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Geographic profilers have access to a repertoire of strategies for predicting a
serial offender’s home location. These strategies range in complexity—some in-
volve more calculations to implement than others—and the assumption often
made is that more complex strategies will outperform simpler strategies. In the
present study, we tested the relationship between the complexity and accuracy of
11 strategies. Data were crime site and home locations of 16 UK residential
burglars who had committed 10 or more crimes each. The results indicated that
strategy complexity was not positively related to accuracy. This was also found to
be the case across tasks that ranged in complexity (where complexity was
determined by the number of crimes used to make a prediction). Implications for
police’ policies and procedures, as well as our understanding of human decision-
making, are discussed.
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1. INTRODUCTION

An implicit assumption in decision-making research is that more
complex decision-making strategies lead to more accurate predictions
(Brehmer, 1994; Hammond, 1990; Hogarth, 1980; Kahneman and Tversky,
1973). Complex strategies make more calculations when presented with
information, and because they take into account extra information and
appear to evaluate it in a more sophisticated fashion, they are often assumed
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to be more accurate than simpler strategies (Payne et al., 1988, 1993). This
assumption has led many researchers to devote considerable time to
developing more complex strategies in a range of contexts (Ashenfelter
et al., 1995; Carter and Polger, 1986; Cronbach and Gleser, 1965), and
many of these are now routinely implemented in actuarial tools (Swets et al.,
2000).

Recently, this ‘‘complexity equals accuracy’’ assumption has been
challenged. By decomposing decision-making strategies into the number of
steps required to process a given amount of information, Payne et al. (1988,
1993) showed that simpler strategies (i.e., those that require fewer compu-
tational steps) can sometimes yield levels of accuracy similar to those
produced by more complex strategies. Research has also shown that simple
strategies do not necessarily lead to a reduction in accuracy as problems
become more complex (Paquette and Kida, 1988; Payne et al., 1993). For
example, Gigerenzer et al. (1999) showed that individuals were able to use
heuristics to reduce complex problems into simpler judgments and still
perform as accurately as actuarial techniques. These initial findings have led
Gigerenzer and colleagues to question the need for complex strategies in a
number of decision-making contexts, particularly where the time and cost
of making decisions can have serious consequences (e.g., emergency medical
situations).

One criminological context where this complexity–accuracy assumption
is being challenged is in the area of geographic profiling (Snook et al., 2002,
2004). In its most basic form, the geographic profiling task requires a pre-
diction of where a serial offender is most likely to be residing based on where
he has committed his crimes (Canter et al., 2000; Rossmo, 2000). The most
common way of making these predictions is to use mathematical functions,
which are typically incorporated into computerized geographic profiling
systems (Canter et al., 2000; Rossmo, 2000; Taylor et al., 2002). Yet, despite
the use of geographic profiling systems, simpler strategies are available to
make these predictions and some evidence suggests that they can be as
accurate. For example, Snook et al. (2002) demonstrated that individuals
introduced to two simple patterns of criminal spatial behavior were able to
achieve a level of accuracy in a geographic profiling task comparable to that
achieved by a geographic profiling system. These findings were replicated by
Snook et al. (2004), who further showed not only that teaching one strategy
was sufficient to reach performance comparable to a complex strategy, but
also that some individuals were using simple strategies to make accurate
predictions prior to training. In both of these studies, however, comparisons
were only made against one complex strategy, such that there has been no
systematic study of strategy complexity and its relationship to accuracy.
Thus, an important question remains about the complexity–accuracy
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assumption in this domain: Do complex strategies result in more accurate
geographic profiling predictions compared to simpler strategies?

1.1. A Repertoire of Geographic Profiling Strategies

Geographic profilers have access to a range of strategies for predicting
where a serial offender is residing. These are described succinctly by Levine
and Associates (2000), who make the broad distinction between spatial
distribution strategies and probability distance strategies. Spatial distribution
strategies include a number of different procedures, all of which predict the
home location of a serial offender by calculating a central point from a
distribution of crime site locations. Some common spatial distribution
strategies include the center of the circle, centroid, median, geometric mean,
harmonic mean, and center of minimum distance (these are defined in Section
2.3.1 and the Appendix A).

Probability distance strategies begin with the assumption that an
offender’s crime site locations define their activity space, and that this area
contains the offender’s residence (Canter et al., 2000; Rossmo, 2000). The
prediction of an offender’s residence within this space is achieved by
applying, around each crime site, a mathematical function that assigns
areas, or cells, of the space a small positive real number. The numbers
produced by applying the function with respect to each of the crime sites are
added up to produce an overall value that is then associated with each cell of
the space. The result is a surface that indicates the likelihood of an offender
living at a particular location, making it possible to locate the area that is
most likely to contain the offender’s residence. Probability distance strate-
gies differ from one another in terms of the shape of the mathematical
function applied around each crime site and the assumptions regarding the
relationship between where offenders reside and where they commit their
offences. Common probability distance functions include the negative
exponential, normal, lognormal, linear and truncated negative exponential
(these are defined in Section 2.3.2 and in Appendix A).

1.2. Known Differences in the Accuracy of Geographical Profiling Strategies

Since no attempt has been made to define the complexity of the geo-
graphic profiling strategies outlined above, it is prudent to first question
whether they differ in their level of accuracy, while disregarding their
complexity. If the assumed relationship between complexity and accuracy
exists, then we would first expect to find some strategies performing with
more accuracy than other strategies. These strategies may then be predicted

Geographic Profiling Strategies 3



as being more complex, and the complexity–accuracy assumption can be
systematically assessed.

