Dr. Kurt Gamperl

Teaching - Courses

I teach Aquaculture Principles and Practices (OCSC 3000) in the fall semester, and Functional Biology of Fishes (OCSC 4601) in the winter semester.
I normally also participate in the teaching of Finfish Aquaculture (AQUA 6100).


The articles listed below are not linked with PDFs due to restrictions by the publisher. If you cannot access the PDF via Google Scholar, ResearchGate, or by some other means, please contact me and I will happily send you a copy.

Journal Articles:

122. J.M. Schuster, A.K. Gamperl, P. Gagnon and A.E. Bates (Submitted). Distinct realized physiologies in green sea urchin (Strongylocentrotus droebachiensis) populations from barrens and kelp habitats. FACETS.

121. E.H. Ignatz, F.S. Zanuzzo, R.M. Sandrelli, K.A. Clow, M.L. Rise and A.K. Gamperl. (In Press). Phenotypic stress response does not influence the upper thermal tolerance of male Atlantic salmon (Salmo salar). J. Therm Biol.

120. L. Gerber, K.A. Clow, W.R. Driedzic and A.K. Gamperl (2021). The relationship between myoglobin, aerobic capacity, nitric oxide synthase activity and mitochondrial function in fish hearts. Antioxidants 10 (7): 1072. (doi: 10.3390/antiox10071072)

119. A.K. Gamperl, A.L. Thomas and D.A. Syme. (In Press) Can temperature-dependent changes in myocardial contractility explain why fish only increase heart rate when exposed to acute warming? J. Exp. Biol.

118. F.S. Zanuzzo, E.F.C. Peroni , R.M. Sandrelli , S. St-Hilaire,, N.O’Brien and A.K. Gamperl (2021). Temperature has considerable effects on plasma and muscle antibiotic concentrations in Atlantic salmon (Salmo salar). Aquaculture.

117. A.K. Gamperl, Z.A. Zrini and R.M. Sandrelli (2021). Atlantic Salmon (Salmo salar) cage-site distribution, behaviour and physiology during a Newfoundland heat wave. Front. Physiol. (doi: 10.3389/fphys.2021.719594)

116. A.K. Gamperl and D.A. Syme (2021). Temperature effects on the contractile performance and efficiency of oxidative muscle from a eurythermal versus a stenothermal salmonid. J. Exp. Biol. 224(15). (doi: 10.1242/jeb.242487)

115. L. Gerber, K. A. Clow, F. C. Mark and A. K. Gamperl (2021). Improved mitochondrial function in salmon (Salmo salar) following high temperature acclimation suggests that there are cracks in the proverbial ‘ceiling.’ Sci. Rep. 10: 21636. (doi: 41598-020-78519-4)

114. L. Gerber, K.A. Clow and A. K. Gamperl (2021). Acclimation to warm temperatures has important implications for mitochondrial function in Atlantic salmon (Salmo salar). J. Exp. Biol. 224: (doi: 10.1242/jeb.236257)

113. A. Beemelmanns, F.S. Zanuzzo, R.M. Sandrelli, M.L. Rise and A.K. Gamperl (2021). The Atlantic salmon’s stress- and immune-related transcriptional responses to moderate hypoxia, an incremental temperature increase, and these challenges combined. G3: Ge. Gen. Genet.(doi: 10.1093/g3journal/jkab102)

112. A. Frenette, M. Booman, K. Fujiki, S. Kales, C. Ryan, A.K. Gamperl and B. Dixon (2021). Antigen presentation genes in gadoid species (haddock: Melanogrammus aeglefinus and Atlantic cod: Gadus morhua) raise questions about cross-presentation pathways and lycosylated beta-2-microglobulin. Mol. Immunol. 129: 21-31.(doi: 10.1016/j.molimm.2020.11.011)

111. Z.A. Zrini, R. M. Sandrelli and A.K. Gamperl (2021). Does hydrostatic pressure influence the heart rate of lumpfish (Cyclopterus lumpus) and the heart rate response to environmental challenges. Cons. Physiol. 9(1): (doi: org/10.1093/conphys/coab058)

110. R.H.J. Leeuwis, F.S. Zanuzzo, E.F.C. Peroni and A.K. Gamperl (2021). Sablefish (Anoplopoma fimbria) research suggests that limited capacity to increase heart function may leave hypoxic fish susceptible to heat waves. Proc. Roy. Soc. B. 288: 20202340. (doi: org/10.1098/rspb.2020.2340)

109. A. Beemelmanns; F.S. Zanuzzo; X. Xue; R.M. Sandrelli. M.L. Rise and A.K. Gamperl (2021). The Transcriptomic Responses of Atlantic Salmon (Salmo salar) to High Temperature Stress Alone, and in Combination with Moderate Hypoxia. BMC Genomics. 22: 261. (doi: org/10.1186/s12864-021-07464-x)

108. Z.A. Zrini* and A. Kurt Gamperl (2021). Validating heart rate and acceleration data storage tags for use in Atlantic salmon (Salmo salar). Anim. Biotelem. 9:12. (doi: org/10.1186/s40317-021-00235-1.)

107. J.C. Roberts, C. Carnevale, A. K. Gamperl and D.A. Syme. (2021). Effects of hypoxic acclimation on contractile properties of the spongy and compact ventricular myocardium of steelhead trout (Oncorhynchus mykiss). J. Comp. Physiol. B. 191: 99-111. (doi: 10.1007/s00360-020-01318-w

106. C. Carenvale, D.A. Syme and A.K. Gamperl. (2021). Effects of hypoxic acclimation, muscle strain and contraction frequency on nitric oxide-mediated myocardial performance in steelhead trout (Oncorhynchus mykiss). Amer. J. Physiol. 320: R588–R610. (doi: org/10.1152/ajpregu.00014.2020)

105. F.S. Zanuzzo, A. Beemelmanns, J.R. Hall, M. L. Rise and A. K. Gamperl. (2020). The innate immune response of Atlantic salmon (Salmo salar) is not negatively affected by high temperature and moderate hypoxia. Frontiers in Immunol. 11: Art. #1009. (doi: 10.3389/fimmu.2020.01009)

104. A.K. Gamperl (2020). Experimentally addressing and evaluating the impact of human activities on marine organisms. Can. J. Zool. 98-4: Pages: ‏III-IV. (doi.org/10.1139/cjz-2020-0044)

103. A. Beemelmanns, L. Ribas, D. Anastasiadi, J. Moraleda-Prados, F. S. Zanuzzo, M.L. Rise. and A.K Gamperl (2020). DNA methylation dynamics in Atlantic salmon (Salmo salar) challenged with high temperature and moderate hypoxia. Front. Mar. Sci. 7: Art. #604878. (doi: 10.3389/fmars.2020.604878)

102. I. Vasquez, T. Cao, A. Hossain, K. Valderrama, H. Gananagobnal, M. Dang, R.H.J.,Leeuwis, M. Ness, B. Campbell, R.L. Gendron, K. Kao, J. Westcott, A.K. Gamperl and J. Santander (2020). Aeromonas salmonicida infection kinetics and protective immune response to vaccination in sablefish (Anopoploma fimbria). Fish and Shell. Immunol. 104: 557-566. (doi: 10.1016/j.fsi.2020.06.005)

