Genetic variation in populations
        described by genotype
            & allele frequencies 
                 
        (not "gene" frequencies)  
Consider a diploid autosomal
          locus with two alleles & no dominance
      
            (=>
        semi-dominance: AA , Aa , aa 
        phenotypes distinguishable) 
x = # AA y = # Aa z = # aa so that x + y + z = N (sample size)
f(AA) = x / N f(Aa) = y / N f(aa) = z / N
f(A) = (2x + y) / 2N f(a) = (2z + y) / 2N
or f(A) = f(AA) + 1/2 f(Aa) f(a) = f(aa) + 1/2 f(Aa)
let p = f(A), q = f(a) p & q are allele frequencies
Properties of p & q
p + q = 1 p = 1 - q q = 1 - p
(p + q)2 = p2 + 2pq + q2 = 1
(1 - q)2 + 2(1 - q)(q) + q2 = 1
p & q interchangeable wrt [read, "with respect to"] A & a
       
        q typically used for 
                       
rarer,
recessive,
        deleterious (disadvantageous), or "interesting" allele
    
             
        BUT   'common'
            & 'rare' are statistical properties
      
                               'dominant' & 'recessive' are
        genotypic properties 
                               'advantageous' & 'deleterious'
        are phenotypic properties 
                       
        ***  combination of these properties is
          possible *** 
    
What happens to p & q in one generation of random mating?
Consider a population of monoecious organisms that
        reproduce by random union of gametes
                 (sea urchin / "tide pool"
        model) 
      (1)
        Determine expectation
      
                      
of
parental
        alleles coming together in various genotype combinations
      
              
                expectation: the 
          anticipated value of a variable 
                   
                   
                      
        not quite the same as probability 
                 
        Proofs by probability,
            binomial expansion, & Punnet Square methods
      
                 
all
show
        that expectation of f(AA) = p2
      
                                  
            expectation of f(Aa) = 2pq
      
                                
              expectation of f(aa) = q2
    
(2) Re-describe offspring allele frequencies f(A') & f(a')
      
        f(A') = f(AA) + 1/2 f(Aa) 
                         
        = p2 + (1/2)(2pq) = p2 + pq
        = (p)(p+q) = p' = p
      
        
      
        f(a') = f(aa) + 1/2 f(Aa) 
                         
        = q2 + (1/2)(2pq) = q2 + pq
        = (q)(p+q) = q' = q
    
     p2 : 2pq : q2 are Hardy-Weinberg
             expectations (cf. Mendelian
        ratios 1 : 2 : 1 )
        
      
Hardy-Weinberg Expectation (HWE) obtained under more general conditions
(1) multiple alleles / locus
                 
        p + q + r = 1 
                       
          (p + q + r)2 = p2
          + 2pq + q2 + 2qr + r2
          + 2pr = 1 
                 
        Proportion of heterozygotes (H
        = 'heterozygosity')
      
                              
        measures genetic variation at a locus 
             
        Hobs = f(Aa)
        = observed heterozygosity
      
                   
        Hexp = 2pq  
        = expected heterozygosity
        (for two alleles) 
He = 2pq + 2pr + 2qr = 1 - (p2 + q2 + r2) for three alleles
                               
          n 
                       
            He = 1 -  (qi)2      for n
          alleles
 (qi)2      for n
          alleles 
                                    
            i=1 
                       
        where qi = freq. of i
        th allele of n alleles at a locus
       
                  
        Ex.: if q1 = 0.5, q2
        = 0.3, & q3 = 0.2
      
                                 
        then He = 1 - (0.52 + 0.32
        + 0.22) = 0.62
        
   
                  ***
            HOMEWORK:
                      
                  Calculate He 1) if
        q1 = 0.4, q2 =
            0.3, q3 = 0.2, & q4 = 0.1
         
                     
                
                               
                       2)
        for a locus with 10 or 100 alleles, all at
        equal frequency
                     
                       
                          
        3) with one allele at q = 0.5, and 9 or
        99 at equal frequency
                         
                         
                        Hint:
        is there a shortcut?  
        
