Derivation of the General Selection Equation
            
______________________________________________________________
      
      Genotype        
        AA                 
AB               
        BB
      ______________________________________________________________
      
      (1) Frequency     p2           
      +   
      2pq           
      +    q2            
=              
      1
      before selection
      
      (2)  Fitness        
      W0                 
        W1                
        W2
            
          (3)
      Relative        p2W0       
      +    2pqW1      
      +    q2W2       
=              
 
      Contribution
      
      (4) Frequency    p2W0/ +   2pqW1/
  +   2pqW1/ +   
      q2W2/
  +   
      q2W2/ =
  =  /
/ = 1
 = 1
      after selection
 ______________________________________________________________
      
      (1) Genotype distributions before selection follow Hardy-Weinberg
      expectations.
      
      (2) Each genotype AA, AB, and BB
      has a distinct phenotype: W0, W1,
      & W2, respectively.
          W is the expectation
        that an individual with a particular genotype will survive
          & reproduce
          
        (3) Each genotypic class makes a relative
      contribution to the next generation,
              which is proportional
      to its initial frequency, weighted by its fitness.
      
          [e.g., if the AA genotype has a
      frequency of 0.25 and 80% survive to reproduce,
                  
      the relative contribution of AA to the next
      generation is (0.25)(0.8)=0.20]
          
          The sum of the relative contributions
      of all three genotypes is 
             (read as, "W bar") = mean population fitness
               
In
this
        simple model, < 1,
        because not all individuals on Line (1) survive.
< 1,
        because not all individuals on Line (1) survive.
        
        (4) Because  < 1, the surviving genotypic contributions have to be "normalized
        ":
        < 1, the surviving genotypic contributions have to be "normalized
        ":
            Dividing the proportion of each genotype
        by  returns the
        sum to unity,
returns the
        sum to unity,
            & the final values are the relative genotype
        frequencies after selection.
    
 
    To derive the allele
        frequencies after selection,
            take Line (4) above and
      recall  q = f(BB) + (1/2) f(AB)
      
          so  q' =  q2W2/ + (1/2) 2pqW1/
  + (1/2) 2pqW1/ =  q(qW2
      + pW1)/
   =  q(qW2
      + pW1)/ 
 
      
      then   q  
      =  q' - q  = qafter
        - qbefore
q  
      =  q' - q  = qafter
        - qbefore
          
                       
      =  q(qW2 + pW1)/ -  q
  -  q /
/ 
 
      
                     
      =  [(q)(qW2 + pW1) - (q)(p2W0 + 2pqW1 + q2W2)] / [Note 1]
  [Note 1]
      
                     
      =  [(q)(qW2 + pW1
      - p2W0 - 2pqW1
      - q2W2)]
      / [Note 2]
    
           [Note 2]
      
                     
      =  [(q)(pqW2 + W1p(1-2q) - pW0p)]
      / [Note 3]
                    
 
        [Note 3]
      
                     
      =  [(pq)(qW2 + W1(1-2q)
      - W0p)] / [Note 4]
                            
      [Note 4]
      
                     
      =  [(pq)(W2q + W1(p-q) - W0p)]
      / [Note 5]
                         
 
         [Note 5]
      
                     
      =  [(pq)(W2q + W1p - W1q
      - W0p)/ [Note 6]
                           
      [Note 6]
      
                   q  =  [pq] [(q)(W2 - W1)
            + (p)(W1 - W0)] / [
q  =  [pq] [(q)(W2 - W1)
            + (p)(W1 - W0)] / [ ]
]
          ________________________________________________
      
      Notes:
      [1] Expand  in numerator, from Line 4 of Table
      in numerator, from Line 4 of Table
      [2] Combine terms by factoring out q from 
      [3]  trick: Combine
      W2 terms by noting (q - q2) = (q)(1 - q) = pq  
      [4]  Factor out p from W0,
      W1, & W2
      terms 
      [5]  trick: (1 - 2q)
      = (1 - q) - q = (p - q)
      [6] Expand W1 term, gather p
      & q terms
      
    
    
Homework
        :  Repeat the derivation of the model for in
      terms of the other allele,  p = p' - p
p = p' - p