory hierarchy design; design and implementation of computer instruction sets; pipelining; special purpose processors; multiprocessors and thread-level parallelism.

PR: ENGI 5865

6871 Communication Principles begins with a review of signal representation and analysis and includes distortionless signal transmission, analog modulation (AM, FM and PM), super-heterodyne receiver, sampling theorem, pulse amplitude modulation (PAM), pulse code modulation (PCM), delta modulation.

LH: four 3-hour sessions per term
PR: ENGI 4823, ENGI 5420

6876 Communication Networks is an introduction to communication networks such as the telephone and computer networks. Topics include circuit and packet switching, network protocols and layered architecture, physical layer, data link layer, network layer, error control; local area networks, and internetworking.

PR: ENGI 5420

5893 Software Development Practice introduces the student to software development processes, practices, and tools. It includes software project management using agile processes; development tools and practices; architectural level design; deployment and operations; and verification via static analysis, formal verification, and testing.

LH: six 3-hour sessions per semester
PR: ENGI 5892, ENGI 5895

6891 Heat Transfer I examines modes of heat transfer: conduction; steady 1-D conduction; thermal resistance, extended surfaces (fins), lumped capacitance analysis, 1-D transient conduction; convection: Newton’s law of cooling, convection heat transfer coefficient, external boundary layer flows, internal flows; radiation: principles, properties, exchange factors, black body radiation, and enclosures, radiation shields.

CR: ENGI 5602
LH: at least one 3-hour session per semester
OR: tutorial 1 hour per week
PR: ENGI 4901

6926 Computer Aided Engineering Applications (same as the former ENGI 7928) introduces a variety of Computer Aided Engineering (CAE) applications based on advanced 3D CAD modelling. The fundamentals of 3D solid modeling are covered. CAE include assembly modelling, mechanism animation and finite element analysis. Applications include Computer Aided Manufacturing (CAM); model based inspection (i.e. Coordinate Measurement Machines); reverse engineering; document/drawing production; data exchange; and data management. Lab exercises provides exposure to solid modelling and CAE applications using CAD/CAM/CAE tools.

CR: the former ENGI 7928 or 7962
PR: at least ten 3-hour computer laboratory sessions per semester
PR: ENGI 1030

6929 Mechanical Component Design I (same as the former ENGI 5927) examines adequacy assessment and synthesis of machine elements with a focus on failure prevention, safety factors, and strength; static failure and fatigue analysis of components. Topics include the design of power screws, bolted connections, welds, and shafts.

CR: the former ENGI 5926 or 5927
PR: at least eight 3-hour computer laboratory sessions per semester
PR: ENGI 4312

6933 Mechanical Vibrations examines single degree of freedom systems: free vibration, energy methods, response to harmonic excitation, response to arbitrary inputs, rotating unbalance, vibration isolation; two degree of freedom systems: natural frequencies and mode shapes, vibration absorption.

CR: the former ENGI 5932
LH: at least four 2-hour sessions per semester
PR: ENGI 3934

6951 Control Systems I examines modeling, analysis and design of feedback control systems using classical controller design methods. Topics covered include linear system modelling using Laplace transforms, control system stability, time domain analysis - root locus design, frequency domain analysis - bode diagram and Nyquist design, PID Control.

CR: the former ENGI 6925
LH: at least three 1-hour sessions per semester
PR: 1-hour tutorial per week
PR: ENGI 5952 or the former ENGI 5951

11.7 Academic Term 7 Courses

7000 Ocean Systems Design develops concept design methods for marine systems from need definition through to solution selection, including weight, cost and power requirements estimating, selection of principal design characteristics and evaluation of alternative solutions. Students develop a proposal for a marine system design project which will include a statement of requirements, a parametric study, a work plan and schedule. This design project will be completed as a full design in ENGI 8000.