           
        (2) sex-linked loci
      
                         
        iff [read: "if and only
          if"] allele frequencies in males & females equal
                         
        If frequencies initially  unequal, they converge
        over several generations 
           
        (3) dioecious organisms 
                         
        sexes separate 
                         
        HWE produced by random mating of individuals
      
                             
        expand (p2
          'AA' + 2pq 'AB' + q2
          'BB')2 : 
                                    
        nine possible mating types among genotypes 
                         
        selfing (self-fertilization)
        remains possible
      
Genotype proportions in natural
        populations can be tested for HWE 
           Ho
          (null hypothesis):
        no other phenomena acting
             Note:  HWE often
        called a HW equilibrium, BUT 
                       
         HWE observed only at timeo
        of any single generation
                   
                     
          changes bx newborns & adults due to other
          factors
                          HWE
          may be observed at time1 with
          new p" and q" 
                   => HWE
        not an "equilibrium"
        
       
Among Euro-Americans:
|  |  |  |  | 
|  |  |  |  | 
f(M) = [(2)(1787) + 3039] / (2)(6129) = 0.539
f(N) = [(2)(1303) + 3039] / (2)(6129) = 0.461 = 1.0 - 0.539
| N
                  genotypes |  |  |  |  |  | |
|  | p2N |  |  |  |  |  | 
|  | 2pqN |  |  |  |  |  | 
|  | q2N |  |  |  |  |  | 
|  | 6129 | 6129 |  |  | 
|  |  |  |  |  |  | |
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
Chi-square test on combined data:
|  |  |  |  | |
|  |  |  |  |  | 
|  |  |  |  |  | 
|  |  |  |  |  | 
|  |  | 
     
        *=> A mixture of populations, each of which
        conforms to HWE, 
                 
        will not show expected HW proportions
      
                 
        if allele frequencies differ in the separate
        populations. 
      Wahlund Effect:
      Separate
          populations treated as one will be deficient
        in heterozygotes 
      
    
                   
            (Basis of F statistics &
        population structure, later on)
      
   
            Three alleles (A, B,
        O) produce 
                      six genotypes
        (AA, AO, BB, BO, AB, OO)
        with
                     
              four phenotypes ("A",
        "B", "AB" "O")
                     
                  A & B
        dominant to O; "A" = AA +
          AO; "B" = BB + BO
                   
                    A &
        B" co-dominant as "AB"
        
Challenge: Cannot obtain exact
        algebraic solution for four phenotypes from three
        variables
                   
                Therefore use Likelihood method with
        correction
                    Ex.:
        Best a priori likelihood estimate of f(O)
        is observed  [f("O")]
[f("O")]
       
Data from Aka (Mbenga) (Central
          African Republic) (Cavalli-Sforza & Bodmer 1971)
        

Hardy-Weinberg Expectation offers 'null
            hypothesis': 
           
        Consequences of other genetic / evolutionary phenomena? 
Five major, interacting factors:
      1. Natural selection 
                 
Change
of
        allele frequencies ( q)
        [read 'delta q']
q)
        [read 'delta q']
      
                       
occurs
due
        to differential effects of alleles on 'fitness'
      
                 
Consequences
depend
        on dominance of fitness 
                   
                [See hardy-weinberg.m
          MATLAB laboratory exercise] 
                 
Natural
Selection
          is the principle concern of micro-evolutionary theory
      
    
      2. Mutation
      
                  
        New alleles arise at some rate µ
      
                  
        If µ(A A')
A')   µ'(A
  µ'(A A'), net change in frequency
A'), net change in frequency 
      3. Gene flow 
                 
        Movement of alleles between populations at some rate m 
                 
        (Im)migration
        introduces new alleles, changes frequency of existing
        allele
      
      4. Statistical sampling error
      
                 
        Chance
            fluctuations occur in finite populations,
        especially with small N 
      
                 
        Genetic
              drift: random change of allele
        frequencies 
                                  
              over time and (or) space,
        within and (or) among populations
              
                    Modification
        of N from non-random reproduction:
        variable sex ratio, offspring number, population size, etc.
    
      5. Population structure 
                
        Inbreeding:
          preferential mating of relatives at some rate F
                      
                 Inbreeding modifies genotype proportions
            but not allele frequencies
                         Assortative
                  Mating: differential mating of
            phenotypes and (or) genotypes
                 Meta-population structure:
        sub-populations differ wrt total
        population (F-statistics)