Unfortunately, while the question of strategy accuracy has received
attention in the literature, it is difficult to draw conclusions regarding relative
strategy performance because accuracy has been assessed by different mea-
sures. For example, Canter and Larkin (1993) examined the accuracy of a
circle strategy, which states that a serial offender’s home will be located
within a circle with its diameter defined by the distance between that offen-
der’s two furthermost offences. They found that 87% of serial rapists from
the UK had their homes located within their circle. Although subsequent
research in Australia (Kocsis and Irwin, 1997) has supported this finding for
serial rapists (71% found within the circle) and arsonists (82%) lower per-
centages have been reported for US serial rapists (56%), Australian burglars
(48%) and Japanese arsonists (51%) (see Kocsis and Irwin, 1997; Tamura
and Suzuki, 1997; Warren et al., 1998).

In a study testing a family of negative exponential functions on 70 US
serial killers, Canter et al. (2000) measured accuracy using search cost,
which is the percentage of cells in an overlaid grid that need to be searched
to locate the cell that contains an offender’s home. They found that a
number of different functions were good at predicting home location, with
the best parameters resulting in an average search cost of 11%. In other
words, on average across their sample, 11% of an offender’s activity space
(i.e., total search area) had to be searched before their home was found.
Since a circle drawn around the two furthermost crimes is likely to incor-
porate more than 11% of the total search area, this result might tentatively
suggest that probability based strategies outperform the circle strategy.

Similarly, in testing the accuracy of a criminal geographic targeting
algorithm (CGT) on 15 serial killers, Rossmo (2000) quantified accuracy
using a measure equivalent to search cost (hit percentage) and found an
average hit percentage of 6%. Although that lower value suggests that the
CGT strategy is more accurate than the negative exponential function used
by Canter et al. (2000), Rossmo was more cautious in selecting his original
sample, choosing offences that were appropriate for the assumptions of the
strategy being tested. In particular, Rossmo asserted that probability
strategies require information about the location of at least five crime sites
to increase reliability, a criterion not used by Canter and his colleagues.
More specifically, he argued that strategy accuracy increased as the number
of crimes used to make a prediction increased. Other evidence to support
this suggestion comes from Levine and Associates (2000), who report
improvements in the mean accuracy of a number of strategies when
implemented on the locations of three to five crimes, six to nine crimes, and
10 or more crimes.
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Finally, in the only existing comparison of many strategies, Levine and
Associates (2000) compared the accuracy of six spatial distribution strategies
and four probability strategies. For each strategy, a prediction was made for
50 different serial offenders and accuracy was calculated by measuring
(in miles) the straight-line distance between the predicted and actual home
location. The mean accuracies across the 10 strategies suggested little
difference in the performance of each strategy, although no statistical tests
were conducted to confirm this observation.

In sum, existing research is divided on the issue of whether certain
geographic profiling strategies perform better than other strategies. Fur-
thermore, the complexity of the various geographic profiling strategies that
exist for this purpose has never been quantitatively defined, and no standard
measure of accuracy has been adopted across the studies that have been
conducted.

1.3. Hypotheses

The following two hypotheses were tested:

1. Complex geographic profiling strategies will result in more accurate
predictions compared to less complex strategies.

2. Complex geographic profiling strategies will be more accurate than
less complex strategies on more complex tasks.

2. METHOD

2.1. The Sample

Data were crime site and home locations of 16 serial residential bur-
glars who committed 10 or more burglaries in a semi-rural county of the UK
between 1997 and 1999. We define a serial residential burglary as any
offender that was arrested for 3 or more residential burglaries. The average
number of crimes committed by the burglars was 20 (SD ¼ 8.9). Ten of the
burglars had one home location, four had two home locations, and two had
three home locations. Since some of the burglars had multiple home loca-
tions (i.e., they changed residential locations at some point during their
series), we decided that predictive accuracy should be measured for all home
locations, thus, there were 24 cases where serial offender home locations
could be predicted. The average home to crime distance measured in kilo-
meters for cases involving 5, 6, 7, 8, 9 and 10 crimes were, respectively, 8.9
(SD ¼ 15.8), 8.8 (SD ¼ 15.7), 8.7 (SD ¼ 15.6), 8.8 (SD ¼ 15.7), 8.0 (SD ¼ 14.8),
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and 8.0 (SD ¼ 14.8). The area of a circle (km2) drawn around the two most
distant crimes were, for the 5, 6, 7, 8, 9 and 10-crime series respectively, 31.2
(SD ¼ 46.9), 36.0 (SD ¼ 46.4), 40.0 (SD ¼ 48.8), 40.0 (SD ¼ 48.8), 42.6
(SD ¼ 49.1), and 46.7 (SD ¼ 53.4).

2.2. The Geographic Profiling Strategies

Eleven geographic profiling strategies were tested. Six of the strate-
gies were spatial distribution strategies including the center of the circle,
centroid, median, geometric mean, harmonic mean, and center of mini-
mum distance. The remaining five strategies were probability distance
strategies including functions that are linear, negative exponential, nor-
mal, lognormal, and truncated negative exponential. These probability
strategies, or variations of these strategies, are implemented as algorithms
in popular geographic profiling systems such as Dragnet (Canter et al.,
2000), CrimeStat II (Levine and Associates, 2000), and Rigel (Rossmo,
2000).

2.3. Defining the Complexity of each Geographic Profiling Strategy

Computer scientists and decision-making researchers have used similar
methods for defining the complexity of problem solving strategies. We drew
on their approaches to study the complexity of geographical profiling
strategies.

In decision-making research, complexity is often measured by counting
the number of mathematical operations required to transform an initial
state (e.g., distribution of crimes) into a final state (e.g., predicted home
location) (e.g., Newell and Simon, 1972; Payne et al., 1988). Mathematical
operations, or elementary information processors, include adding,
subtracting, dividing, multiplying, and so on. As Payne et al. (1988) note,
counting the number of mathematical operations provides a common
language that allows for comparisons across disparate prediction strategies,
in addition to providing a method that is reasonable for approximating
complexity.

