Primer of
            Ionizing Radiation 
         isotopes have same atomic number (Z) = # protons 
                      
  
           different atomic mass (A) = Z + N (# protons + #
            neutrons) 
                    Ex.: 125I
        is an isotope of 127I
      
              
                  125 = 53
        protons +  neutrons (versus 127
          A = 53 Z + 74 N) (see periodic
            table) 
               
          [nuclides: isotopes
          differing in energy level:  nucleotides]
 nucleotides] 
         radioisotopes (radionuclides) are unstable:
      
              
nucleus
&
          electron shell are energetically unbalanced 
              
          nucleus undergoes radioactive decay: 
                   
          spontaneous release of energy and/or mass as particles
          or waveforms 
Particles 
          alpha & beta emitters (32P,
        35S, 14C, 3H,
          131I)  [read as "P 32" etc.]
      
             
            alpha particle: nucleus ejects He
          nucleus (2 protons + 2 neutrons) 
             
            beta particle: neutron decays to proton + e- (electron)
      
                                
or,
proton
        decays to neutron + e+ (positron)
      
      
    
 Waveforms 
          
gamma
emitters
          (137Cs)
      
               
        [Beta-decay to 137Ba,
        then] electron capture: proton + e-
         neutron + gamma photon
 neutron + gamma photon 
     
            Planck's Equation predicts energy content:
      
                
          E = h /  where E
        = energy,
   where E
        = energy,  = wavelength, h =
        Planck's constant
  = wavelength, h =
        Planck's constant 
                
 
 
      shorter wavelength radiation  more energetic radiation
 more energetic radiation
      
                
          Energy: UV (ultraviolet) radiation  <  X-rays  <  gamma rays < cosmic rays
                  
                Ex.:  long-wave UV B
          in "black lights" is safer than short-wave UV
            A in tanning beds
    
 Neutron
            activation: N bombardment renders
          materials radioactive
             
          "Criticality Incidents"
          &"Nuclear
            Excursions"
                  
           Louis
              Slotin (1910 - 1946), Canadian physicist at Los
          Alamos
                    
         Los Alamos
        (Dec 1958) & Tokaimura (Sept
        1999) accidents
                 Enhanced
          Radiation Weapons: "Neutron
            Bombs"
"Fallout" 
             
        fission & fusion weapons
          introduce radioisotopes into the environment &
        food chain
                     
        Neutron activation of atmospheric elements
      
    
            Nuclear reactor accidents release
        short- & long-lived radioisotopes     
                
                      
        Ex:  Chernobyl (April 1986) &
        Fukushima
            Daiichi (March 2011) release  137Cs  &
                131I 
            
        
        
      
      direct
        effects: formation of thymine dimers 
          (T~T) 
                
covalent
linkage
        of adjacent T T bases
        causes errors in replication 
           
                   UV irradiation
        causes skin cancer 
             
                   photoreactivation or excision repair reverse
          damage 
            
                      xeroderma pigmentosum
        is a genetic disease
        caused by a repair defect
       
             cross-linking - different DNA molecules covalently
        joined 
                                      
 
 
          H-bonds  covalent bonds
        covalent bonds
    
          
dsDNA
chromosome
          breaks
                      
non-homologues
join
        end-to-end to form dicentric
            chromosomes 
             
                   radium watch dial
          painters (1920s) ingested  226Ra [high-energy alpha]
      
    
      
        indirect effects: oxidative
            damage
                 
          Radiolysis
          of
          H20 produces free radicals: 
                     
          H2O          H + OH          
        [hydroxy radical]
 H + OH          
        [hydroxy radical] 
                     
        HO + OH  H2O2               
          [hydrogen peroxide]
 H2O2               
          [hydrogen peroxide]
      
                     
        H2O2      
         H 
        +  HO2-   
          [superoxide radical]
 H 
        +  HO2-   
          [superoxide radical]
      
    
            
        oxidation of bases modifies pairing rules 
                      
        Ex.:  8-oxo-7-hydro-deoxyguanosine (GO) 
                   
                    dG  GO  by oxidation, pairs with
        A
 GO  by oxidation, pairs with
        A  transversion
  transversion
      