CR: the former ENGI 7052
LH: 3
PR: ENGI 3001, ENGI 3054, ENGI 4102

7002 Ship Structures II is an introduction to ship structural safety and rational design. Topics include local strength analysis, elastic, plastic and ultimate strength of plating, frames and grillages, buckling of columns and plates and fatigue and fracture in ships. Laboratory exercises include structural analysis software and physical experiments.

CR: the former ENGI 6003
LH: at least five 3-hour sessions per semester
PR: ENGI 6002

7003 Small Craft Design (same as the former ENGI 8003) presents the fundamentals of naval architecture and design methodology for small craft. Emphasis is on recreational craft, with special emphasis on sailing vessels. Construction materials, scantlings, performance prediction and seaworthiness are covered. Design problems unique to small craft such as mast design, sail area determination and performance prediction are covered. Students will do a small craft design of their choice. Small weekly design studies will be required.

CR: the former ENGI 7035
CO: the former ENGI 8003

7033 Marine Hydromynamics examines the fundamental equations of hydromynamics, boundary layers; potential flow, added mass, damping, circulation, and vorticity; numerical methods for hydrodynamic coefficients; water waves and loading for regular and irregular seas.

LH: at least one 3-hour session per semester
OR: one tutorial hour per week
PR: ENGI 4020

7036 Manoeuvring of Ocean Vehicles examines manoeuvrability of ocean vehicles; derivation of linear and nonlinear equations of motion and hydrodynamic coefficients; stability of motion; standard maneuvers such as turning circle, turning spiral, and PMM test; modelling and simulation of engine, propulsion, rudder and transmission systems during manoeuvring; systems for course keeping, autopilot, motion control and dynamic positioning.

CR: the former ENGI 6030, the former ENGI 7035
LH: at least two 3-hour sessions per semester
OR: 1 tutorial hour per week
PR: ENGI 6036

7046 Marine Economics and Ship Construction examines the macro-
Faculty of Engineering and Applied Science 2019-2020

7621 Process Dynamics and Control familiarizes students with the scientific and engineering principles of process dynamics and control. Students will apply and integrate knowledge of chemical engineering to identify, formulate and solve process dynamics problems and develop control systems. Model reduction, computational techniques and tools will be used for solving chemical process control problems. Also students will become familiar with industrial control systems.

PR: ENGI 6621 or the former ENGI 5621
LH: four 2-hour sessions per semester
PR: ENGI 4102, completion of academic term 6 of the Process Engineering program
LH: at least nine 2-hour sessions per semester
PR: ENGI 6621 or the former ENGI 5621, ENGI 6671

7671 Hydrochemistry and Water Resources examines basic hydrometeorological processes, evapotranspiration, precipitation, intensity-duration-frequency (IDF) analysis, infiltration, runoff and streamflow; statistical treatment of hydrologic data; hydrograph analysis and synthesis; design storms and design floods; reservoir storage and flood routing; urban run-off and drainage; use of hydrologic modelling software.

LH: four 2-hour sessions per semester
PR: ENGI 5713

7716 Hydrotechnical Engineering examines the theory and application of steady gradually-varied flow in artificial and natural open channels together with an introduction to appropriate software; erosion and deposition; design of flexible and rigid pavement; fundamentals of traffic flow and queuing theory; traffic control and analysis of signalized intersections; travel demand and traffic forecasting.

LH: four 3-hour sessions per semester
PR: ENGI 6713

7640 Process Engineering Project I gives students the opportunity to apply the knowledge gained in previous design and technical courses to complete a high level design of a process plant or major modification to a process plant. The goal is to expose students to process design, practical design issues, and to provide experience in the complete design process as applied to real devices. Students will work in groups to design a process system. This course is a prerequisite to ENGI 8840.

PR: ENGI 4102, completion of academic term 6 of the Process Engineering program
LH: at least four 2-hour sessions per semester
PR: ENGI 6621 or the former ENGI 5621, ENGI 6671
LC: 1
PR: completion of Academic Term 6

7651 Industrial Pollution Control/Pollution Prevention is designed to introduce methods of industrial pollution assessment and control. Topics include waste characterization, water pollution assessment, water pollution control, air pollution assessment and control, solid waste assessment and control, pollution prevention, environmental risk assessment and risk based decision making.