Similarly, in computer science, complexity has become an important
area of research initiated formally by Hartmanis and Stearns (1965), who
built on work dating back to Turing (1936). They defined a framework by
which it is possible to characterize mathematically the complexity of prob-
lems that can be solved on a computer. Researchers in this area seek the
definition of a mathematical law that describes how the running time
(or indeed any other measurable resource used during a computation) of a
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given computer program varies as a function of the size of the problem that
is being solved. The computational complexity of a computer program is
defined in terms of the maximum number of computation steps needed to
run a particular program on a computer on any input task of a given size.
The complexity of a problem can then be defined in terms of the best pos-
sible program that solves it (e.g., Bovet and Crescenzi, 1994).

One of the aims of this paper is to classify different geographic profiling
strategies according to some measure of complexity. We believe that the
computational complexity approach described above is well suited for such
analysis for the following reasons:

(a) all the profiling strategies considered in this paper are relatively
simple and lend themselves to being encoded in a computer program;

(b) the mathematically precise setting of computational complexity of-
fers techniques for deriving tight estimates on the complexity of the
various profiling methods.

In the forthcoming sections, we will define two profiling strategies and
provide, in each case, the description of a computer program implementing
the given strategy. By means of such implementations it is possible to give
an upper bound on the strategy’s complexity. Because these upper bounds
will be calculated from structural properties of the various strategies, their
relative values will remain invariant across different computer systems or
programming approaches.

All programs described in this paper can be implemented quite easily in
the reader’s favorite programming language. However, following Aho et al.
(1974) or Cormen et al. (2001), we describe the implementation of the various
strategies using either a simple pseudo-programming language or plain
English.We follow the conventions of Cormen et al. (2001) (see Section 2.1 of
their book) on the computational device on which our programs would run,
and on the data types and instruction set we are allowed to use.

For the purpose of estimating each program’s complexity, we assume that:

(i) Elementary arithmetic operations such as +, ·, ), and ‚ can be
computed in one time step; we also assume that

ffiffiffi

x
p

and the
transcendental function ex, and its inverse log x can be computed in
a constant number of steps (e.g., see Tang and Tak, 1989). The
particular method used to implement these functions does not affect
the quality of our results if the lines in Fig. 1 (see Section 3.1) are
plotted under the assumption that all arithmetic operations are
equal to one time step.

(ii) Elementary instructions in any program always have the form:

‘‘do something to some variable(s) and store the result in some variable’’.
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The ‘‘do something to some variable(s)’’ component involves
computing some arithmetical expression involving the elementary
arithmetic operations described above. The number of steps needed
to complete such elementary assignment instructions was calculated
as the total number of steps needed to compute each of its
elementary arithmetic operations plus one. So, for instance, ‘‘store
the value 25 in the variable D’’ takes just one step (no arithmetic
operation involved), while ‘‘take the value of x, add 25 to it, and
store the result in the variable D’’ takes two steps because of the
addition operation.

(iii) Selection constructs of the form:

‘‘if (some condition) do something, else do something else’’

take a number of steps given by the maximum between the number
of steps needed for ‘‘do something’’ and ‘‘do something else’’
(we assumed that conditions, always involving a relational operator
like = or £ applied to two variables, cost nothing).6

(iv) Loops are always of the form

‘‘for i = starting value, do something until i becomes larger than
‘‘final value’’

(atwhichpoint executionof the loop is terminated).We assume such a
structurerequiresoneinitial steptoset thevalueof i to‘‘startingvalue’’,
then as many steps as needed to perform ‘‘do something’’ plus one to
increase i, repeated by the number of times thewhole cycle is repeated.

(v) Elementary assignment instructions, selections constructs, and loops
can be combined together in sequences. The total running time of a
program is the sum of the running times of its components.

We further assume that the input is present inside the computer memory
as a sequence of pairs, ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞ, where each pair is
formed by two non-negative integer values representing the x and y
co-ordinates of a given crime site location. The size of the input (or task
complexity) is defined as the total number of points for a given crime series.
The output was an estimated home location given as an x and y co-ordinate.

2.3.1. Spatial Distribution Strategies

In this section, we provide an example of a complexity analysis for a
spatial distribution strategy. The complexity analysis of the remaining five

6It could be argued that relational operators cost one unit of time, which would result in minor

changes being made in all complexity calculations. However, no major difference in the relative

complexity of the various strategies would be observed.
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spatial distribution strategies is presented in Table I and the program used
to calculate the complexity of the strategy is provided in Appendix A. In all
cases, the computational complexity of implementing such strategies is at
least linear in the number of crime locations. In each case, TðnÞ denotes the
computational complexity of the particular method.

Given n points, the center of the circle is calculated as the mid-point of
the two furthest points in the sequence of crime locations. The following
program computes the center of the circle. All variables only take integer
values, except DIST and d, which may be any real number.

setimax and jmaxto one;

set d to zero;

for i ¼ 1 to n� 1

for j ¼ iþ 1 to n

set DIST to the Euclidean distance between ðxi; yiÞ and ðxj; yjÞ;
if DIST > d

set d to DIST;

set imax to i;

set jmax to j;

return estimated home location as mid-point between ðximax
; yimax

Þ and
ðxjmax

; yjmax
Þ

The first two instructions cost three units of time (simple assignment
instructions). If T is the time to run (once) all the instructions inside the two
nested loops then the overall complexity of the two nested loops is:

