Radiation Mutagenesis & Health Physics
In principle:
Genetic molecules & structures are affected by high-energy ionizing radiation

    ionization may effect  DNA directly or indirectly

Health Physics is the study & control of the effects of radiation on humans.


Primer of Ionizing Radiation
   isotopes have same atomic number (Z) = # protons
                       different atomic mass (A) = Z + N (# protons + # neutrons)
            Ex.: 125I is an isotope of 127I

                   125 = 53 protons + 72 neutrons (versus 127 A = 53 Z + 74 N) (see periodic table)
          [nuclides: isotopes differing in energy level: nucleotides]
   radioisotopes (radionuclides) are unstable:
         nucleus & electron shell are energetically unbalanced
         nucleus undergoes radioactive decay:
              spontaneous release of energy and/or mass as particles or waveforms

Particles
    alpha & beta emitters (32P, 35S, 14C, 3H, 131I)  [read as "P 32" etc.]
        alpha particle: nucleus ejects He nucleus (2 protons + 2 neutrons)
        beta particle: neutron decays to proton + e- (electron)
                           or, proton decays to neutron + e+ (positron)

 Waveforms
     gamma emitters (137Cs)
          [Beta-decay to 137Ba, then] electron capture: proton + e- neutron + gamma photon

      Planck's Equation predicts energy content:
           E = h /    where E = energy,   = wavelength, h = Planck's constant
               shorter wavelength radiation more energetic radiation
           Energy: UV (ultraviolet) radiation  <  X-rays  <  gamma rays < cosmic rays
               Ex.:  long-wave UV B in "black lights" is safer than short-wave UV A in tanning beds

 Neutron activation: N bombardment renders materials radioactive
        "Criticality Incidents" &"Nuclear Excursions"
             Louis Slotin (1910 - 1946), Canadian physicist at Los Alamos
             Los Alamos (Dec 1958) & Tokaimura (Sept 1999) accidents
         Enhanced Radiation Weapons:
"Neutron Bombs"

"Fallout"
        fission & fusion weapons introduce radioisotopes into the environment & food chain
              Neutron activation of atmospheric elements

        Nuclear reactor accidents release short- & long-lived radioisotopes             
               ExChernobyl (April 1986) &
Fukushima Daiichi (March 2011) release 137Cs  & 131I

             Fallout products


Genetic effects of ionizing radiation
      direct or indirect radiochemical damage to DNA

      direct effects: formation of thymine dimers  (T~T)
           covalent linkage of adjacent T T bases causes errors in replication
               UV irradiation causes skin cancer
                   photoreactivation or excision repair reverse damage
                   xeroderma pigmentosum is a genetic disease caused by a repair defect

           cross-linking - different DNA molecules covalently joined
                                       H-bonds covalent bonds

           dsDNA chromosome breaks
                 non-homologues join end-to-end to form dicentric chromosomes
                 radium watch dial painters (1920s) ingested  226Ra [high-energy alpha]

       indirect effects: oxidative damage
            Radiolysis of H20 produces free radicals:
                H2O         H + OH           [hydroxy radical]
                HO + OH H2O2                [hydrogen peroxide]
                H2O2       H  +  HO2-      [superoxide radical]

             oxidation of bases modifies pairing rules
                 Ex.:  8-oxo-7-hydro-deoxyguanosine (GO)
                          dG GO  by oxidation, pairs with   transversion

             Prevention & repair of oxidative damage
                  
superoxide dismutase (SOD): HO2- + H H2O2
                    catalase: H2O2 H2O


Radioisotope exposure & laboratory safety (Health Physics)

Half-life ( t1/2)
     physical - Time to lose 1/2 of radioactivity by physical decay (Tp)
                        amount remaining = 0.5t
                        Ex.: 10 half-lives leaves 1 / 1024 ~ 0.1%