PR: ENGI 6621 or the former ENGI 5621, ENGI 6671
PR: ENGI 5621, ENGI 6671

7680 Supervisory Control and Data Acquisition examines data acquisition and intelligent field devices; distributed systems and fieldbus technology; programmable logic controllers and computer operator interface; supervisory control and data acquisition; and enterprise organization.

LH: at least four 3-hour sessions per semester
PR: ENGI 5821

7691 Mining and Metallurgical Process Engineering is designed to provide students with a basic fundamental background to the mining, mineral processing, and extractive metallurgical processing industry from both traditional and modern industrial methodologies. Concepts such as a mine design, mineral flow sheets, extraction methods, and examples from industrial applications will be reviewed with problems.

LH: at least four 2-hour sessions per semester
PR: completion of academic term 6 of the Process Engineering program
PR: ENGI 5621, ENGI 6671

7704 Design of Steel Structures begins with a review of design concepts, standards, and codes. To complete a design of structural steel members and connections, tension members, bolted joints, welded joints, compression members, stability and effective length, flexural members including beams & beam-columns, plate girders, composite beams, introduction to serviceability through deflections of beams.

LH: five 3-hour sessions per semester
OR: twelve 1-hour tutorials per semester
PR: ENGI 5706 and ENGI 5312 or approval of the appropriate Head of the Department
PR: ENGI 7800

7706 Finite Element Structural Analysis includes a review of basic concepts required for FEA, basics of stiffness formulation, direct stiffness method, displacement method, one dimensional elements, trusses and frames. Topics include 1-D fluid and heat transfer elements, automated analysis and modelling concepts, higher order elements, two dimensional elements - plate stress and plane strain, introduction to 3D and other types, introduction to advanced topics and isoparametric formulation.

OR: ENGI 6705 or approval of the appropriate Head of the Department

7707 Reliability and Environmental Loading on Offshore Structures begins with an introduction to natural phenomena that cause loading and influence the design of marine structures. Topics include the interpretation and utilization of field data for the determination of design loads for wind, waves, currents and ice and case studies of load analysis for the design of offshore structures in Atlantic Canada.

PR: ENGI 5312

7718 Environmental Geotechniques (same as the former ENGI 6718) examines soil characteristics; soil mineralogy; soil water interaction; soil contaminant interactions; advection, adsorption and diffusion; non-aqueous phase liquids; geosynthetics; design of landfills; and use of waste materials. Relevant software programs are used.

OR: the former ENGI 6718
OR: six 1-hour tutorials per semester
PR: ENGI 5723

7723 Geotechnical Engineering III examines soil investigation and site characterization; pile foundations; embankment dams; elements of geotechnical earthquake engineering; constitutive theories for soil materials; and numerical methods in geotechnical engineering. The students select two of the above topics on which they are interested in concentrating their efforts. Bi-weekly lectures are offered on the other topics at an informal level.

PR: ENGI 5723

7745 Highway Engineering examines highways transportation systems including driver, vehicle and road characteristics; geometric design of highways; subgrade and base materials; highway employed traffic theory; traffic control and analysis of signalized intersections; travel demand and traffic forecasting.

LH: four 3-hour sessions per semester
PR: ENGI 3703, ENGI 5723

7748 Project Planning and Control includes an introduction to types of contracts, project delivery approaches, and prevailing contractual relationships. The course examines basic project management techniques for project planning and scheduling (CPM and PERT); principles of resource productivity databases, preliminary estimating, and detailed bid preparation; quantitative approaches for effective control of time, cost, resource, quality, and value of constructed facilities; use of computer software for scheduling, estimating, and control.

PR: completion of Academic Term 6 of the Civil Engineering program

8003 Electrical Engineering Design Project I provides an opportunity for senior students to work in teams under the direction of a faculty mentor to define an appropriate design problem and propose a method of solution to the problem. The project is continued in ENGI 8853.