ðn�1ÞþðTþ1Þ� ½ðn�1Þþðn�2Þþ �� �þ1� ¼ ðn�1ÞþðTþ1Þ� n

2

� �

; ð1Þ

where the first n� 1 steps are for the assignments to i and each term in the
square brackets gives the number of iterations of the inner loop on j for each
iteration of the outer loop. We compute the distance between point ðxi; yiÞ
and point ðxj; yjÞ using the formula:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj � xiÞ2 þ ðyj � yiÞ2
q

ð2Þ

with two subtractions, two multiplications, and a square root operation. If
ROOT2 is the cost of taking the square root of a number, then:

T � 4þ ROOT2 þ 3: ð3Þ
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The total cost of this method is, therefore:

TðnÞ � ðn� 1Þ þ ðROOT2 þ 8Þ � n

2

� �

þ 4
n o

; ð4Þ

where ðn2Þ ¼
nðn�1Þ

2 :
The analysis presented above can in fact be improved. The function

fðxÞ ¼
ffiffiffi

x
p

is strictly monotone increasing for each x � 0. Hence, we obtain
a slightly faster, but equivalent, program by replacing the Euclidean dis-
tance with its squared value (assuming the numbers under consideration are
not too large). The complexity of this modified program is:

TðnÞ � 2 ðn� 1Þ þ 8� n

2

� �

þ 4
n o

¼ 2 4n2 � 3nþ 3
� �

: ð5Þ

Of note is that this result is very close to best possible. Although in
general TðnÞ � n in this situation any program computing the center
of the circle of a set of n points will need to compute ðn2Þ distances. Hence, a
more accurate lower bound on this method’s complexity is TðnÞ � ðn2Þ.

2.3.2. Probability Distance Strategies

As mentioned, probability distance strategies assume that crime site
locations represent an offender’s activity space, and that this space contains
that offender’s residence (Taylor et al., 2002). Given the n input points (i.e.,
crime locations), a grid is laid on top of them. We let ðu1; v1Þ;
ðu2; v2Þ; . . . ; ðum; vmÞ be the centers of the various cells defined by such a grid.
For each center, Ci ¼ ðui; viÞ, we then define the Euclidean distance, disti;j,
from Ci of the jth crime location, ðxj; yjÞ (n values defined for each center).
Then, a given probability density function, f, is evaluated and the numerical
value associated to Ci is:

lðCiÞ ¼
X

n

j¼1
fðdisti; jÞ: ð6Þ

The predicted home location is then set to be the center, C, that
maximizes function l. In other words, a numerical score is assigned to a
number of points in the region where the offences were committed, allowing
us to identify the point with the highest probability score.

For each of the probability distance strategies, we used a common
formula to measure complexity. Calling Tf the time to evaluate f, and
assuming that m centers are defined, each of the methods in this section had
an approximate complexity of at most:
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m� n� Tf ð7Þ

computational steps. Clearly, if m is much smaller than n, these methods can
be simpler than many of the spatial distribution strategies. If, on the other
hand, m is bigger than n then the complexity of any of these probability
distance strategies is at least n2. For the purpose of plotting the graphs given
in Section 3.1, we set m at 8562.5, since this was the average number of cells
per grid across the 16 serial burglars’ activity spaces. Below is an example of
how we calculated the complexity for the linear probability distance strat-
egy. The complexity analysis of the remaining four probability distance
strategies is presented in Table I and the program used to calculate the
complexity of the strategy is provided in Appendix A.

The linear strategy assumes that the likelihood of an offender living at a
particular location declines by a constant amount with the distance from a
crime site location. The probability of finding the home is highest near the
crime location but drops off by a constant amount for each unit of distance
until it falls to zero. The function f in this case is defined by

fðxÞ ¼ aþ bx if x � �a=b
0 if x > �a=b;

�

ð8Þ

where a is typically set to some small positive value such as 10 and b is a
constant that is given a negative sign (e.g., b ¼ �1) to indicate that the
likelihood of locating the offender’s home declines with increasing distance
from a crime. The cost of evaluating f in Eq. (8) is just two, since we require
only one multiplication and one sum.

2.4. Predicting Home Locations

For all strategies, the area representing an offender’s activity space was
formed by arbitrarily expanding the minimum and maximum x and y crime
location co-ordinates by 2000 m. This expansion ensured that the offender’s
crime locations would not be on the boundary of the total search space.
Spatial analyses of the crime locations were computed using the statistical
package CrimeStat II (Levine and Associates, 2000). An exception was the
center of the circle strategy, which was applied manually using graphical
instruments and checked by a second author. All 24 cases were tested from
five to 10 crimes, with the crimes being added chronologically. In total, there
were 1584 predictions made (strategies (11) · offender homes (24) · task
complexity (6)).
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2.5. Measuring the Accuracy of Geographic Profiling Strategies

As indicated in Section 1.2, there are various ways of measuring the
accuracy of the predictions made by different geographic profiling strategies.
Two common measures of accuracy are search cost (Canter et al., 2000), or
hit percentage (Rossmo, 2000), and error distance (Levine and Associates,
2000; Snook et al., 2002, 2004). To reiterate, search cost and hit percentage
are equivalent strategies that are measured as the percentage of cells, in an
overlaid grid, that need to be searched (where the search is conducted in
order of highest through lowest probability) to locate the cell that contains
the offender’s home (Canter et al., 2000; Rossmo, 2000). However, these
accuracy measures are restricted to probability distance strategies since
spatial distribution strategies only provide one estimated home location. In
contrast, because error distance refers to the crow-flight distance between
the estimated home location and the actual home location, this measure can
be used for both the spatial distribution strategies and the probability dis-
tance strategies. Consequently, it is desirable to use error distance to con-
duct comparisons across disparate strategies, and this method is used in the
following analyses.7