101. A.K. Gamperl, F. S. Zanuzzo, O.O. Ajiboye, R. Sandrelli, A. Beemelmanns, and E. Peroni (2020). The impacts of elevated temperature and moderate hypoxia on the production characteristics, cardiac morphology and haematology of Atlantic salmon (Salmo salar). Aquaculture. 519. (doi: 10.1016/j.aquaculture.2019.734874)

100. C. Carnevale, J.C. Roberts, D.A. Syme and A.K. Gamperl (2020). Hypoxic acclimation negatively impacts the contractility of steelhead trout (Oncorhynchus mykiss) spongy myocardium. Amer. J. Physiol. 318: R214–R226. (doi: 10.1152/ajpregu.00107.2019)

99. L. Gerber, K.A. Clow, T. Katan, M. Eman, R.J.H. Leeuwis, C.C. Parrish and A.K. Gamperl (2019). Cardiac mitochondrial function, nitric oxide sensitivity and lipid composition following hypoxia acclimation in sablefish. J. Exp. Biol. 222. (doi: 10.1242/jeb.208074)

98. T. Norin, P. Canada, J.A. Bailey and A.K. Gamperl (2019). Thermal biology and swimming performance of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Peer J. Article # e7784. (doi: 10.7717/peerj.7784)

97. K.G.L. Ma, A.K. Gamperl, D.A. Syme, L.P. Weber and K.J. Rodnick (2019). Echocardiography and electrocardiography reveal differences in cardiac hemodynamics, electrical characteristics, and thermal sensitivity between northern pike, rainbow trout, and white sturgeon. J. Exp. Zool. 331A: 427-442. (doi: 10.1002/jez.2310)

96. T.S. Harter, F.S. Zanuzzo, C.T. Supuran, A.K. Gamperl and C. J. Brauner (2019). Functional support for a novel mechanism that enhances tissue oxygen extraction in a teleost fish. Proc. Roy. Soc. Lond. B. (doi: 10.1098/rspb.2019.0339)

95. F. S. Zanuzzo, J. A. Bailey and A. K. Gamperl (2019). The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) T families under normoxia and mild hypoxia. Comp. Biochem. Physiol. (Special Aquaculture Issue). (doi: 10.17632/fs8hv3hbf6.1)

94. R. J. H. Leeuwis, G. W. Nash, R. M. Sandrelli, F. S. Zanuzzo and A. K. Gamperl (2019). The environmental tolerances and metabolic physiology of sablefish (Anoplopoma fimbria). Comp. Biochem. Physiol. (Special Aquaculture Issue). 231:140-148. (doi: 10.1016/j.cbpa.2019.02.004)

93. T. Norin and A.K. Gamperl (2018). Metabolic scaling of individuals vs. populations: evidence for variation in scaling exponents at different hierarchical levels. Funct. Ecol. 32: 379-388. (doi:10.1111/1365-2435.12996)

92. F. Jutfelt, T. Norin, R. Ern, A.K. Gamperl et al. (2018). Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp.Biol. 221: 1-4.(doi:10.1242/jeb.169615)

91. G.S. Rocha, T. Katan, C.C. Parrish and A.K. Gamperl (2017). Effects of wild zooplankton versus enriched rotifers and Artemia on the biochemical composition of Atlantic cod (Gadus morhua) Larvae. Aquaculture. 479: 100-113. (doi:10.1016/j.aquaculture.2017.05.025)

90. R. Moytka, T. Norin, L.H. Petersen and A.K. Gamperl (2017). Long-term hypoxia exposure alters the cardiorespiratory physiology of steelhead trout (Oncorhynchus mykiss), but does not affect their upper thermal tolerance. J. Therm. Biol. 68: 149-161. (doi:10.1016/j.jtherbio.2016.03.007)

89. E. Rasmus, T. Norin, A.K. Gamperl and A. Esbaugh (2016). Oxygen dependence of upper thermal limits in fishes. J. Exp. Biol. 219: 3376-3383. (doi:10.1242/jeb.143495)

88. M.L. Rise, J.R. Hall, G.W. Nash, X. Xi, M. Booman T. Katan and A.K. Gamperl (2016). Transcriptome profiling reveals that feeding live zooplankton to larval cod (Gadus morhua) influences suites of genes involved in oxidation-reduction, mitosis and selenium homeostasis. BMC Genomics. 16: 1016. (doi:10.1186/s12864-015-2120-1)

87. T. Katan, G.W. Nash, M.L. Rise, J.A. Hall, J.M.O. Fernandes, D. Boyce, C.A. Johnsen and A.K. Gamperl (2016). A little goes a long way: Improved growth in Atlantic cod (Gadus morhua) fed small amounts of wild zooplankton. Aquaculture. 451: 271-282. (doi:10.1016/j.aquaculture.2015.09.014)

86. M.D. Powell and A.K. Gamperl (2016). Effects of Loma morhua (Microsporidia) infection on the cardiorespiratory performance of Atlantic cod. J. Fish. Dis. 39: 189-204.  (doi:10.1111/jfd.12352)

85. A. Alzaid, T.S. Hori, M.L.Rise, J.R. Hall and A.K. Gamperl (2015). Cold-induced changes in stress hormone and steroidogenic transcript levels in cunner (Tautogolabrus adspersus), a fish capable of metabolic depression. Gen. Comp. Endocrinol. 224: 126-135. (doi:10.1016/j.ygcen.2015.07.007)

84. F. S. Zanuzzo, E.C. Urbinati, G.W Nash and A.K. Gamperl (2015). Trout (Oncorhynchus mykiss) metabolic rate is affected by dietary Aloe Vera inclusion, but not by mounting an immune response against formalin-killed Aeromonas salmonicida. J. Fish Biol. 87: 43-53. (doi:10.1111/jfb.12690)

83. I.A.S.F. Costa, T.W. Hein, C.J. Secombes and A. K. Gamperl (2015). Recombinant interleukin-1ß induced vasodilation of steelhead trout (Oncorhynchus mykiss) coronary microvessels: Effect of temperature and role(s) of the endothelium, nitric oxide and prostaglandins. J. Exp. Biol. 218: 2373-2381. (doi:10.1242/jeb.119255)

82. M.L. Rise, G.W. Nash, J.R. Hall, M.Booman, T.S. Hori, E.A. Trippel and A.K. Gamperl (2015). Variation in embryonic mortality and maternal transcript expression among Atlantic cod (Gadus morhua) broodstock: a functional genomics study. Mar. Genom. 18A: 3-20. (doi:10.1016/j.margen.2014.05.004)

81. S.M. Inkpen, T.S. Hori, A. K.Gamperl, G.W. Nash and M.L. Rise (2015). Characterization and expression analyses of five interferon regulatory factor transcripts (Irf4a, Irf4b, Irf7, Irf8, Irf10) in Atlantic cod (Gadus morhua). Fish Shellfish. Immun. 44: 365-381. (doi:10.1016/j.fsi.2015.02.032)