            131I:      t1/2 = 8 days
            137Cs
t1/2 = 30.2 yrs

     biological - Time to eliminate 1/2 of material from body metabolically (Tb)
           131I:      t1/2 = 138 days
           137Cs:  
t1/2 =   70 days

     effective - combined physical & biological decay loss ( 1 / Te  =  1/ Tp  +  1/Tb )
                        then
Te = (Tp)(Tb)/ (TbTp)
                        HOMEWORK: Prove the formula; calculate
Te for 131I and 137Cs

     body burden - Amount of material that stays in body permanently
           critical organ depends on isotope
           239Pu   - Plutonium: calcium analog, "bone-seeker"
         131,125I   - Radioiodine: used in tests of thyroid function as "thyroid-seeker"
                 3H  - Tritium: enters "body water"
 
Dosimetry of ionizing radiation
     Measures of mass
         curie (Ci) = 1 gm of radium (226Ra)  = 3.7 x 1010 dps
               1 dps = 1 disintegration per second = 1 becquerel (Bq)
               1 PetaBq (PBq) = 1015 Bq = 27 kCi  [Table of SI Units]

                    Ex.: Acute Polonium (210Po) poisoning as assassination tool

     Measures of dose
          How much radiation strikes target?
               Measure this with a Geiger-Muller tube ("Geiger counter")
                     1 Gray (Gy) = 100 Roentgen (R) = 1 J / kg
                           Ex.: typical X-Ray series = 2.2 mGy = 220 mR

     Public Health concerns arise from large-scale release
                Ex.: Hiroshima (Aug 1945) explosion (14 kt TNT) released 59 x 1012 J (59 TJ) =  8×1024 Bq = 8 YottaBq

                ExChernobyl accident (April 1986) released ~85 PBq 137Cs & 1,760 PBq 131I
                              Environmental Contamination < 1500 kBq / m2
                              Exposure of Reactor crew 
                                                                 
                ExFukushima Daiichi accident (March 2011) released
~15 PBq 137Cs & 500 PBq 131I

    Measures of effect
      How much radiation is absorbed by body ?

                     Depends on radiation type & target
                    1 Gy X-Rays delivers 100 rad (radiation-absorbed dose)

           Biological effect depends on nature of radiation
                    1 Gy
X-Rays delivers 1 Sievert (Sv)
                       or,  10mSv = 1 rem [
roentgen-equivalent (in) man - effect dose]

                 Depends on relative biological effect (rbe) of radiation
                     e.g., radionucleotides as nucleic acid labels (32P- & 35S- dNTPs)
                             exposure little effect [except: risk of cataracts]
                             ingestion direct incorporation into chromosomal DNA high rbe

                Linear Energy Transfer (LET) = energy / path length
                     How much energy is released during passage through cell / body?
                     gamma & X-rays: (very) high energy over long path length low LET
                     alpha & beta particles: low energy over (very) short path length high LET
                               high specific ionization over short path produces intra-cellular damage


Consequences of radiation exposure
           Average North American exposed to ~1 millisievert (1 mSv) = 0.1 rem / year)
                Dose-response curve is linear: no safe threshold [HOMEWORK]
                      Acute high-level exposure induces genetic mutation
                      Chronic low-level exposure increases incidence of cancer
                              Ex.:
Post-Chernobyl contamination: >1 Ci 137Cs / km2    added dose ~1 mSv / yr             
                      US & Canadian NRC sets occupational limits to exposure
                      Exposure threshold for civil population emergency = 10 ~ 50 mSv (Fukushima 2011)

            Acute exposure to 500 mSv produces 'haematopoetic syndrome' = "radiation sickness"
                     3,000 mSv produces 'gastrointestinal syndrome', fatal without treatment
                     5,000 mSv = LD50/30 : lethal dose for 50% of population in 30 days, even with treatment

Homework: Consider 10 uCi of a gamma- versus an alpha-emitter
                                            Which would you rather be exposed to at 1 meter?
                                            Which would you rather swallow?
                                            Explain.


All text material ©2024 by Steven M. Carr