3. RESULTS

3.1. Complexity Costs as a Function of Task Complexity

Figure 1 shows the relative magnitude of the upper bounds on the
complexity costs of the 11 geographic profiling strategies obtained in
Section 2, as a function of task complexity (i.e., the number of crimes in a
series). The complexity costs are plotted on a logarithmic scale (base 10)
because the costs associated with the strategies situated in the upper half of
the graph were almost 2000 times that of those located in the lower part of
the graph. As can be seen from Fig. 1, the spatial distribution and prob-
ability distance strategies differed considerably from each other in their
level of complexity, with only relatively minor variations in complexity
evident within the two groups. Moreover, the relative complexities among
all strategies remained consistent from five through to 10 crimes, such that
it is possible to rank each strategy according to its level of complexity. The
ranking from low complexity to high complexity were: centroid (1),

7Crow-flight distances are typically used when studying criminal spatial activity in British or

older North American cities (e.g., Boston) because it is not always possible to identify the likely

route taken by the offender between his home and crime location. In any case, because we are

addressing the relative (rather than absolute) performance of strategies, use of an alternative

measure of distance (e.g., City-block) would yield equivalent results.

Snook et al.14



harmonic mean (2), geometric mean (3), median (4), center of the circle (5),
center of minimum distance (6), linear (7), negative exponential (8), trun-
cated negative exponential (9), normal (10), and lognormal (11).

3.2. Accuracy Measures by Strategy and Task Complexity

Table II contains the accuracy measures for each of the 11 geographic
profiling strategies by task complexity. The strategies are presented in order
from lowest complexity to highest complexity. The mean accuracy for each
strategy is presented in the last column, and the mean accuracy for task
complexity is presented in the last row. The bolded values refer to the most
accurate geographic profiling strategy for a given level of task complexity.

As can be seen in Table II, there was no substantial difference in the
accuracy of predictions across the strategies. Specifically, the mean accuracy
across task complexity ranged from 8.01 km for the center of the circle to
9.06 km for the truncated negative exponential strategy. However, inter-
estingly, the range between the most accurate and least accurate strategy
does differ across task complexity. The center of the circle strategy produced
the lowest mean error distance (i.e., 8.00 km) on the simplest task (i.e., five
crime locations), which was 1.25 km more accurate than the most accurate
probability distance strategy (i.e., linear) for that condition. In contrast, for
the most complex task, the linear strategy was most accurate, yet, it was
only 0.25 km more accurate than the least complex strategy (i.e., centroid),
and only 0.06 km more accurate than the most accurate spatial distribution
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Fig. 1. Complexity costs for 11 geographic profiling strategies as a function of task complexity.
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strategy (i.e., center of minimum distance). Perhaps the most interesting
finding from Table II, however, is the trend towards more complex strate-
gies achieving the lowest mean error distance on tasks involving nine and 10
crimes. This finding suggests that complex probabilistic strategies may start
to outperform simpler spatial distribution strategies on very complex tasks.
To address this and other trends within the data, we turn to a statistical
analysis.

A preliminary screening of the data indicated that accuracy distribu-
tions were leptokurtic (Range ¼ 3.41–3.69), that is, there are too few
accuracy scores in the tail of the distributions relative to the number of
scores in the center of the distribution. Since the kurtosis requirement was
violated, the data were not suitable for a parametric analysis. Although it
was possible to substantially reduce this problem by removing three
offenders from our sample, we conducted an initial analysis using all the
data. We felt it might be important to include all the data on statistical
grounds because the performance of strategies could differ dramatically on
the offences that did not match the distribution. We also recognize the
importance of including the data on conceptual grounds, since geographical
profilers do not know in advance those cases that conform to the implicit
assumptions of the geographical profiling strategies. With both of these
arguments in mind, we felt that removing the crimes might provide a dis-
torted view of strategy accuracy, and so chose to run two sets of analyses to
provide a comprehensive understanding of the data.

Table II. Accuracy (km) for Each of the 11 Geographic Profiling Strategies by Task

Complexity

Task complexity: number of crimes in series

Mean
accuracyStrategy 5 6 7 8 9 10

1. Centroid 8.39 8.14 7.98 8.07 7.96 7.91 8.07
2. Harmonic mean 8.40 8.14 7.98 8.08 7.96 7.91 8.08
3. Geometric mean 8.39 8.14 7.99 8.07 7.96 7.91 8.08
4. Median 9.25 8.51 8.56 8.44 8.15 7.84 8.46
5. Center of the circle 8.00 8.04 7.94 7.93 8.05 8.09 8.01

6. Center of minimum
distance

8.99 8.44 8.46 8.42 7.93 7.72 8.33

7. Linear 9.25 8.71 8.60 8.46 8.17 7.66 8.47
8. Negative exponential 9.49 9.16 8.96 8.97 8.93 8.65 9.03
9. Truncated negative

exponential
9.53 9.23 9.00 9.13 9.12 8.26 9.06

10. Normal 9.26 9.12 8.74 9.32 8.51 7.94 8.81
11. Log-normal 9.42 9.11 8.78 9.48 8.67 8.16 8.94
Mean accuracy 8.94 8.61 8.45 8.58 8.32 8.01
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The full data set was subjected to a two-way (strategies · task
complexity) Friedman’s ANOVA (Marascuilo and McSweeney, 1977).
There was no significant difference across task complexity when taking
into account the type of strategy implemented (F < 1). Similarly, there
was no significant difference across type of strategy while taking into
account the number of crimes, F(5, 776) = 1.83, ns. As a secondary
analysis, we removed those maps responsible for the leptokurtic nature of
the data (Maps 4, 9 and 17) and subjected the reduced data to a
repeated-measures MANOVA. There was a significant main effect of task
complexity, F(5, 216) = 8.49, p < 0.05 (using Pillai’s trace), but no
significant main effect of strategy (F < 1) and no significant interaction
between strategy and task complexity, F(50, 1100) = 1.08, ns. Pair-wise
comparisons were used to identify the differences in performance across
task complexity, with Bonferroni adjustment made for multiple compar-
isons at the a < 0.05 level. Comparisons revealed that the mean accuracy
for five crimes was significantly worse than the accuracy for six or more
crimes, that accuracy on nine crimes was significantly better than accu-
racy with eight crimes, and that the mean accuracy of strategies imple-
mented on 10 crimes was significantly better (lower) than the accuracy
across nine or less crimes. Overall, accuracy increased for all strategies
with increasing task complexity.