PR: ENGI 7800
OR: at least 10 lecture hours per semester
OR: weekly meetings with project supervisor
PR: ENGI 4102, completion of Academic Term 6 of the Electrical Engineering program

8004 Computer Engineering Design Project I provides an opportunity for senior students to work in teams under the direction of a faculty mentor to define an appropriate design problem and propose a method of solution to the problem. The project is continued in ENGI 8854.

PR: ENGI 7800
OR: at least 10 lecture hours per semester
PR: ENGI 4102, completion of Academic Term 6 of the Electrical Engineering program
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Lecture Hours</th>
<th>Lab Hours</th>
<th>Tutorial Hours</th>
<th>Co-requisite(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5821</td>
<td>Introduction to Digital Signal Processing</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5825</td>
<td>Control Systems II</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5844</td>
<td>Power System Analysis</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5854</td>
<td>Image Processing and Applications</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5855</td>
<td>Communications Electronics</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5864</td>
<td>Computer Security</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5894</td>
<td>Concurrent Programming</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5901</td>
<td>Heat Transfer II</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5903</td>
<td>Mechanical Equipment</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5911</td>
<td>Industrial Materials</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5926</td>
<td>Mechanical Design Project</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5930</td>
<td>Instrumentation and Experimental Design</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5952</td>
<td>Robotics and Automation</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5973</td>
<td>Mechatronics II</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6900</td>
<td>Academic Term 8 Courses</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:
- **5821:** Examines sampling theory; elementary discrete-time signals; discrete-time linear and time-invariant systems; linear constant-coefficient difference equations; the convolution sum; the discrete-time Fourier series; the discrete-time Fourier transform; the frequency response of discrete-time systems; the discrete Fourier transform; the efficient fast Fourier transform algorithm; an introduction to digital filter design techniques; and digital signal processing applications.
- **5825:** Examines state space models for multi-input/output systems; observability, controllability; state feedback without and with integral controller structure, state observers; quadratic optimal regulator and tracking control strategies; discrete-time state equations; and an introduction to optimal control.
- **5844:** Begins with an introduction to electric power systems. Topics include per unit quantities; transmission line parameters; modern power system components; single line diagrams; network equations formulation; bus impedance and admittance matrices; load flow analysis and control; design of reactive power compensation for power system performance enhancement; tap changing, auto and control transformers for power system application; economic dispatch and optimal power flow studies.
- **5854:** Presents fundamental theories and practical concepts of image processing and analysis. These concepts include image enhancement and filtering, frequency domain analysis, morphological image operations, image segmentation, and feature extraction. The course enables the use of these concepts to automatically process images and videos from various real-world applications such as biomedical imaging, visual surveillance, and robotics.
- **5855:** Involves analysis and design of mechanical measurement systems and multi factor experiments. Topics include static and dynamic characteristics of sensors, Fourier transforms, sampling theorem and signal conditioning, uncertainty analysis of sensors, sensors for motion control, load sensing and process control, one factor vs multi factor experiments, factorial design and analysis, parametric design and blocking, response surface methodology (RSM).
- **5864:** Provides an introduction to key computer security concepts for applications, hosts, networks and the Web. Students will learn to employ the primitives provided by programming languages, cryptography, operating systems and network protocols for protecting engineered systems and their users.
- **5894:** Surveys parallel and distributed architectures and examines patterns of concurrent program design; correctness of concurrent programs: safety and liveness properties, proof of properties; synchronization using locks, semaphores, and monitors; communication using message passing and rendez-vous; parallelization for high-performance computation and advanced topics such as scientific applications, distributed systems, model checking, and transaction processing.
- **5901:** Examines advanced topics in heat transfer; multidimensional heat conduction: shape factors, numerical methods, moving heat sources; phase change heat transfer; melting, solidification, condensation, and boiling; natural convection: external flows, internal flows; multimode heat transfer; and environmental radiation.
- **5903:** Examines performance characteristics of mechanical equipment; fluid power devices: pipes; valves; turbomachinery: pumps; fans; blowers; compressors; heat transfer devices: heat exchangers, boilers, and cooling towers.
- **5911:** Examines materials and alloy systems, strengthening mechanisms of metals, iron-carbon alloys, corrosion resistant alloys, light metals and their alloys, copper and nickel base alloys, super alloys, the function of alloying elements in metals, heat treatments, surface hardening, and surface modification.
- **5926:** Examines two capstone design courses in the Department of Mechanical Engineering. In this course mechanical students are organized into small groups or teams, which must complete a common design challenge. The project is presented as an open-ended problem statement with specific performance objectives. The system must be designed, prototyped and tested during the course of the term. Each team is a small consulting firm and is required to document its object planning as well as its design.
- **5930:** Involves analysis and design of mechanical measurement systems and multi factor experiments. Topics include static and dynamic characteristics of sensors, Fourier transforms, sampling theorem and signal conditioning, uncertainty analysis of sensors, sensors for motion control, load sensing and process control, one factor vs multi factor experiments, factorial design and analysis, parametric design and blocking, response surface methodology (RSM).
- **5952:** Provides an introduction to fundamental concepts in robotic manipulators and arms. The course starts with an exploration of coordinate transformations for spatial description, both kinematical and kinetic analysis, forces and dynamics and finally trajectory generations and path planning.
- **5973:** Emphasizes the integration of the core technologies on which contemporary, mechatronic designs are based. Topics covered include combinational logic circuit design, sequential logic circuit design, modeling and control of servo motors, selection, sizing, and modelling of servo valves and hydraulic actuators, microcontroller technology and interfacing (relays, timers, PWM control, interrupts, digital communication).
- **6900:** Ocean and Naval Architectural Engineering Project completes the design project selected and approved in ENGI 7900. The project must illustrate the application and integration of previous design related courses, i.e., decision methods, impact assessments and application of technology.
The subject may be ship or offshore structure design, marine system, directed research or a unique design solution. Lectures will be scheduled as required.