    
      
              Prevention & repair of
        oxidative damage
                  
                superoxide
          dismutase (SOD): HO2- + H  H2O2
          H2O2 
                     
            catalase: H2O2  H2O
          H2O 
Half-life
      ( t1/2)
          
            physical - Time to lose 1/2 of radioactivity by
          physical decay (Tp)
                     
                     
          amount remaining = 0.5t
                     
                      Ex.:
          10 half-lives leaves 1 / 1024 ~ 0.1%
        
   
                  131I:
                 t1/2 = 8 days
                      137Cs: 
        t1/2
              = 30.2 yrs 
    
            biological - Time to eliminate 1/2 of material
          from body metabolically (Tb)
        
                      131I:
                     t1/2 = 138 days
                         137Cs:
                t1/2 =  
                  70 days  
    
          effective - combined physical & biological decay
          loss ( 1 / Te  =  1/ Tp 
            +  1/Tb )
                           
                then Te
          = (Tp)(Tb)/
          (Tb
          + Tp)
          
                     
                      HOMEWORK: Prove the
            formula; calculate Te
            for 131I and 137Cs
     
            body burden - Amount of material that stays in body
          permanently 
                
critical
organ
        depends on isotope 
                
        239 Pu   - Plutonium: calcium analog, "bone-seeker" 
              
        131,125 I   - Radioiodine:
        used in tests of thyroid function as "thyroid-seeker" 
                      
        3 H  - Tritium:
        enters "body water"
      
        
        Dosimetry
          of ionizing radiation 
           Measures of
        mass 
              
            curie (Ci) = 1 gm of radium (226Ra)  = 3.7 x 1010 dps
      
                    
        1 dps = 1 disintegration per second = 1 becquerel
        (Bq)
                   
           1 PetaBq (PBq)
        = 1015 Bq = 27 kCi  [Table of SI Units]
         
                          Ex.:
          Acute Polonium
              (210Po) poisoning as assassination tool
    
     Measures of
        dose 
               
How
much
        radiation strikes target? 
                    
Measure
this
        with a Geiger-Muller tube ("Geiger counter")
                      
 
 
          1 Gray
        (Gy) = 100 Roentgen (R) = 1 J / kg
                           
 
 
           Ex.:
        typical X-Ray series =
        2.2 mGy = 220 mR
        
    
          Public Health concerns arise from large-scale release
              
                  Ex.: Hiroshima (Aug
        1945) detonation (14 kt TNT) released 59 x 1012
          J (59 TJ)
        =  8 ×1024 Bq =
        8 YottaBq
    
                            Ex.:
                  TMI-2
                      accident (March
                  1979) released ~500 PBq (13 MCi)
                  135Xe 
                                                                                          
                         & ~ 0 Ci 137Cs 
                  & < 20 Ci  131I
                  
                        
                Ex:  Chernobyl
            accident (April 1986) released ~85 PBq  (2.3 MCi)
       137Cs & 1,760 PBq
        (47.5
            MCi) 131I 
                    
                         Environmental
            Contamination < 1500 kBq / m2 
                   
                   
              Exposure of Reactor crew 
        
           
                         
                         
                         
              
                   
            Ex:  Fukushima
            Daiichi accident (March 2011) released ~15 PBq 
          137Cs & 500 PBq
                131I
            
 
             
    Measures of effect
              How much radiation is absorbed
        by body ?
          
                   
            Depends on radiation type & target
               
 
 
              1 Gy
        X-Rays delivers 100 rad (radiation-absorbed
            dose) 
      
          
        Biological effect depends
on
nature
        of radiation
                             
          1 Gy X-Rays delivers 1 Sievert (Sv) 
                              
or, 
10mSv
        = 1 rem [roentgen-equivalent
(in)
            man - effect dose]
      
 little effect [except: risk of cataracts]
      little effect [except: risk of cataracts] direct
incorporation
      into chromosomal DNA
 direct
incorporation
      into chromosomal DNA  high rbe
 high rbe  low LET
 low LET  high LET
 high LET  added dose ~1 mSv / yr
  added dose ~1 mSv / yr