4. DISCUSSION

Although geographic profilers have access to a repertoire of strategies
for predicting a serial offender’s home location, complex strategies are often
prescribed over less complex strategies (Canter et al., 2000; Rossmo, 2000).
Indeed, computerized geographic profiling systems (and the probability
distance strategies they employ) appear to be the generally accepted method
for handling the geographic profiling task. One can find evidence for this by
looking at the number of police agencies that have either purchased a
geographic profiling system or have requested the assistance of geographic
profilers who use such systems (Rossmo, 2000). This trend exists despite a
lack of empirical evidence that more complex geographic profiling strategies
lead to more accurate predictions than simpler strategies. Given the method
we used to compute strategy complexity, this study showed that all proba-
bility distance strategies are substantially more complex than all spatial
distribution strategies but are not more accurate. Our results also show that
more complex strategies are not significantly more accurate than less com-
plex strategies when the geographic profiling task is more complex (i.e.,
when the crime series of interest include more crimes). Instead, accuracy
tended to increase with increasing task complexity across all strategies.
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Although we must be cautious in drawing any firm conclusions from
such a small-scale study, our results raise an important question: Is it
necessary to use complex geographic profiling strategies to make accurate
profiling predictions? Although the results presented here suggest not, we
must qualify that statement with a number of other important points.

4.1. Our Definition of Complexity

In using our definition of complexity, we found substantial differences in
the computational complexity of the various geographic profiling strategies
(though these complexity measures are only approximations). For example,
the simplest spatial distribution strategy (i.e., centroid) takes 22 steps to make
a prediction when dealing with five crime site locations. In contrast, the sim-
plest probability distance strategy (i.e., linear) takes 85,625 steps to make a
prediction under the same condition. It is crucial to note that the complexity of
a probability distance strategy is a function of the size of the number of cells in
a grid that covers a criminal’s activity space. If only a few cells are used to
comprise the activity space (e.g., four or five cells, rather than 8000), then, the
probability distance methods will be as simple as the spatial distribution
methods. However, it is likely that using such a small number of cells would
result in poor accuracy as the maximum center may be far from the actual
home location (since there would be too few grid cell centers to choose from).
Having said that, a prescribed advantage of geographic profiling systems, such
as Dragnet (Canter et al., 2000) and Rigel (Rossmo, 2000), is that they use
grids that contain thousands of cells to increase precision. Consequently, we
think that the number of grid cells included in our definition of complexity
provide us with an appropriate measure of complexity.

It is also important not to automatically equate our definition of
complexity with the amount of time and effort that would be expended when
using these strategies in the real world. Once a complex probability distance
strategy has been implemented within a computer program there is
considerable scope for reducing the amount of time and effort that is needed
to use the strategy. Thus, it is inappropriate to use evidence of differences in
complexity but not performance as an argument for abandoning the use of
probability distance strategies (and, therefore, geographic profiling systems)
in favor of spatial distribution strategies.

4.2. Current Implementation of Complex Strategies

Although complex strategies do not necessarily require more time and
effort to use in actual police inquiries, we believe there is an association
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between complexity and effort. In large part, this association is the result of
the way in which strategies are currently implemented. Probability distance
strategies are usually incorporated into commercialized geographic profiling
systems, which create financial, time and effort demands on the police be-
cause they must either purchase a system (and train one of their own officers
to run it) or hire a geographic profiler. For example, if a police agency in
North America decides to purchase a system, a senior officer who meets a
number of criteria (e.g., at least 3 years experience investigating interper-
sonal crimes) must undergo a 2-year understudy training program (Rossmo,
2000), after which only he or she is able to conduct geographic profiles for
the agency.8 Such implementation takes time, is costly, and leaves the
agency in a position of depending on a particular officer. In contrast, spatial
distribution strategies may be taught and later implemented within a very
short time frame, as demonstrated by Snook et al.’s (2004) finding that
performance improved after teaching a single sentence rule. This contrast is
particularly important for police agencies that may require geographic
profiles (e.g., due to high rates of serial crime in their jurisdiction) but do not
have the resources to implement geographic profiling systems (e.g., due to
limited time, money, technological capabilities, etc.). While geographic
profiling services are available free of charge to law enforcement agencies in
Canada, the US, and the UK, this is not the case in other countries. In these
cases, low-cost, easy-to-implement geographic profiling strategies may be
extremely useful, particularly if empirical evidence suggests that the simpler
strategy can perform as accurately as a complex alternative.

4.3. Probability Distance Strategies go Beyond ‘‘X Marks-the-Spot’’!

Another point that must be considered is whether spatial distribution
strategies and probability distance strategies actually do the same thing.
Recall that spatial distribution strategies provide only one estimate of the
offender’s likely residential location. Although probability distance strate-
gies can also provide a single estimate of where the offender is most likely to
live (i.e., the point of highest probability), they also provide a prioritized
search strategy. Some geographic profilers argue that an ‘X Marks-the-Spot’
approach is a serious weakness of spatial distribution strategies and that it
may be inappropriate to compare the probability distance strategies with
spatial distribution strategies (Rossmo, 2000). Yet, while there is likely to be
some truth in this argument, there is currently no evidence available to

8One of the Journal’s anonymous referees drew our attention to the fact that a 2-week training

course is now available to train police personnel on geographic profiling systems for property

crimes (see http://www.geographicprofiling.com/index.html).
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assess whether providing the police with a prioritized search area (or
strategy) is useful.