LH: 3
PR: ENGI 7000

ENGI 8344, or ENGI 8926
CR: the former ENGI 5101, the former ENGI 7102
PR: ENGI 004W

8640 Process Engineering Project II is a design project that illustrates the application of previous engineering science and design courses. Projects will be done by teams of students with individuals concentrating their participation in their own engineering discipline. The project topic will be from the process industry which includes the offshore oil and gas industry, mining and metal processing industry and chemical process industry. LC: scheduled as required
PR: ENGI 7760

8650 Offshore Oil and Gas Engineering Project II is a multidisciplinary design project that illustrates the application of previous engineering science and design related courses. The project will be done by teams of students with individuals concentrating in their own engineering discipline. The project topic will be from the offshore oil and gas engineering industry. Lectures will be scheduled as required.
CR: the former ENGI 8600
LC: 1
PR: ENGI 7650

8670 Safety and Risk Engineering begins with an overview of safety and risk issues in the offshore oil and gas industry. The course examines safety requirements; hazard and reliability analysis; safety terminology and quantitative risk analysis (QRA) techniques; and safety assessment studies. The course includes project and case studies.
PR: completion of Academic Term 6
ENGI 6710
PR: ENGI 7512, ENGI 5931 or ENGI 7002 or the former ENGI 8600

8676 Design of Natural Gas Handling Equipment covers process description, design methods, operating procedures, and troubleshooting aspects of gas production facilities including inlet separation operations, hydrate prevention and control, gas dehydration, NGL recovery and dew point control, gas transmission and pipeline design and transportation systems.
PR: completion of Academic Term 6
ENGI 6797
PR: completion of Academic Term 6

