RNA Translation: RNA makes Protein 
In principle: 
        Translation of messenger
            RNA (mRNA) takes place on ribosomes,
           
          which include ribosomal RNA (rRNA),
               
          with the help of transfer RNA (tRNA)
         
Structure of rRNA &
            tRNA 
ribosomal RNA (rRNA) 
              
          rRNA + ribosomal protein  ribosomes [iG1
                6.09]
 ribosomes [iG1
                6.09]
               
          Structure of rRNA: stems
              & loops [iG1 6.05]
        
                      
          stems: double-stranded (dsRNA) 
                    
            loops:
          single-stranded (ssRNA) 
         
       
          Structure of eukaryotic  ribosomes [iG1
              6.04] [iG1 6.14b]
        
              
                  Large Subunit (LSU) = 60S = 28S rRNA
          + 5.8S + 5S rRNA + 50 proteins 
             
 
                 Small Subunit (SSU) = 40S = 18S rRNA
          + 33 proteins 
                  
               
                                     
                    = 80S
          monosome 
      
        A site (Aminoacyl), P site (Peptidyl), & E site (Exit) [APE complex] 
transfer RNA
            (tRNA) 
              
          the adaptor molecule: ~30 tRNA types 
              
          2-dimensional 'cloverleaf' model
        [iG1
              6.10]
                   
          small: 75 ~ 90 nucs 
              
            stems & loops 
                   
            D-loop &  T C-loop (
C-loop ( = pseudo-uridylic
          acid)
 = pseudo-uridylic
          acid) 
                           tRNA
          characterized by 2o
              modified bases [iG1 6.19]
                   
            amino-acceptor stem 
          
                
            3' - ~~~~ CACCA - 3' 
                           
          5' -~~~~  G       
                - 5' 
                   
            anticodon loop
          
                          
          specificity of tRNA
          for mRNA determined by 3-ribonucleotide sequence 
      
          3-dimensional structure is
          an "L" [iG1
                6.12] 
                   
            D- &  T C-loops fold back on
          each other
C-loops fold back on
          each other 
Charged tRNA: aminoacyl synthetase(x) forms ester linkage between 
              
            3'-A  of
          amino-acceptor stem of tRNA(x) joined to COOH of amino acid(x)
              
~20
synthetase
          types 'recognize' correct
            anticodon loop
          
              
        isoacceptance: 
                  
            one-to-one correspondence between synthetase & amino
          acid 
RNA Translation: Protein
            Synthesis 
Initiation at start codon (AUG)
                     
          SSU binds at Shine-Delgarno sequence (-6
          nucs)
             
                  Initiation
            Complex consists of mRNA, ribosome,
          & tRNA 
             
                     Multiple
          complexes form on a single mRNA: polysome (polyribosome) 
       
             tRNAfmet
          always added first [N-formyl-methionine
          in prokaryotes]
        
            In
          simplified form, 
  
              5'-AUG-3' codon in mRNA 
             
            ||| 
           3'-UAC-5' anticodon in tRNA 
  
        5'-CAU-3' if anticodon is written 5' 3'
 3' 
Elongation: addition of amino acids according to Genetic Code
                      
          
             
          Amino acids are joined via peptide bonds (see next section) 
                
          Think of mRNA as stationary: ribosome moves
          along it 5' 3'
3'
                        peptidyl (P)
          site on 5'
          end, 
                       
            aminoacyl (A)
          site on 3'
          end
        
       
          first AUG codon [for met] is in P site
        
                   
          second UUC codon enters A site 
                       
          corresponding tRNAphe
          enters A site
        
       
        peptide
            bond formed between fmet
          & phe 
                   P site amino acid
            transferred to A site
              amino acid      
        
                          uncharged
          tRNA released from P
          site (passes to E site) 
                     
                  amino end of  fmet remains unchanged ]
 amino end of  fmet remains unchanged ] 
         
     
                   and so
              on ... 
                      
        growing polypeptide in P site joins single amino
          acid in A site
        
      
          "Wobble": pairing of codon / anticodon
          goes 5' 3'
          on codon  [iG1
              7.25, 26]
3'
          on codon  [iG1
              7.25, 26]
                         
                   
          last position can miss-pair with either purine / pyrimidine
                        
                          
          Fewer tRNA species needed: 
                           
             Ex.: three tRNAser species for six codons
      
| tRNA Anti-codon | Alternative Serine mRNA codons | 
| 3'- AG G -5' | 5'- UC C / U -3' | 
| 3'- AG U -5' | 5'- UC A / G -3' | 
| 3'- UC G -5' | 5'- AG C / U -3' | 
Termination: release of polypeptide
mRNA + tRNA(aan-...-aa3-aa2-aa1 )
here: mRNA + tRNA(lys-pro-gly-phe-fmet)
     
        stop codon (UAG, UAA, or UGA) enters A site 
                       
          no corresponding tRNA: 
                       
            release factor
          cleaves polypeptide from terminal tRNAn
        
                       
          polypeptide product is:   lys
            - pro - gly - phe - fmet
      
            A talkie animation
              of transcription & protein synthesis 
Griffiths et al.
              (1996)  Fig. 13-7
            is a nice summary (HOMEWORK
              #11)
            
          
5'- G T A A T C C T C - 3' DNA sense strand
5'- G U A A U C C U C - 3' mRNA
N - val - ile - leu - C protein
 This is a logical,
            not a biochemical, relationship: 
               
          Because mRNA is transcribed from the template strand,
        
               
                it "looks like" the sense strand (except for
          'U').
                  The information
            content of the DNA sense
            strand and mRNA are identical
         
 Protein sequences can be read directly from DNA:
        
                
          Read the sense strand
          in the  5' 3'  direction,
3'  direction, 
                
          Substitute 'T' for 'U' in the code table [or in
          your head]
                   Computer programs (Chromas, Sequencher,
          etc.) do this automatically
         
There are three reading frames
          on either strand  
                
X 
          two 5' 3'
          strands
3'
          strands  six possible ways to
              read dsDNA
  
              six possible ways to
              read dsDNA
                   Open
              Reading Frames suggest protein sequences
        
Deducing  protein sequences from random DNA
            sequences is a major research
            activity
                Bioinformatics:
            extraction of information from large macromolecular datasets
    The following clues are useful:
                   
          Remember that all prokaryotic coding
          sequences: 
                
               are read  only in the 5' 3' direction
3' direction 
                
               begin with a "start" (AUG)
          codon 
                 
              end with a "stop" (UAG, UAA, or
            UGA) codon. 
                    
          Ex.: a typical exam problem
          is to identify a polypeptide
          of six amino acids from a dsDNA molecule
      
   
                But: in real life research,
          cloned eukaryotic DNA 
                         
          may not have start or the stop codon for a complete
          protein,
                      
                  [and
          not all AUG codons
          are 'start' codons]
           
                      and may be include an intron with one or more 'stop' triplets .
         
          Do not assume that a dsDNA
          molecule is read from left to right, on the top strand
        
Homework #12: 
        
            Practice DNA
              "Translation" problems [PDF download
              version]
            
          
There's
            an App for that: RandORF
            for 'translation' problems
           
All text material © 2016 by Steven M. Carr