80. I.A.S.F. Costa, T.W. Hein and A.K. Gamperl (2015). Cold-acclimation leads to differential regulation of the steelhead trout (Oncorhynchus mykiss) coronary microcirculation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308: R743-R754. (doi:10.1152/ajpregu.00353.2014)

79. F. S. Zanuzzo, E.C. Urbinati, M.L. Rise, J.R. Hall, G.W Nash and A.K. Gamperl (2015). Bacterial - (Aeromonas salmonicida) induced immune gene expression in Aloe vera fed steelhead trout (Oncorhynchus mykiss). Aquaculture. 435: 1-9. (doi:10.1016/j.aquaculture.2014.09.010)

78. N.I. Kelly, A. Alzaid, G.W. Nash and A.K. Gamperl (2014). Ontogenetic effects on thermal tolerance and metabolic depression in cunner (Tautogolabrus adspersus). PLoS One. 9(12): e114765. (doi:10.1371/journal.pone.0114765)

77. A. Kolhatkar, C E. Robertson, M.E. Thistle, A.K. Gamperl and S. Currie (2014). Coordination of chemical (trimethylamine oxide, TMAO) and molecular (HSP70) chaperone responses to heat stress in elasmobranch red blood cells. Physiol. Biochem. Zool. 87: 652-62 (doi:10.1086/676831)

76. C.M. Penney, G.W. Nash and A. K. Gamperl (2014). Cardiorespiratory responses of seawater acclimated adult Arctic Charr (Salvelinus alpinus) and Atlantic Salmon (Salmo salar) to an acute temperature increase. Can. J. Fish. Aquat. Sci. 71: 1096-1105. (doi:10.1139/cjfas-2013-0569)

75. K.J. Rodnick, A. K. Gamperl, G.W. Nash and D.G. Syme (2014). Temperature and sex- dependent cardiac mitochondrial metabolism effects on Atlantic cod (Gadus morhua L.) cardiac mitochondria function. J. Thermal Biol. 44: 110-118. (doi:10.1016/j.jtherbio.2014.02.012)

74. D. T. R. Moreau, A. K. Gamperl, G. L. Fletcher and I. A. Fleming (2014). Delayed phenotypic expression of growth hormone transgenesis during early ontogeny in Atlantic salmon (Salmo salar). PloS One 9(4): e95053. (doi:10.1371/journal.pone.0095853)

73. T.S. Hori, A.K. Gamperl, G.W. Nash, M. Booman, A. Barat and M.L. Rise (2013). The impact of a moderate chronic temperature increase on spleen immune-relevant gene transcription depends on whether Atlantic cod are stimulated with bacterial vs. viral antigens. Genome. 56: 567-576. (doi:10.1139/gen-2013-0090)

72. D. A. Syme, A. K. Gamperl, G.W Nash and K. J. Rodnick (2013). Increased ventricular stiffness and decreased cardiac function in Atlantic cod (Gadus morhua) at high temperatures. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305: R864-R876. (doi:10.1152/ajpregu.00055.2013)

71. I.A.S.F Costa, W.R. Driedzic and A.K. Gamperl (2013). Metabolic and cardiac responses of cunner (Tautogolabrus adspersus) to seasonal and acute changes in temperature. Physiol. Biochem. Zool. 186: 233-244. (doi:10.1086/669538)

70. T.S. Hori, A. K. Gamperl, M. Booman, G.W. Nash and M.L. Rise (2012). A moderate increase in ambient temperature dysregulates the Atlantic cod (Gadus morhua) spleen transcriptome response to intra-peritoneal viral mimic injection. BMC Genomics.  13: 431. (doi:10.1186/1471-2164-13-431)

69. G.J. Lurman, L.H. Petersen and A.K. Gamperl (2012). In situ cardiac performance of Atlantic cod (Gadus morhua) at cold temperatures: long-term acclimation, acute thermal challenge and the role of adrenaline. J. Exp. Biol. 215: 4006-4014. (doi:10.1242/jeb.069849)

67. A.N. Keen and A.K. Gamperl (2012). Blood oxygenation and cardiorespiratory function in steelhead trout (Oncorhynchus mykiss) challenged with an acute temperature increase and zatebradine-induced bradycardia. J. Thermal Biol. 37: 201-210. (doi:10.1016/j.jtherbio.2012.01.002)

66. T. S. Hori, M. L. Rise, S.C. Johnson, L.O. B. Afonso and A.K. Gamperl (2012). The mRNA expression of cortisol axis related genes differs in Atlantic cod (Gadus morhua) categorized as high or low responders. Gen. Comp. Endocrinol. 175: 311-320. (doi:10.1016/j.ygcen.2011.11.031)

65. T S. Hori, A. K. Gamperl, C.E. Hastings, G.E. Vander Voort , J. A.B. Robinson, S.C. Johnson and L.O.B. Afonso (2012). Inter- individual and -family differences in the cortisol responsiveness of Atlantic cod (Gadus morhua). Aquaculture. 324: 165-173. (doi:10.1016/j.aquaculture.2011.10.040)

64. A.K. Gamperl, B. L. Swafford and K.J. Rodnick (2011). Elevated temperature, per se, does not limit the ability of rainbow trout to increase ventricular stroke volume. J. Thermal. Biol. 36: 7-14. (doi:10.1016/j.jtherbio.2010.08.007)

63. L.H. Petersen and A.K. Gamperl (2011). Cod (Gadus morhua) cardiorespiratory physiology and hypoxia tolerance following acclimation to low oxygen. Physiol. Biochem. Zool. 84: 18-31. (doi:10.1086/657286)

62. M. Booman, T. Borza, C.Y. Feng, T.S. Hori, B. Higgins, A. Culf, D. Léger, I.C. Chute, A. Belkaid, M. Rise, A.K. Gamperl, S. Hubert, J. Kimball, R. J. Ouellette, S.C. Johnson, S. Bowman and M.L. Rise (2011). Development and experimental validation of a 20K Atlantic Cod (Gadus morhua) oligonucleotide microarray based on a collection of over 150,000 ESTs. Mar. Biotechnol. 13: 733-750. (doi:10.1007/s10126-010-9335-6)

61. S. Bowman, S. Hubert, B. Higgins, C. Stone, J. Kimball, T. Borza, J.T. Bussey, G. Simpson, C. Kozera, B.A. Curtis, J.R. Hall, T.S. Hori, C.Y. Feng, M. Rise, M. Booman, A.K. Gamperl, E. Trippel, J. Symonds, S.C. Johnson and M.L. Rise (2011). An integrated approach to gene discovery and marker development in Atlantic cod (Gadus morhua). Mar. Biotechnol. 13: 242-255. (doi:10.1007/s10126-010-9285-z)

60. M.L. Rise, J.R. Hall, M. Rise, T.S. Hori, M. Browne, A.K. Gamperl, S. Hubert, J. Kimball, S. Bowman and S.C. Johnson (2010). Impact of asymptomatic nodavirus infection and intraperitoneal viral mimic injection on brain gene expression in Atlantic cod (Gadus morhua). Physiol. Genom. 42: 266-280. (doi:10.1152/physiolgenomics.00168.2009)

