If:    
        variation exists for some
        trait, and 
                   
        fitness difference is
        correlated with that trait, and 
                   
        trait is to some degree heritable
        (influenced by genetics), 
            Then:
        trait distribution will change
      
                     
over
life
        history within single generation, and 
                     
         between generations. 
Process of change called "adaptation"
      Or, "Natural
          Selection" is a process in which 
                 
        "adaptation" occurs such that population "fitness"
        increases 
                  
            Under
        certain conditions, this results in Descent
            with Modification (evolution)
                   
                   
                   
                   & The
          Origin of Species
      
    
Evolution & Natural Selection can be modeled genetically
Natural Selection results in
        change of allele frequency ( q) [read "delta q"]
q) [read "delta q"]
      
          in consequence of
        differences in relative fitness
        (W) 
          of phenotypes
        to which alleles contribute. 
Fitness is
            a phenotype of
          individual organisms (Darwinian fitness)
      
         
          Fitness determined  genetically
          (at least in part) in accordance with Mendelian
            rules 
         
Fitness
related
          to success at Survival & Reproduction
      
         
Fitness
          can be measured & quantified : Analysis of
            survivorship
              & fecundity schedule 
               
          relative fitness of phenotypes (genotypes) assigned numerical
          values 
Consequences of natural selection
        depend on Dominance of Fitness:
      
               
          Are "fitter" phenotypes due to 
            dominant or recessive allele ? 
Then, allele frequency change over time predicted by General Selection Model [see derivation]
 q
              = [pq] [(q)(W2 - W1) + (p)(W1
              - W0)] /
q
              = [pq] [(q)(W2 - W1) + (p)(W1
              - W0)] / 
 
           
          where W0, W1, & W2 are phenotypic
          measures of fitness 
                 
          of AA, AB, & BB genotypes,
          respectively,
                       read as "W
            bar" = Mean fitness
 read as "W
            bar" = Mean fitness  
     
        genotype:   AA    
          AB      BB     (A
          & B are alternative alleles at same locus)
      
           
        phenotype: W0  =  W1 
           W2   
        (AA & AB phenotypes identical: A
        dominant to B)
  W2   
        (AA & AB phenotypes identical: A
        dominant to B) 
      Model
        simplifies to  q
q  pq2(W2 - W1)    
        (W1 - W0 = 0: HOMEWORK: Show this
        algebraically)
 pq2(W2 - W1)    
        (W1 - W0 = 0: HOMEWORK: Show this
        algebraically)
                   
                   
                     
                   
                   
                 
             (read  as 'proportional to')
  as 'proportional to')
       
           
        If 'B' phenotype more fit than 'A'
        phenotype, 
                       
        W2 > W1   &  q > 0   
        so   q increases
q > 0   
        so   q increases 
           
        If 'B' phenotype less fit than 'A'
        phenotype, 
                       
        W2 < W1    &
       q
          < 0    so   q 
          decreases
q
          < 0    so   q 
          decreases 
           
      then  q
q  (W2
          - W1) :
        greater difference in fitness,
 (W2
          - W1) :
        greater difference in fitness,
      
                                               
             greater intensity
            of selection 
                                                 
               more rapid change
    
A numerical
            example of Selection: 
            
          Tay-Sachs
              Disease (TSD) arises from deficiency of Hexosaminidase-A
                   
              TSD alleles are 
                  
                    rare       
              (q =  0.001) 
                          
            recessive   (W0
          = W1 = 1) 
                         
             lethal        
          (W2 = 0) 
       
          Then  q
              = pq2(W2 -
              W1) = -pq2
q
              = pq2(W2 -
              W1) = -pq2   -q2   (if q << p, then p ~
            1)
 -q2   (if q << p, then p ~
            1) 
       