8800 Process Control and Instrumentation begins with an introduction to feedback control systems, and instrumentation. Topics include modelling thermal, gas, liquid and chemical processes; sensors and transmitters, controller design and simulation in Matlab /Simulink, industrial feedback control; design of feedback control loops, tuning of feedback controllers; cascade, ratio, digital controller design; feedforward control; multivariable process control; fuzzy logic control and tuning, instrumentation electronics design, and process system identification using Matlab /Simulink.
LH: 12-hour 3-hour sessions per semester
PR: ENGI 5821

8900 Reservoir Engineering examines fluid pressure regimes, oil recovery factors, calculation of hydrocarbon volumes, reservoir rock characteristics, reservoir fluid properties, porosity and permeability, material balance, and well test analysis.
PR: completion of Academic Term 6
ENGI 8910
PR: ENGI 6761

8910 Petroleum Production Engineering examines the procedures and equipment necessary for preparing a well to produce hydrocarbons and maximizing flow rate during the life of the well; techniques for well productivity analysis in under-saturated, saturated, and natural gas reservoirs; well completion configuration tubulars; packers and subsurface flow control devices; completion and work over fluids; perforating oil and gas wells; formation damage; surfactants for well treatment; hydraulic fracturing; acidizing; scale deposition, removal, and prevention; work over and
8815-8820 Special Topics in Computer Engineering will have topics to be studied announced by the Faculty.

8821 Design of Digital Signal Processing Systems is a review of introductory digital signal processing (DSP) principles, including sampling theory, discrete-time systems and signals. Topics include transform analysis of DSP systems; issues in the implementation of DSP systems; design of IIR and FIR digital filters; computable transforms and their use in the frequency analysis of digital signals; and design of DSP systems for current and emerging applications of digital signal processing.

PR: ENGI 7824

8826 Filter Synthesis begins with an introduction to analog filters. The course examines descriptive terminology, transfer functions and frequency response of filters; design of first order passive and active filters; design and analysis of biquad circuit, Sallen key circuit, multiple feedback circuit and distributed filter; RC-RC transformation; indeterminate system synthesis and cascade design principle; design of filters with maximally flat magnitude response; design of filters with equal ripple magnitude response; design of Bessel-Thomson filters; analysis and design of switched capacitor filters, and the use of Matlab for design of analog filters.

OR: at least four 3-hour sessions per semester
PR: ENGI 8584

8845 Power System Operation examines symmetrical components; power system fault analysis; power system stability; and power system protection.

OR: weekly meetings with project supervisor
PR: ENGI 7804

8853 Electrical Engineering Design Project II continues ENGI 7803 and provides an opportunity for senior students to integrate the knowledge that they have acquired through the junior terms and apply it to solving an electrical engineering design problem. Students work in small teams with the assistance of a faculty mentor to complete detailed design, implementation and testing of an electrical engineering system to solve the problem as defined in 7803.

PR: ENGI 8800

8854 Computer Engineering Design Project II continues ENGI 7804 and provides an opportunity for senior students to integrate the knowledge that they have acquired through the junior terms and apply it to solving a computer engineering design problem. Students work in small teams with the assistance of a faculty mentor to complete detailed design, implementation and testing of a computer engineering system to solve the problem as defined in 7804.

PR: ENGI 8800

8863 Introduction to VLSI Design is an introduction to ASICs and ASIC design methodology and includes basic concepts of digital logic design tools and ASIC technology libraries; partitioning for logic synthesis and VHDL, constraint design, synthesizing, simulation and optimization, design for testability; layout and post-layout optimization and SDF generation; and static timing analysis.

PR: ENGI 7472

8868 Cryptography examines the techniques used to provide security in communication networks and computer systems. The course focuses on topics in cryptography required to provide privacy, authentication, and integrity, including symmetric key ciphers, public key ciphers, message authentication, and digital signature schemes.

