Physics 3821 Final Examination 14 December 2005

Work four (4) questions out of the following six (6) questions. All questions have equal value.

Time allowed: 120 minutes

- 1. (a) Use an appropriate δ -sequence to show that $\delta'(x)$ exists as a well-behaved distribution.
 - (b) An ideal electric dipole located at the origin has dipole moment $\mathbf{p} = p \, \hat{\mathbf{1}}_y$. Express the charge density in terms of δ functions. Given that the electric potential is given by

$$U\left(\mathbf{x}\right) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho\left(\mathbf{x}'\right)}{\left|\mathbf{x} - \mathbf{x}'\right|} d^3x',$$

find the electric potential due to the dipole.

- 2. Find the potential $U(r, \vartheta, \varphi)$ inside a conducting sphere of radius a with potential $U(r = a, \vartheta, \varphi) = V$ on the halfspace $0 \le \varphi < \pi$ and $U(r = a, \vartheta, \varphi) = -V$ on the halfspace $\pi \le \varphi < 2\pi$.
- 3. An initially stationary string of length L is hit by a hammer blow at position x=L/3. Determine the subsequent motion of the string. The speed of waves on the string is $v=\sqrt{T/\mu}$ where T is the tension and μ is the mass per unit length of the string.
- 4. At t=0 a small amount of solute, say m moles, is introduced at the point x=a into an infinitely long cylindrical pipe of cross sectional area A containing otherwise pure water. Determine the concentration of solute in the pipe at time t as a function of x; that is, determine C(x, t) given that C satisfies the diffusion equation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

where D, the diffusion coefficient, can be taken to be constant. times t > 0.

5. A circular membrane or drumhead of radius a is struck, and waves then propagate around and across it with speed v. The displacement of the membrane is ξ (r, φ, t) , from its equilibrium figure, where ξ satisfies the two-dimensional wave equation

$$\boldsymbol{\nabla}^2 \boldsymbol{\xi} - \frac{1}{v^2} \frac{\partial^2 \boldsymbol{\xi}}{\partial t^2} = 0 \, . \label{eq:delta_delta_to_point}$$

with boundary condition ξ $(r=a, \varphi, t)=0$. Separate variables, and find the eigenfunctions. Determine the first three allowable frequencies ω in terms of the drum parameters v and a. It is convenient to introduce the wave number $k^2 = \omega^2/v^2$ as usual.

6. (a) Use the generating function

$$\exp\left[\frac{z}{2}\left(t - \frac{1}{t}\right)\right] = \sum_{m = -\infty}^{\infty} t^m J_m(z)$$

to find an integral representation for Bessel functions of the first kind.

(b) Use the generating function

$$G\left(x,\,\mu\right) \equiv \frac{1}{\sqrt{1-2x\mu+\mu^{2}}}$$

for the Legendre polynomials P_l , and the fact that the Legendre polynomials are orthogonal for different values of l, to show that

$$\int_{-1}^{1} P_{l}(\mu) P_{l}(\mu) d\mu = \frac{2}{2l+1}.$$

(c) Show that the operation of confluence $(z \to z/a, a \to \infty)$ carries the hypergeometric equation into the confluent hypergeometric equation, and carries the hypergeometric function ${}_2F_1(a,b;c;z)$ into the confluent hypergeometric function $M(b;c;z) \equiv {}_1F_1(b;c;z)$. Write e^z as a confluent hypergeometric function and write $(1-z)^{-1}$ as a hypergeometric function.