This does not imply that geographic profiling systems are inaccurate,
but rather questions the extent to which a prioritized search area will pro-
vide better accuracy than simply searching outward from the point of
highest likelihood in a symmetrical manner. As other researchers have
recognized, an answer to this question is likely to depend on the location of
the offences. Indeed, Rossmo (2000) argues that police agencies must not
only consider the hit rate of a method when considering the effectiveness of a
geographic profile but also the size of the search area to determine what is
feasible (e.g., it might be difficult for police in New York to effectively search
a 2 km area that includes downtown Manhattan).

4.4. The Qualitative Component of Geographic Profiling

It has also been argued that geographic profiling involves a qualitative
component that is based on the reconstruction and interpretation of the
offender’s mental map (Homant and Kennedy, 1998). Specifically, factors
such as the hunting style of the offender, the density of potential victims, the
location of major roads and highways, physical and psychological bound-
aries, and zoning and land use, are all taken into account to help refine a
geographic profile once the quantitative prediction has been made (Rossmo,
2000). This approach is usually applied to geographic profiles derived from
probability distance strategies, but there is no reason why this qualitative
component could not be used to enhance profiles derived from other
strategies. Indeed, a qualitative assessment of a quantitative profile is likely
to be crucial regardless of the strategy that is used to make a prediction (e.g.,
at the very least a geographic profiler may want to make sure a prediction
did not fall in an area that was completely uninhabitable, such as a lake).
However, as noted by Levine and Associates (2000), it remains an open
empirical question as to whether qualitative assessments can enhance the
accuracy of quantitative geographic profiles.

4.5. Human vs. Actuarial Decision-Making

Previous research by Snook et al. (2002, 2004) has shown that people
use simple strategies to make accurate geographic predictions. Some of
these cognitive heuristics, such as the equidistant heuristic (choose a
location that is equidistant from all crimes), tend to resemble some of the
simpler strategies used in this research, such as the center of minimum
distance (choose a location where the sum of the distance between that
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location and all crimes sites is at a minimum). Consequently, future
research should aim to explore whether particular geographic profiling
strategies match the sorts of strategies that people use to predict where
serial offenders reside. Assuming there is a match, the fact that simple
strategies were shown to be as accurate as more complex strategies in this
study further supports the idea that the simple heuristics people use can be
as accurate as the complex strategies used in decision support systems.

5. CONCLUSION

This study showed that simple geographic profiling strategies are as
accurate as complex strategies when predicting the likely home location of a
serial offender based on information about where the offender committed
their crimes. This was found to be the case regardless of the complexity of
the geographic profiling task. Consequently, a geographic profiler may be
able to maintain a comparable level of accuracy while minimizing their time
and effort by using a relatively low-cost easy-to-implement geographic
profiling strategy.

APPENDIX A. SPATIAL DISTRIBUTION STRATEGIES

Centroid

The centroid is a point whose coordinates are the mean of the
x-co-ordinates and y-co-ordinates. The equation for deriving these coordi-
nates is given in Table I, where xi and yi are the co-ordinates of crime
locations and n is the total number of crime locations. Computing �x requires
initially setting the variable SUM to zero, and then, for each n, adding the
value of n to SUM and storing the new total, which on conclusion of the
additions is divided by n. We count the retrieve-add-store operation as one
step, which means that there will be always at most 2n steps (one for the
setting of i to each value between 1 and n, and another one for each retrieve-
add-store operation, plus one for the final output operation). The same
program can be used to compute �y leading to: TðnÞ � 2ð2nþ 1Þ.

Median

If x is a real number then bxc is the greatest integer less than or equal to x,
and dxe is the least integer greater than or equal to x (see for instance Cormen
et al. (2001), page 51). The equation in Table I shows how the median is
defined as the middle value of the distribution of the x-co-ordinates and
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y-co-ordinates (David, 1970). A program for computing �x is achieved by
initially sorting the coordinates and then, if n is even, setting �x to the value
xn
2
þxn

2
þ1

2 , while, if it is odd, setting �x to xnþ1
2
. Letting TsortðnÞ be the time to sort n

numbers, the total cost of this method is: TðnÞ � 2ðTsortðnÞ þ 4Þ.
The expression for n even can be computed with two divisions (the one

to compute n=2 and the final division by two) and two sums (the sum of one
to n=2 and that of the two co-ordinates). We used a standard insertion sort
algorithm to order the n numbers, whereby, given a list of n numbers one
builds the final sorted list by repeatedly finding the smallest element in the
given list and inserting it in the next available position of the output se-
quence (Cormen et al., 1990; Knuth, 1973). This algorithm, although of
quadratic complexity in the worst case (it is fairly easy to implement
insertion sort in time 2n2 þ 3nþ 1), performs well for the relatively low n
explored in this study, and resulted in a step total of: TðnÞ � 4n2 þ 6nþ 10.

Geometric Mean

The geometric mean is the anti-log of the mean of the logarithms. The
equation for deriving of a set of n numbers is defined as the nth root of the
product of the n numbers, but for our purposes the values of �x and �y are
computed through the formulae contained in Table I. A program for com-
puting �x involves setting the variable SUM to one, computing the natural
logarithm of xi, adding the result of the previous instruction to SUM, and
storing the result in SUM. The value of SUM is then divided by n and the
value of the anti-log of SUM (i.e., eSUM) is computed. Although this program
may look similar to the one used for the centroid, there are several important
differences. Even if we charge one unit of time for each multiplication, the
total cost of computing �x is n � (LOG + 2) + EXP + 1, where LOG is the
cost of computing the natural logarithm of a given number (assumed to be
the same for all xi’s), and EXP is the cost of computing the exponential
function. This analysis leads to TðnÞ � 2ðn� ðLOGþ 2Þ þ EXPþ 1Þ steps
to compute �x and �y.