PR: ENGI 8676

8877 Wireless and Mobile Communications (same as the former ENGI 8804) covers the fundamentals and main concepts of wireless and mobile communication systems focusing on the system level design and performance. Main topics to be covered include Introduction to Wireless Communication Systems, Wireless Channel Models, Frequency Reuse and Wireless Multiple Access Techniques, TDMA, FDMA, CDMA, Orthogonal Frequency Division Multiplexing (OFDM), Wireless Systems (GSM, 3G, LTE, etc.).

PR: ENGI 8804

8879 Digital Communications is a review of baseband transmission and basic digital modulation schemes, detection (optimum receiver, matched filter, correlator), error performance, intersymbol interference (ISI), equalization, the concept of information and entropy, source coding including Huffman coding and linear prediction coding, channel coding including block and convolutional error correcting codes, modulation and coding trade-offs, bandwidth and power efficiency.

PR: ENGI 8671
8994 Real-time Operating Systems examines real-time process scheduling; memory and device management; I/O communications; real-time systems; operating system and hardware concurrency issues; kernel architectures; device drivers; and a survey of available real-time operating systems and embedded platforms.

CR: the former ENGI 7863, Computer Science 4721
LH: four 3-hour sessions per semester
PR: ENGI 7894

8903 Design of Thermal Systems examines thermal system design; modeling of thermal systems; steady and transient system simulation; single and multi-variable optimization; overall system performance; thermodynamic optimization; selected design case studies.

CR: ENGI 7901, ENGI 7903

8911 Corrosion and Corrosion Control examines forms of corrosion; the electrochemical nature of the corrosion process; the mixed potential theory; Purbaix diagrams and Evan diagrams; corrosion testing, control use by use of materials, selection, cathodic protection, inhibitors, and coatings. There are case studies of selected corrosion problems.

CR: the former ENGI 8962
LH: at least five 3-hour sessions per semester

8926 Mechanical Design Project II is the second of two capstone design courses in the Department of Mechanical Engineering. Building on skills acquired in the first, student teams each choose a unique design challenge and then proceed to generate a solution. The problem statements are often drawn from industry and, where possible, interdisciplinary interaction is encouraged (for example, with business, computer science, or other engineering disciplines). In most cases, the problem proponent will act as the “client” and the team is expected to manage the client interaction process as well. Significant emphasis is placed on both oral and written communication of both the process and results. Wherever possible, each system or a critical component of it, will be prototyped and tested.

CR: the former ENGI 8936
LC: scheduled as required
LH: scheduled as required
PR: ENGI 7926

8933 Fatigue and Fracture Mechanics is an introduction to fatigue and fracture analysis of metallic components, failure mechanisms, fracture mechanics, effects of cracks, notches, collapse; linear elastic fracture mechanic analysis; design of components to avoid fracture; fatigue crack propagation; fracture initiation, crack arrest; and fracture toughness measurements.

PR: ENGI 5931

8935 Pressure Component Design includes pressure vessel design philosophy; membrane theory of shells; stress categories; discontinuous stresses; design of pressure vessel components according to ASME Boiler and pressure vessel and piping codes. There is a design project involving pressure vessel components.

OR: at least 1 tutorial hour per week
PR: ENGI 5931, ENGI 6926

8937 Machine Dynamics reviews mechanism kinematics and inverse dynamics (prediction of unknown forces and torques required to create a known motion) and continues with forward dynamic analysis of mechanisms (predicting unknown motion due to applied forces and torques) using student-generated computer code and commercial software. Practical applications and numerical effects are explored, such as engine shaking forces, balancing of machinery, shaft vibration, design of flywheels, and gyroscopic effects.

CR: the former ENGI 7945
PR: ENGI 4932, 6933

8945 Production & Operations Management is an overview of production and operations management, and an examination of decision making and operations strategy; process design and improvement, process flow analysis/simulation, capacity planning; design of value chains, lean systems, plant layout and process planning; operating value chains, MIS systems, inventory and resource management; Relevant computer laboratory exercises are conducted.