59. L.H. Petersen and A.K. Gamperl (2010). Effects of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod (Gadus morhua). J. Exp. Biol. 213: 808-819. (doi:10.1242/jeb.033746)

58. L.H. Petersen and A.K. Gamperl (2010). In situ cardiac function in Atlantic cod (Gadus morhua): effects of acute and chronic hypoxia. J. Exp. Biol. 213: 820-830. (doi: 10.1242/jeb.033753)

57. T.S. Hori, A.K. Gamperl, L.O.B. Afonso, S.C. Johnson, S. Hubert, J. Kimball, S. Bowman and M.L. Rise (2010). Heat shock-responsive genes identified and validated in Atlantic cod (Gadus morhua) liver, head kidney and skeletal muscle using genomic techniques. BMC Genomics. 11(2): 72. (doi:10.1186/1471-2164-11-72)

56. P.C. Mendonça and A. K. Gamperl (2010). The effects of acute changes in temperature and oxygen availability on cardiac performance in winter flounder (Pseudopleuronectes americanus). Comp. Biochem. Physiol. A. 155: 245-252. (doi:10.1016/j.cbpa.2009.11.006)

55. J.C. Pérez-Casanova, S.P. Lall and A.K. Gamperl (2010). Effects of dietary protein and lipid level, and water temperature, on the post-feeding oxygen consumption of two gadoids, the Atlantic cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus L.). Aquacul. Res. 10: 1-12. (doi:10.1111/j.1365-2109.2009.02318.x)

54. T.C. Borza, C. Stone, A. K. Gamperl and S. Bowman (2009). Atlantic cod (Gadus morhua) hemoglobin genes: multiplicity and polymorphism. BMC Genetics. 10: 51. (doi:10.1186/1471-2156-10-51)

53. J.C. Pérez-Casanova, S. P. Lall and A.K. Gamperl (2009). Effect of feed composition and temperature on food consumption, growth and gastric evacuation of juvenile Atlantic cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus L.). Aquaculture. 294: 228-235. (doi:10.1016/j.aquaculture.2009.06.005)

52. A.K. Gamperl, C.D. Busby, T.S.F. Hori, L.O.B. Afonso and J.R Hall (2009). Haemoglobin genotype has minimal influence on the physiological response of juvenile Atlantic cod (Gadus morhua) to environmental challenges. Physiol. Biochem. Zool. 82(5): 483-494. (doi:10.1086/603636)

51. C.Y. Feng, S.C. Johnson , T.S. Hori , M.Rise, J.R. Hall, A.K. Gamperl, S. Hubert, J. Kimball, S. Bowman and M.L. Rise (2009). Identification and analysis of differentially expressed genes in the immune tissues of Atlantic cod stimulated with formalin-killed, atypical Aeromonas salmonicida. Physiol. Genom. 37: 149-163. (doi:10.1152/physiolgenomics.90373.2008)

50. P.C. Mendonça and A.K. Gamperl (2009). Nervous and humoral control of cardiac performance in the winter flounder (Pleuronectes americanus). J. Exp. Biol. 212: 934-944.(doi:10.1242/jeb.027680) 

49. J.R. Hall, L.H. Petersen, C.S. Short, J. Stacey, A.K. Gamperl and W.R. Driedzic (2009) Expression levels of genes associated with oxygen utilization, glucose transport and glucose phosphorylation in hypoxia exposed Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. D. 4: 128-138. (doi:10.1016/j.cbd.2008.12.007)

48. C.P. Corkum and A.K. Gamperl (2009). Does the ability to metabolically downregulate alter the hypoxic tolerance of fishes? A comparative study using cunner (T. adspersus) and Greenland cod (G. ogac). J. Exp. Zoology A. 311: 231-239. (doi:10.1002/jez.520)

47. M.J. Gollock, Kris Hunter, D.A. Syme, M. Freeman, R.S. McKinley and A.K. Gamperl (2009). Potential methods for measuring the activity patterns and energy use of free-swimming Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 66: 1095-1106. (doi:10.1139/F09-062)

46. J.C. Pérez-Casanova, M.L. Rise, B. Dixon, L.O.B. Afonso, J.R. Hall, S.C Johnson and A.K. Gamperl (2008). The immune and stress responses of Atlantic cod to long-term increases in water temperature. Fish and Shell. Immunol. 24: 600-609. (doi:10.1016/j.fsi.2008.01.012)

45. D.A. Syme, M. Gollock, M. J., Freeman and A.K. Gamperl (2008). Power Isn’t Everything: Muscle function and energetic costs during steady swimming in Atlantic cod (Gadus morhua). Physiol. Biochem. Zoology. 81: 320-335. (doi:10.1086/528784)

44. S. S. Killen, J. A. Brown and A.K. Gamperl (2008). Lack of metabolic thermal compensation during the early life stages of ocean pout Zoarces americanus: A benthic, cold-water marine species. J. Fish Biology. 72: 763-772. (doi:10.1111/j.1095-8649.2007.01735.x)

43. S. S. Killen, A. K. Gamperl and J. A. Brown (2008). Ontogeny of predator-sensitive foraging and routine metabolism in larval shorthorn sculpin, Myoxocephalus scorpius. Mar. Biol. 152: 1249-1261. (doi:10.1007/s00227-007-0772-3)

42. J.C. Pérez-Casanova, L.O.B. Afonso, S. C. Johnson, S. Currie and A.K. Gamperl (2008). The stress and metabolic response of Atlantic cod (Gadus morhua) to an acute thermal challenge. J. Fish Biol. 72: 889-916. (doi:10.1111/j.1095-8649.2007.01763.x)

41. L. Guan, A.K. Gamperl and P.V.R. Snelgrove (2008). Ontogentic changes in the critical swimming speed of Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin) larvae and the role of temperature. J. Exp. Mar. Biol. Ecol. 360: 31-38. (doi:10.1016/j.jembe.2008.03.006)

40. M. L. Rise, J. Hall, M. Rise, T.S.F. Hori, A. K. Gamperl, J. Kimball, S. Hubert, S. Bowman and S. C. Johnson (2008). Functional genomic analysis of the response of Atlantic cod (Gadus morhua) spleen to the viral mimic polyriboinosinic polyribocytidylic acid (pIC). Dev. Comp.  Immunol. 32: 916-931. (doi:10.1016/j.dci.2008.01.002)

39. L.O.B. Afonso, J. Osborne, G.K. Iwama, A.K. Gamperl and S. Johnson (2008). Lack of glucose and hsp70 responses in haddock (Melanogrammus aeglefinus) subjected to handling and heat shock. J. Fish Biology. 72: 157-167. (doi:10.1111/j.1095-8649.2007.01697.x)

38. P.C. Mendonça, A.G Genge, E.J. Deitch and A.K. Gamperl (2007). Mechanisms responsible for the enhanced cardiac performance of winter flounder (Pseudopleuronectes americanus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 293: R2112-R2119. (doi:10.1152/ajpregu.00202.2007)