          Natural Selection reduces frequency q of
      such an allele
          by 
                      one
            part in a million (0.0012) per generation
            
               q' = 0.001000 - 0.000001
        = 0.000999
        
s = 1 - W
       
        Selection Coefficient (s)
        = difference in fitness 
                 
of
phenotype
        relative to 'standard' phenotype with fitness  W = 1 
                 
        (Math simpler because only one variable used) 
(1) Complete dominance
     
        genotype:   AA     
          AB     BB 
           
        phenotype:  W0 =  W1  W2    (AA
        & AB phenotypes identical, as before)
 
          W2    (AA
        & AB phenotypes identical, as before) 
                     
or    
           1   =   1    1 - s
 
        1 - s 
        
        if  0 < s < 1 : 'B' is deleterious (at a selective
        disadvantage) 
              
        if  s < 0       :
        'B' is advantageous
    
        then      q
              = -spq2 / (1 - sq2)     
            [see derivation]
q
              = -spq2 / (1 - sq2)     
            [see derivation]
      
       cf. TSD
        example: s = 1 [lethal]
                  then      q = -pq2 / (1 - q2)
            = -q2 / (1 - 0) =
              -q2  as above
q = -pq2 / (1 - q2)
            = -q2 / (1 - 0) =
              -q2  as above
      
        
(2) Incomplete dominance
     
        genotype:    AA     AB       
        BB 
           
        phenotype:  W0   W1
 
          W1  W2   
        (all phenotypes different)
    W2   
        (all phenotypes different) 
              
or          
        1 - s1  1
  
          1    1 -
            s2
  1 -
            s2 
      if 0
          < s1 & s2
          < 1 : heterozygote advantage
        ( "overdominance" of
        fitness) 
           
        Population has optimal fitness when both alleles
        retained: 
                
        q reaches an equilibrium
        where  q = 0
q = 0 
                        
        0 <  < 1   (read as, "q
            hat")
 < 1   (read as, "q
            hat") 
           then    
       =
              (s1) / (s1 + s2)          [see
        derivation
=
              (s1) / (s1 + s2)          [see
        derivation 
      Allele
          frequencies increase or decrease according
        to fitness difference of
        alleles 
                 
        whether effect of allele on phenotype deleterious or advantageous
      
            Ultimate
          consequences depend on Dominance of Fitness
                 
        whether allele dominant,
            semi-dominant, or recessive 
            Rate of change an interplay of both
          factors (see MATLAB exercise),
      
    
      AA  
          AB     BB   
          Consequence of natural selection   [
        let  q = change in f(B) ]
q = change in f(B) ] 
      W0
        =  W1 =  W2    No selection
          (neither allele has selective advantage):
      
                              
      then    
       q = 0,  H-W proportions
        remain constant
q = 0,  H-W proportions
        remain constant 
      W0
        =  W1 >  W2   
        deleterious recessive (= 
          advantageous dominant):
      
                              
      then    
       q < 0,    
        q
q < 0,    
        q  0.00  (loss): how
            fast? Does it get there?
        0.00  (loss): how
            fast? Does it get there? 
      W0
        =  W1 <  W2   
        advantageous recessive (= 
          deleterious dominant):
      
                               
      then    
       q > 0,    
        q
q > 0,    
        q  1.00  (fixation): how
            fast?
        1.00  (fixation): how
            fast? 
      W0
        <  W1 >  W2   
            heterozygote advantage [special case of incomplete
        dominance]:  
                                         
        q 
 (read as 'q hat') ,
        where
 (read as 'q hat') ,
        where  q = 0
q = 0 
      
   
                   
                   
                Ex.: Balancing selection for Hemoglobin
          S & A alleles 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                              See National
                                              Public Radio story
                                          on societal aspects of 
                                            Sickle-Cell Anemia
                                               
                                               
                                               
                                               
                                               
                                               
                                               
                                               
                                               
                                               
                                                See
                                          National
                                              Public Radio story
                                          on use of CRISPR to
                                          treat Sickle-Cell Anemia