CR: the former ENGI 7943
PR: ENGI 6901

8946 Modelling and Simulation of Dynamic Systems emphasizes interdisciplinary system models, equation formulation and structure, and model complexity. The bond graph modelling language will be introduced to simulate systems containing mechanical, electrical, thermal, hydraulic, and magnetic components.

CR: ENGI 9496
PR: ENGI 5952

8947 Computational Fluid Dynamics begins with a review of the equations governing viscous fluid flows and heat transfer. The course includes heat conduction, convection-diffusion, and fluid flow equations; gridding, dependent variable interpolation, discretized equations, solution of the discretized equations, transients and nonlinearities; testing and validation of CFD codes, standard test problems.

CR: ENGI 9977
PR: ENGI 5962 or the former ENGI 6961

8964 Fluid Structure Interactions examines structural vibrations generated by fluid flow. These vibrations can be transient or they can take the form of instability or resonance. The course deals with the following fluid structure interactions: (1) Flow induced vibration of structures (2) Unsteady flow in pipe networks (3) Water wave interactions with structures.

CR: the former ENGI 8904
LH: at least three 3-hour sessions per semester
PR: ENGI 5962 or the former ENGI 6961, ENGI 6933

8965 Advanced Fluid Dynamics includes fluid kinematics; equations of fluid dynamics; Navier-Stokes equations, Euler's equations, Stokes’ equations, vorticity transport, advanced topics in: low Reynolds flows, unsteady viscous flows, boundary layer analysis, potential flows; introduction to turbulent flow; free shear flows.

CR: ENGI 9901
PR: ENGI 5962 or the former ENGI 6961

8970 Gas Dynamics begins with an introduction to compressible gas flows, then considers fundamental laws of compressible fluid flow; wave propagation in compressible fluids; isentropic flow of a perfect gas; normal and oblique shock waves; Prandtl-Meyer flows; external compressible flows; flow in ducts, flow with friction (Fanno) and heat transfer (Rayleigh); imperfect gas effects; and measurement of compressible flows.

PR: ENGI 5962

8971 Welding and Joining Processes introduces modern welding and joining processes for metallic materials, polymers, and ceramics. Fundamentals of materials joining processes and the impact of the process parameters on the weld geometry, mechanical properties, and quality are discussed. Laboratory exercises will provide hands-on experience with some industrially significant welding processes.

LH: four 3-hour sessions per semester
OR: tutorial 1 hour per week
PR: ENGI 5911

8982 Mechanical Behaviour of Composites includes stress-strain behaviour of composites, properties of matrix and reinforcing materials, mechanics of fibre-reinforced composites, lamina and laminate analysis, and an introduction to manufacturing methods.

OR: tutorial 1 hour per week
PR: ENGI 4934

8984 Sustainable Energy Systems examines thermo-fluid features of energy conversion and storage technologies. Topics include nuclear power, wind power, biorenewable and nonconventional fuels, fuel cells, carbon capture and sequestration, photovoltaics, solar thermal, energy storage, and hydroelectric power systems.

PR: ENGI 4961, ENGI 6901

11.9 Special Topics Courses

8076-8099 Special Topics in Ocean and Naval Architectural Engineering will have topics to be studied announced by the Faculty.

8102-8149 Special Topics in Engineering will have topics to be studied announced by the Faculty.

8601-8610 Special topics in Process Engineering will have topics to be studied announced by the Faculty.

8625-8639 Special topics in Process Engineering will have topics to be studied announced by the Faculty.

8765-9799 Special Topics in Civil Engineering will have topics to be studied announced by the Faculty.

8801-8805 (Excluding 8804) Special Topics in Computer Engineering will have topics to be studied announced by the Faculty.

8806-8809 Special Topics in Electrical Engineering will have topics to be studied announced by the Faculty.

8815-8820 Special Topics in Computer Engineering will have topics to be studied announced by the Faculty.

8833-8840 Special Topics in Electrical Engineering will have topics to be studied announced by the Faculty.

8857-8869 Special Topics in Mechanical Engineering will have topics to be studied announced by the Faculty.