37. S. S. Killen, J. A. Brown and A.K. Gamperl (2007). The effect of prey density on foraging mode selection in juvenile lumpfish: Balancing food-intake with the metabolic cost of foraging. J. Anim. Ecol. 76: 814-825. (doi:10.1111/j.1365-2656.2007.01237.x)

36. N. C. Newby, A.K. Gamperl and E.D. Stevens (2007). Cardiorespiratory effects and efficacy of morphine sulfate in winter flounder (Pseudopleuronectes americanus). Amer. J. Vet. Res. 68: 592-597. (doi:10.2460/ajvr.68.6.592)

35. S. Hosoya, S.C. Johnson, G.K. Iwama, A.K. Gamperl and L.O.B. Afonso (2007). Changes in free and total plasma cortisol levels in juvenile haddock (Melanogrammus aeglefinus) exposed to long-term handling stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146A: 78-86. (doi:10.1016/j.cbpa.2006.09.003)

34. J.M. Lewis, I. Costa, A.L. Val, V.M.F. Almeida-Val, A.K. Gamperl and W.R. Driedzic (2007).  Responses to hypoxia and recovery: repayment of oxygen debt is not associated with compensatory protein synthesis in the Amazonian cichlid, Astronotus ocellatus. J. Exp. Biol. 210: 1935-1943. (doi:10.1242/jeb.005371)

33. S.S. Killen, I. Costa, J.A. Brown and A.K. Gamperl (2007). Little left in the tank: metabolic scaling in marine teleosts and its implications for aerobic scope. Proc. Roy. Soc. B-Biol Sci. 274: 431-438. (doi:10.1098/rspb.2006.3741)

32. D.A. Syme, A.K. Gamperl , M.H. Braun and D.R. Jones (2006). Wave reflection effects in the central circulation of American alligators (Alligator mississippiensis): What the heart sees. Am. J. Physiol. Heart Circ. Physiol. 291: H1670-H1678. (doi:10.1152/ajpheart.00097.2006)

31. N.C. Newby, P. Mendonça, A.K. Gamperl and E.D. Stevens (2006). Pharmacokinetics of morphine in fish: winter flounder (Pseudopleuronectes americanus) and seawater-acclimated rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Phys. C. 143:275-283. (doi:10.1016/j.cbpc.2006.03.003)

30. M. J. Gollock, S. Currie, L. H. Petersen and A. K, Gamperl (2006). Cardiovascular and haematological responses of Atlantic cod (Gadus morhua) to acute temperature increase. J. Exp. Biol. 209: 2961-2970. (doi:10.1242/jeb.02319)

29. E.J. Deitch, G.L. Fletcher, L.H. Petersen, I.A.S.F. Costa, M.A. Shears, W.R. Driedzic and A.K. Gamperl (2006). Cardiorespiratory modifications, and limitations, in post-smolt growth hormone transgenic Atlantic salmon (Salmo salar). J. Exp. Biol. 209: 1310-1325. (doi:10.1242/jeb.02105)

28. T. Alkanani, C.C. Parrish, K. J. Rodnick and A. K. Gamperl (2005). Lipid Class and nonesterified fatty acid profiles in plasma of North Atlantic cod (Gadus morhua). Can. J. of Fish. Aquat. Sci. 52: 2509–2518. (doi:10.1139/f05-151)

27. N. Joaquim, G. N. Wagner and A. Kurt Gamperl (2004). Cardiac function and critical swimming speed of the winter flounder (Pleuronectes americanus) at two temperatures. Comp. Biochem. Physiol. 138A: 277-285. (doi:10.1016/j.cbpb.2004.03.016)

26. S. Clutterham, A.K. Gamperl, H.L. Wallace, L.I. Crawshaw and A.P. Farrell (2004). Exhaustive exercise does not affect the preferred temperature for recovery in juvenile rainbow trout (Onchorhynchus mykiss). Physiol. Biochem. Zool. 77: 611-618. (doi:10.1086/422053)

25. J. Overgaard, J. A.W. Stecyk, H. Gesser, T. Wang, A.K. Gamperl, A. P. Farrell (2004). Preconditioning stimuli do not benefit the myocardium of hypoxia-tolerant rainbow trout (Oncorhynchus mykiss). J. Comp. Physiol. B. 174: 329-340. (doi:10.1007/s00360-004-0418-4)

24. A. K. Gamperl, H.A. Faust, B. Dougher and K. J. Rodnick (2004). Hypoxia tolerance and preconditioning are not additive in the trout (Oncorhynchus mykiss) heart. J. Exp. Biol. 207: 2497-2505. (doi:10.1242/jeb.01055)

23. H.A. Faust, A.K. Gamperl and K.J. Rodnick (2004). All trout are not created equal: intra-specific variation in cardiac hypoxia tolerance. J. Exp. Biol. 207: 1005-1015. (doi:10.1242/jeb.00824)

22. K. J. Rodnick, A.K. Gamperl, K. R. Lizars, M. T. Bennett and E.R. Keeley (2004). Thermal tolerance and metabolic physiology among redband trout populations in southeratern Oregon. J. Fish. Biology. 64: 310-335. (doi:10.1111/j.0022-1112.2004.00292.x)

21. A.K. Gamperl, K.J. Rodnick, H.A. Faust, E.C. Venn, M.T. Bennett, L.I. Crawshaw, E.R. Keeley, M.S. Powell and H.W. Li (2002). Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): Evidence for phenotypic differences in physiological function. Physiol. Biochem. Zool. 75: 413-431. (doi:10.1086/343139)

20. D.A Syme, A.K. Gamperl and D.R. Jones (2002). Delayed depolarization of the cog-wheel valve and pulmonary-to-systemic shunting in alligators. J. Exp. Biol. 205: 1843-1851. (http://jeb.biologists.org/content/205/13/1843.long)

19. A.K Gamperl, T. W. Hein, L. Kuo and B.A. Cason (2002). Isoflurane-induced dilation of porcine coronary microvessels is endothelium dependent and inhibited by glibenclamide. Anesthesiology. 96: 1465-1473. (http://anesthesiology.pubs.asahq.org/article.aspx?articleid=1944218)

18. A.K. Gamperl, A.E. Todgham, W.S. Parkhouse, R. Dill and A.P. Farrell (2001). Recovery of trout myocardial function following anoxia: preconditioning in a non-mammalian model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281: R1775-R1763. (doi:10.1152/ajpregu.2001.281.6.R1755)

17. C.E. Crocker, A.P. Farrell, A.K. Gamperl and J.J. Cech (2000). Cardiorespiratory responses of white sturgeon to environmental hypercapnia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279: R617-R628. (doi:10.1152/ajpregu.2000.279.2.R617)

16. A.K. Gamperl, A.P. Farrell, W.K. Milsom and T. Wang (1999). Cardiorespiratory responses of the toad (Bufo marinus) to hypoxia at two different temperatures. J. Exp. Biol. 202: 3647-3658. (http://jeb.biologists.org/content/202/24/3647.long)