Harmonic Mean

The harmonicmean discounts extreme values of a distribution.As shown
in Table I, in each dimension, it takes the inverse of the mean of the inverse of
each coordinate. Computing �x initially requires setting the variable SUM to
zero. Then, for each n; 1=xi is computed and added to the current value of
SUM, and is then stored in SUM. If the SUM is not zero then the output of the
value of n is divided by SUM. Otherwise, the result is left undefined.

Since we charge one unit of time for each arithmetic operation, the total
cost of computing �x; 3nþ 1 is bounded as follows: TðnÞ � 2ð3nþ 1Þ.
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Center of Minimum Distance

The center of minimum distance of a given set of points in two-
dimensional Euclidean space is the location at which the sum of the dis-
tances to all other points is the smallest. The equation for deriving these
coordinates is given in Table I, where dist is the Euclidean distance between
the point ðxi; yiÞ and the chosen point ð�x; �yÞ (Kuhn and Kuenne, 1962).
Obtaining a precise value for the complexity of this strategy was more dif-
ficult than other spatial distribution strategies. The problem of minimizing
W is not a trivial task, and it has a long history (see Drezner and Hamacher,
2002; Katz, 1974; Wesolowsky, 1993). The function, W, is convex so it has a
unique minimum in the convex hull of the set of given points. As reported in
Kuhn and Kuenne (1962), Weiszfeld (1936) developed an iterative algorithm
that approximates the estimated home location through the iterative
method:

ðxðkþ1Þ; yðkþ1ÞÞ ¼
Pn

i¼1 xi=distððxi; yiÞ; ðxðkÞ; yðkÞÞÞ
Pn

i¼1 1=distððxi; yiÞ; ðxðkÞ; yðkÞÞÞ
;

Pn
i¼1 yi=distððxi; yiÞ; ðxðkÞ; yðkÞÞÞ

Pn
i¼1 1=distððxi; yiÞ; ðxðkÞ; yðkÞÞÞ

� �

where the initial value ðx0; y0Þ may be taken as the centroid of the given set
of points. Kuhn (1973) proved that the method actually converges to the
center of minimum distance, but no precise estimate is known on how long it
takes for the method to converge, as a function of the number of input
points. The algorithm, which given ðxðkÞ; yðkÞÞ, computes ðxðkþ1Þ; yðkþ1ÞÞ in-
volves computing the inverse of the distances between ðxðkÞ; yðkÞÞ and the n
given points. Then, the sum of the n numbers computed in the previous step
is computed, which is followed by the computation of xðkþ1Þ and yðkþ1Þ.

It should be evident that each of these four steps runs in a number of
time steps proportional to n. We employed this sequence of instructions in a
program that computes an approximate value for the center of minimum
distance (i.e., the value obtained by running Weiszfeld algorithm up to
k ¼ 14). The computational complexity of the resulting method can be
bounded as follows: TðnÞ � 14ðð9þROOT2Þnþ 2Þ.

PROBABILITY DISTANCE STRATEGIES

Negative Exponential

The negative exponential strategy assumes that the likelihood of an
offender living at a particular location is highest near an offender’s crime site
location and decreases with increasing distance. As the formulae in Table I
shows, the decline is at an exponential rate, dropping quickly near an
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offender’s crime location, as it approaches zero likelihood. This prediction is
represented by one of a family of distance decay functions, where a is a
coefficient (default ¼ 10) used to provide an indication of the maximum
likelihood of finding a home, and b is an exponent (default ¼ 1) that
determines the slope of the function. The cost of evaluating f is two plus the
cost of evaluating the exponential function (EXP): Tf ¼ 2þ EXP.

Normal

The normal strategy assumes the peak likelihood of an offender living
at a particular location is at some optimal distance from the offender’s crime
site locations. The function rises to that distance and then declines. The rate
of increase prior to the optimal distance, and the rate of decrease from that
distance, is symmetrical in both directions. The mathematical form of this
strategy is found in Table I, where the mean distance (l) and the standard
deviation (r) of distances are fixed positive parameters, and a is a coefficient.
A value of 1 is used as the default for l, r, and a.

For this strategy, where l and r are two positive real numbers, there are
two steps for computing x�l

r , one more step to square the result, and another
one to divide it by –2, equaling four steps. The result is multiplied by a, and
divided by something that costs 2 + SQRT2. Therefore, the total cost is:
Tf ¼ 7þ EXPþ SQRT2.

Lognormal

The lognormal strategy is similar to the normal strategy except it is
either positively or negatively skewed. This strategy predicts the offender
should live near his crime sites and that there is a gradual decline in likeli-
hood of locating the offender with increasing distance from his crime sites.
The total cost of the lognormal strategy is:

Tf ¼ 10þ EXPþ SQRT2 þ LOG:

Truncated Negative Exponential

The truncated negative exponential strategy is a spline function con-
sisting of the linear strategy and the negative exponential strategy. For points
near the crime site locations, a positive version of the linear strategy (see
Section 2.3.2) is used to represent the notion that offenders have a low
likelihood of living directly on a crime location but an increased likelihood of
living in the surrounding areas. At a predefined point of highest likelihood,
the offender’s ‘‘safe distance’’ away from the crime locations, the linear

Snook et al.24



strategy is replaced by the negative exponential strategy to represent a
declining likelihood of locating the offender’s home with increasing distance.
The total cost of calculating the truncated negative exponential is the addi-
tion of the complexities associated with the two strategies.
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