Physics 4200 — General Relativity

FINAL EXAMINATION

Due: 20 April 1999 at 10:00 a.m.

Answer all three questions. The marks for each question are indicated in
the right margin.

You may make use of class notes, other reference materials, and whatever
computational tools you find the need for.

The questions differ considerably in the amount of work necessary for
complete answers.




1. Find the metric tensor, the Christoffel symbols of both kinds, the covariant
Riemann tensor, and the Gaussian curvature for the two—dimensional surface 10
{v cosu, v sinu, u}, where u and v are independent parameters. This surface
is, of course, a right helicoid. Show that the curves {t cosuy, t sinug, up} for
up = constant and ¢ an independent parameter are geodesics of the surface.
Determine whether the curves {vp cost, vy sint, t} for vy = constant and t an
independent parameter are also geodesics of the surface.

2. For the Schwarzschild metric, compute the Gaussian curvature of the subman-

ifold with constant ¢ and with ¥ = 7/2. Interpret the results of your calcula- 8
tions.

3. (a) In the Schwarzschild metric, consider the null geodesic with r = gTsch =
constant. Calculate the coordinate time required to make one complete 2
orbit, i.e. the time to go from ¢ = 0 to ¢ = 2m. What is the speed of light
for this null geodesic?

(b) Show that a manifold admits of a single system of Cartesian coordinates if
and only if Ry,,, = 0 everywhere.[Hint: think about the geodesic deviation] 3



Physics 4200 - Nonlinear Dynamics

Final Exam

Due date: Tuesday, April 20, 1999, 10:00 a.m.

Answer both questions. Both questions have equal value. You may make
ass notes and whatever computational tools you find the need for.
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1. In class we demonstrated a bifurcation that occurs when you oscillate

your index fingers back and forth. Bifurcations like this are common in
physiology, and tell us something about how our brains function. This
question relates to this bifurcation.
You can oscillate your index fingers two ways: “in-phase”, or “out-of-
phase”. We will define in and out of phase in terms of the motions of
the relevant muscles, so “in-phase” refers to the case of Fig. 1, in which
your left index finger moves to the right when your right index finger
moves to the left, and vice versa. In this case the same muscles in your
two hands are doing the same things at the same times. Out-of-phase
refers to the case of Fig. 2, in which both fingers move to the left at the
same time. We define ¢ as the phase difference between the motions of
the two fingers (actually of the muscles). Thus ¢ = 0 for the in-phase
case and ¢ = = for the out-of-phase case.
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Fig. 1: In-phase oscillation (¢ = 0).
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Fig. 2: Out-of-phase oscillation (¢ = ).

(a) Perform the following experiments.

i. Oscillate your index fingers (or other left-right body part pair
of your choice) in phase. Start slowly, and gradually increase
the frequency of oscillation as high as practical. Then slowly
decrease the frequency again down to zero.

ii. Do the same thing, but this time start with the oscillation out
of phase. Start slowly, and gradually increase the frequency
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of oscillation as high as practical. Then slowly decrease the
frequency again down to zero.

When doing these experiments, don’t try to force your fingers to
behave in any particular way — keep them oscillating, but other
than that let them do what they want.
Describe, with words and pictures, the results of your experiments.
Include a rough, qualitative sketch of ¢ as a function of oscilla-
tion frequency for both cases, showing the paths followed in your
experiments.
(b) This system has been modeled by the following od.e.:
¢ =—sing —~ fsin29. (1)

Note that this model is symmetric with respect to left-right re-
flections, i.e., if § - —¢ nothing changes. Alsoif ¢ =& ¢+ 27
nothing changes, which is essentially a symmetry with respect to
time and reflects the periodicity of the motions.

Find all of the fixed points of Eq. 1 for0 < f < L. Determine
their stability. Find all bifurcations in this parameter range, and
say what kind they are. Draw a bifurcation diagram illustrating
the stability of all solutions and the flows of the system in its phase

space.

(c) On the basis of the results of part (b) above, describe with words
and pictures what this model predicts will bappen if you start
with ¢ = 0 and B large, decrease f to zero, then increase it again.
Describe also what happens if you start with ¢ = = and 3 large,
decrease f to zero, then increase it again.

(d) Calculate and plot the growth rate o of small perturbations about
the statesat p =0and g =nfor0 < S < L. Define ¢ = 8 - 8.,
where 8. is the value of 8 at the bifurcation you (hopefully) found
in part (b). A characteristic time scale over which variations in ¢
can occur is given by 7 = |1/0]. Show how this time scale behaves
as a function of e for the same two states. Explain what this tells
you about the dynamics of the system near the bifurcation.

(¢) What does S correspond to physically? Discuss the correspon-
dence between the behaviour of this model and the results of your
experiments.




2. In our discussion of the amplitude equation description of patterns in
class, we mostly considered straight-roll patterns. One can also look at
patterns which result from a superposition of n roll patterns at different
orientations. In this case, each roll pattern has an amplitude A;, and
the n amplitude equations are coupled, since the different sets of rolls
can interact with each other. In general, to third order, we get

0A;

—a—t- =eA; - EgijAgA,', (2)
J=1

where for simplicity we have assumed that the A; are real, and that
there is no spatial variation of the amplitudes. Here g;; is a nonlinear
coupling constant which depends on the angle between the pair of roll
patterns i and j.

Let us consider a square pattern. Then n = 2, and the two roll patterns

are at right angles. Let
m=gn=1

and

m=g=4g
Solutions to Eq. 2 with A; = A; = A, correspond to square patterns,
while solutions with A; = A, and A; = 0 (or vice versa) correspond to

straight rolls.

(a) Using Eq. 2, write down the equations for A; and A; explicitly.
Then find the steady state values of A, and A, for the roll and .
. . }
square states, respectively. Explain what happens at ¢ = 0.

(b) Now consider the stability of the square pattern using the usual g
perturbation analysis. Let A, = A, +6; and Az = A, +6;, and as-
sume that the small perturbations grow (or decay) exponentially,
i.e., 0;,0, ~ e°. Substitute these expressions for the amplitudes
into your differential equations for A, and A, and linearize. Solve
the resulting eigenvalue problem to determine the growth rates o
and the possible modes of perturbation. Thus show that squares
are stable with respect to rolls for -1 < g < 1, and unstable for

g > 1. What happens if g < -1?