15. M.S. Ismaeil, I. Tkachenko, A.K. Gamperl, R.F. Hickey and B.A. Cason (1999). Mechanisms of anesthetic-induced myocardial preconditioning in rabbits. Anesthesiology. 90: 812-821. (http://anesthesiology.pubs.asahq.org/article.aspx?articleid=1946527)

14. A.K. Gamperl, M.M., Vijayan, C. Pereira and A.P. Farrell (1998). ß-receptor and stress protein 70 expression in the hypoxic myocardium of rainbow trout and chinook salmon. Am. J. Physiol. 43: 428-436. (doi:doi.org/10.1152/ajpregu.1998.274.2.R428)

12. B.A. Cason, A.K. Gamperl, R. Slocum and R.F. Hickey (1997). Anesthetic-induced preconditioning: prior administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology. 87: 1182-1190. (http://anesthesiology.pubs.asahq.org/article.aspx?articleid=1948094)

11. J. Jones, A.K. Gamperl, D.P. Toews and A.P. Farrell (1997). Direct measurement of posterior lymph flow in hydrated and dehydrated toads (Bufo marinus). J. exp. Biol. 200: 1695-1702. (http://jeb.biologists.org/content/200/11/1695.long)

10. A.P. Farrell, A.K. Gamperl, J.M.T. Hicks, H.A. Shiels and K.E. Jain (1996). Maximum cardiac performance of rainbow trout (Oncorhynchus mykiss) at temperatures approaching their upper lethal limit. J. exp. Biol. 199: 663-672. (http://jeb.biologists.org/content/199/3/663.long)

9. A.K. Gamperl, M. Axelsson and A.P. Farrell (1995). Effects of swimming and environmental hypoxia on coronary blood flow in rainbow trout. Am. J. Physiol. 269: R1258-R1266. (doi:10.1152/ajpregu.1995.269.5.R1258)

8. A.K. Gamperl, M. Wilkinson and R.G. Boutilier (1994). β-Adrenoreceptors in the trout  (Oncorhynchus mykiss) heart: Characterization, quantification, and effects of repeated catecholamine exposure. Gen. Comp. Endocrinol. 95: 259-272. (doi:10.1006/gcen.1994.1123)

7. A.K. Gamperl and R.G. Boutilier (1994). Effect of acute and chronic epinephrine administration on clearance and metabolism of [3H]-epinephrine in trout (Oncorhynchus mykiss). J. Comp. Physiol. B. 164: 321-326. (https://link.springer.com/article/10.1007/BF00346450)

6. A.K. Gamperl, A.W. Pinder, R.R. Grant and R.G. Boutilier (1994). Influence of hypoxia and adrenaline administration on coronary blood flow and cardiac performance in seawater rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 193: 209-232. (http://jeb.biologists.org/content/193/1/209)

5. A.K. Gamperl, M.M. Vijayan and R.G. Boutilier (1994). Epinephrine, norepinephrine, and cortisol concentrations in cannulated seawater-acclimated rainbow trout (Oncorhynchus mykiss Walbaum) following black-box confinement and epinephrine injection. J. Fish. Biol. 45: 313-324. (doi:10.1111/j.1095-8649.1994.tb01310.x)

4. A.K. Gamperl, A.W. Pinder and R.G. Boutilier (1994). Effect of coronary ablation and adrenergic stimulation on in vivo cardiac performance in trout (Oncorhynchus mykiss). J. Exp. Biol. 186: 127-143. (http://jeb.biologists.org/content/186/1/127.long)

3. A.K. Gamperl and E.D. Stevens (1991). Sprint-training effects on trout (Oncorhynchus mykiss) white muscle structure. Can. J. Zool. 69: 2786-2790. (doi:10.1139/z91-392)

2. A.K. Gamperl, D.L. Schnurr and E.D. Stevens (1991). Effect of a sprint-training protocol on acceleration performance in rainbow trout (Salmo gairdneri). Can. J. Zool. 69: 578-582. (doi:10.1139/z91-087)

1. A.K. Gamperl, J. Bryant and E.D. Stevens (1988). Effect of a sprint training protocol on the growth rate, conversion efficiency, food consumption, and body composition of rainbow trout (Salmo gairdneri Richardson). J. Fish Biol. 33: 861-870. (doi:10.1111/j.1095-8649.1988.tb05533.x)

Review Articles:

4. R.H.J. Leeuwis and A.K. Gamperl (In Press). Adaptations and plastic phenotypic responses of marine animals to the environmental challenges of the high intertidal zone. Ocean. Mar. Bio. Ann. Rev.

3. A.K. Gamperl and A.P. Farrell (2004). Cardiac plasticity in fishes: environmental influences and intra-specific differences (Invited Review). J. Exp. Biol. 205: 2539-2550. (doi:10.1242/jeb.01057)

2. A.P. Farrell, H. Thorarensen, M. Axelsson, C. E. Crocker, A.K. Gamperl and J.J. Cech Jr. (2001). Gut blood flow in fish during exercise and severe hypercapnia. Comp. Physiol. and Biochem. 128A: 551-563. (doi:10.1016/S1095-6433(00)00335-4)

1. A.K. Gamperl, M.M. Vijayan and R.G. Boutilier (1994). Experimental control of stress hormone levels in fishes: techniques and applications. Rev. Fish Biol. Fisheries. (doi:10.1007/BF000441294: 215-255)

Book Chapters:

6. L.H. Petersen and A.K. Gamperl. Integrated Responses of the Circulatory System to Hypoxia (2018). In: Reference Module in Life Sciences, Elsevier, ISBN: 978-0-12-809633-8,(doi: 10.1016/B978-0-12-809633-8.03152-6)

5. A.K. Gamperl and H.S. Shiels (2014). Cardiovascular Physiology. In: The Physiology of Fishes, 5th Ed. D.H. Evans, J.B. Claiborne and S. Currie Eds. pp. 33-80.

4. A.K. Gamperl (2011). Integrated responses of the circulatory system: Temperature. In: Encyclopedia of Fish Physiology, from Genome to Environment, 1st Edition. Editor A. P. Farrell. pp. 1197-1205.

3. A.K. Gamperl. (2011). Integrated responses of the circulatory system: Hypoxia. In: Encyclopedia of Fish Physiology, from Genome to Environment, 1st Edition. Editor A.P. Farrell. pp. 1221-1228.

2. A.K. Gamperl and W.R. Driedzic (2009). Cardiovascular Responses to Hypoxia. In: Fish Physiology, Vol. XXVII. J. Richards, editor. Series editors C.J. Brauner and A.P. Farrell. Academic Press. pp. 302-360

1. A.P. Farrell, A.K. Gamperl and E.T.B. Francis. (1998). Comparative Aspects of Heart Morphology. In: Biology of the Reptilia. Vol. 19 (Morphology G). C.Gans and A.S. Gaunt, eds.). Society for the Study of Amphibians and Reptiles, Ithaca, New York, Contrib. Herpetol., vol., 14, pp.375-424.


1. The Cardiovascular System: Morphology, Control and Function (2017). Fish Physiology Series, Volume 36A. Editors A.K. Gamperl, T. Gillis, A.P.Farrell and C.J. Brauner. Academic Press. 488 p.

2. The Cardiovascular System: Development, Plasticity and Physiological Responses (2017). Fish Physiology Series, Volume 36B. Editors A.K. Gamperl, T. Gillis, A.P. Farrell and C.J. Brauner. Academic Press. 452 p.


Research Opportunities

Honours Students

Positions are available in my lab for 4th year honors students to investigate various aspects of marine fish physiology. The Dept. of Ocean Science program has been approved, and will begin admitting students shortly. Please see the enclosed Honours Guide for details.

NSERC Summer Students

NSERC Undergraduate Student Research Awards (USRA) are meant to provide undergraduate students with relevant research experience in a university laboratory. These awards have a value of $4500 (with an additional $1500 provided by my research grants), require the student to work for a 16 week period (normally during the summer), and are highly competitive (i.e. only students with a solid ‘A” average are likely to be successful). For information on this awards program visit NSERC.

Note: applications are submitted to the student’s present department / academic unit in the fall of each year (contact your department for specific dates), and require the potential supervisor to fill out sections of the application

Graduate Studies

I am always interested to discuss M.Sc. and Ph.D. opportunities in my lab with highly motivated students. Under my guidance, students develop their own research projects within the general framework of fish physiology, and often have opportunities to visit other labs to learn techniques or to collaborate on research projects. These projects address basic questions about ‘how animals work’ or have direct relevance to fish aquaculture in Atlantic Canada. For more details about research in my lab, please visit the Research Program page.

If you are interested one of the above positions, please contact me in person (AX 4013, OSC), by phone (709-864-2692) or by e-mail (kgamperl@mun.ca).



 Dr. Brian Dixon

Dr. Brian Dixon picture

Canada Research Chair in Fish and Environmental Immunology
Dept. of Biology, University of Waterloo
Email: bdixon@uwaterloo.ca
Website: https://uwaterloo.ca/biology/people-profiles/brian-dixon

 Dr. Douglas A. Syme

Dr. Douglas picture

Department of Biological Sciences
University of Calgary, Canada
Email: syme@ucalgary.ca
Website: http://bio.ucalgary.ca/bio_info/profiles/douglas-syme

 Dr. Felix Mark

Dr. Felix Mark picture

Division of Integrative Ecophysiology
Alfred Wegener Institute, Bremerhaven , Germany
Email: Felix.Christopher.Mark@awi.de
Website: https://www.awi.de/ueber-uns/organisation/mitarbeiter/felix-christopher-mark.html

 Dr. Javier Santander

Dr. Javier Santander Picture

Dept. of Ocean Sciences
Memorial University of Newfoundland, Canada
Email: jsanatendr@mun.ca
Website: http://www.faculty.mun.ca/jsantander/

 Dr. Ken Rodnick

Dr, Ken Rodnick picture

Dept. of Biological Sciences
Idaho State University, USA
Email: rodnkenn@isu.edu
Website: http://www.isu.edu/bios/people/faculty/rodnkenn/

 Dr. Matt Rise

No Picture Available

Ocean Sciences Centre
Memorial University of Newfoundland, Canada
Email: mrise@mun.ca
Website:  https://www.mun.ca/osc/mrise/bio.php

Dr. Stewart Johnson

Department of Fisheries and Oceans,
Pacific Biological Station
E-mail: Stewart.Johnson@dfo-mpo.gc.ca
Website: https://profils-profiles.science.gc.ca/en/profile/stewart-johnson

Contact Us

Dept. of Ocean Sciences

Memorial University of Newfoundland

St. Johns, NL

Canada, A1C5S7


Office: Room AX-4013

Phone: (709)864-2692

Fax: (709)864-3220

Email: kgamperl@mun.ca



Ocean Science Center

Welcome to the Gamperl Laboratory 

My lab maintains a broad interest in fish and environmental physiology, and marine finfish aquaculture, and takes an integrative multi-level approach to answer research questions in these areas. At present, there are 10 members of my lab, and these staff and students are an active, and integral, part of the research program.

Overview of the Research Program

The Ocean Sciences Centre (OSC) is ideally situated for studying the physiology and biology of coastal North Atlantic species, and provides easy access to fishes that live on the Grand Banks of Newfoundland. I utilize a number of OSC facilities in my research, in addition to my dedicated research labs/spaces, and these include:

1) The Dr. Joe Brown Aquatic Research Building which has state-of-the-art facilities for the rearing and culture of species such as cod, Atlantic salmon, lumpfish, steelhead trout, halibut etc.

2) The Laboratory for Atlantic Salmon and Climate Change Research is a self-contained research facility with 10 (2.2 m3) and 8 (0.6 m3) tanks in which temperature, photoperiod and oxygen levels can be controlled / varied. This allows for short-term and long-term studies of fish physiology and immunology at temperatures from below 0oC to > 25oC.

3) The Cold-Ocean and Deep-Sea Research Facility houses disease challenge labs and sophisticated scientific equipment (e.g. deep-sea chambers, Nikon confocal microscope with resonance scanning, Aria III flow cytometer / cell sorter, benchtop scanning EM, fully equipped histological suite etc.). This makes the OSC a great location to study marine fish physiology, immunology and disease processes, and the potential of various fish species for aquaculture production.

At the OSC, my research program focuses on two main themes: 1) the environmental physiology of North Atlantic fish species; and 2) improving culture conditions for, and the health, welfare and disease resistance of, marine finfish cultured in Canada. This research uses a multi-level (telemetry, whole animal, organ/tissue, cellular, genomic etc.) approach to test hypotheses about how environmental conditions (e.g., temperature, oxygen, pressure, food availablity) affect metabolism, swimming performance, cardiovascular function and stress physiology, or how life history and ecology influence the design of physiological systems. In addition, I collaborate with Drs. Matt Rise and Javier Santander (OSC), and Dr. Brian Dixon (University of Waterloo), to investigate how various biotic and abiotic factors affect fish immunology.

Techniques utilized in this research include: the implantation of physiological data loggers; respirometry for the measurement of fish metabolism/swimming ability; in vivo measurements of cardiovascular function, blood oxygen status and hormone levels; in situ measurements of heart performance; in vitro measurements of hormone receptors, enzyme activity and kinetics, and vascular function; OROBOROS flourorespirometry for the measurement of mitochondrial and cellular function; and qPCR and microarray analyses of gene expression.


Examples of Ongoing & Recent Research

Environmental Impact on Cardiovascular Function

Over the past 40 years, substantial progress has been made in understanding the cardiovascular system of fish and how they control heart function and blood flow. However, we are far from completely understanding how their cardiovascular system deals with biotic or abiotic challenges, especially in combination. For example: 1) with the exception of a few Arctic and Antarctic species, we have a poor understanding of how the cardiovascular system of fishes functions at, or adapts to, cold (< 2ºC) temperatures; and 2) our understanding of what factors limit cardiac function at high temperatures has undergone considerable revision in the past few years, and it has become clear that there are inter-specific differences in fish cardiovascular function and how it responds to temperature change. Further, the cardiovascular response to temperature varies depending on water oxygen levels and depth (hydrostatic pressure). In this research, we are using a multi-level, integrated, approach to investigate how chronic and acute changes in temperature, oxygen levels and hydrostatic pressure (up to 100 bar; 1000 meters) affect the control and functional capacity of the cardiovascular system of North Atlantic and other fish species.

Aspects currently under investigation include:

1. How chronic high temperature and/or low oxygen affect the cardiorespiratory function of fishes; including mitochondrial function and its sensitivity to nitric oxide.

2. Swimming performance and in vivo and in vitro cardiovascular performance at cold temperatures.

3. How exposure to hydrostatic pressure affects fish heart rate responses to temperature and hypoxia.

Physiology of Cunner (Tautogolabrus adspersus)

Metabolic depression, or at least entrance into a dormant state characterized by the cessation of feeding and activity, has been observed in several marine and freshwater fish species when exposed to cold temperatures. The cunner is a western North Atlantic wrasse species that is at the northern limit of its distribution in Newfoundland, and has been observed to enter a period of physical inactivity, concomitant with decreased oxygen consumption rates and behaviour characteristic of a dormant state, in response to low water temperatures. However, it was unknown whether this was truly metabolic depression, and if so, what mechanisms might be involved. Thus, we initiated a research program to study various aspects of this species’ physiology. This research has:

1. Shown that the cunner goes into torpor (metabolic depression) when temperatures fall below 50C in the fall (i.e. seasonally), and investigated the contribution of diminished cardiac function to this metabolic depression;

2. Determined the capacity of cunner to deal with other environmental stressors (e.g. hypoxia; high temperatures);

3. Examined the contribution of changes in various cellular processes to metabolic depression. In addition, studies currently underway are focusing on how this species’ stress physiology differs from that of other marine teleosts.

Sablefish (Anaplopoma fimbria) Physiology and Immunology

The sablefish (Anoplopoma fimbria) is an interesting model for studying the environmental tolerances of marine fishes and the underlying determinants. It is widely distributed along the North Pacific, and while juveniles live in-shore, the adults inhabit cold and deep waters (up to 1,500 m) that are often severely hypoxic. For example, adult sablefish are known to colonize the oxygen minimum zone off the California coast where oxygen levels range from 0.34 to 0.80 mg O2 L-1. Furthermore, this species supports significant capture fisheries and is an emerging aquaculture species. With regards to the latter, Golden Eagle Sable Fish is currently rearing sablefish in British Columbia, and aims to reach an annual production of 500,000 juveniles and 1000+ tonnes of production in the next few years. As with any new (alternative) aquaculture species, husbandry and management procedures developed for other fish species will have to be modified for sablefish culture, and information on this species’ physiology, stress and disease resistance, and environmental tolerances must be gathered.

Research conducted to date has determined the acute upper temperature and hypoxia tolerance of both adults and juveniles, and provided comprehensive information on this species’ stress and metabolic physiology. We are now developing genomic (i.e., molecular probes) and antibody-based tools (i.e., ELISAs) so that the immune function of this species can be studied, and work on the efficacy of vaccines against furunculosis (caused by the pathogen Aeromonas salmonicida) is ongoing.

Collaborators: Dr. Javier Santander (MUN), Golden Eagle Sable Fish (Briony Campbell, Tom Sorby, Megan Sorby), and Zoetis (Michael Ness and Nils Steine)

Mitigating the Impact of Climate-Related Challenges on Salmon Aquaculture (MICCSA)

In this pan-Atlantic applied research project, research tools and products are being developed to: enable the Atlantic salmon aquaculture industry to prepare for, and monitor, the predicted effects of warming and hypoxic coastal waters; and to develop fish that are better protected from infectious salmon anemia (ISA) and sea lice (Lepeophtheirus salmonis). These goals will be achieved by:

1. Defining the sub-lethal and lethal temperatures of current Atlantic salmon stocks (i.e., fish of Saint John River origin);

2. Studying how fish with varying genetic background perform under conditions of hypoxia and elevated temperature;

3. Developing molecular markers (single nucleotide polymorphisms, SNPs) for selecting broodstock with high temperature tolerance, robust immune responses and improved disease and stress resistance; and

4. Developing genomic and antibody-based diagnostic assays for assessing salmon health and producing improved, more effective, vaccines.

This research program has already: validated the use of data loggers that simultaneously record heart rate, activity/swimming speed and body temperature that can be used to monitor free-swimming Atlantic salmon in sea cages; provided significant data on how high temperatures (20-23oC) alone, or in combination with moderate hypoxia, impact production characteristics, stress physiology, and the salmon’s immune response to viral and bacterial antigens (i.e., vaccination); identified several key immune- and stress-related genes (biomarkers) that are responsive to temperature / hypoxic challenges; and produced antibodies and ELISAs (Enzyme-Linked Immunosorbent Assays) to several biomarkers so that their protein levels can be quantified and monitored.

Collaborators: Dr. Mark Fast (UPEI), Dr. Brian Dixon (University of Waterloo), Dr. Matt Rise (Memorial University), Dr. Roy Danzmann (University of Guelph), Danny Boyce (JBARB Facilities Manager), Dr. Amber Garber and Chris Bridger (Huntsman Marine Science Centre), Debbie Plouffe (Center for Aquaculture Technologies Canada), Jessi Rix (Somru BioScience)

Post-Doctoral Fellows
Fabio Zanuzzo

Dr. Fabio Zanuzzo picture

Post-Doctoral Fellow (2015), São Paulo State University (UNESP)

Ph.D. Aquatic Biology (2014), São Paulo State University (UNESP)

M.Sc. Aquaculture (2010), São Paulo State University (UNESP)

B.Sc. Biology, University (2008), São Paulo State University (UNESP)

Email: fabioz@mun.ca

Research: Fish Environmental Physiology, Immunology

Julie Nati

Marie Curie Fellow (2021), UMR Marbec, CNRS, Ifremer, Montpellier, France

Research Fellow (2018), University of Glasgow, UK

Ph.D. Environmental and Evolutionary Biology (2016), University of Glasgow, UK

M.Sc. Marine Environmental Protection (2010), Bangor University, Wales, UK

M.Sc. General Oceanography, specialisation in Marine Biology and Ecology (2009), Aix-Marseille Université, Marseille, France

B.Sc. Earth Sciences, specialisation in Marine Biology and Ecology (2008), Aix-Marseille Université, Marseille, France 

Email: jjhnati@mun.ca

Ph.D. Students

Robine Leeuwis

M.Sc. Biology (2014), Radboud University Nijmegen, the Netherlands

B.Sc. Biology (2012), Radboud University Nijmegen, the Netherlands

Email: rhjleeuwis@mun.ca

Research: Cardiovascular  Physiology, Immunology and  Nutrition of the Sablefish (Anoplopoma fimbria)

Eric Ignatz

M.Sc. Aquaculture (2019), Memorial University

Ontario College Graduate Certificate - Aquaculture (2016), Fleming College

B.Sc.H. Animal Biology (2015), University of Guelph

Email: ehignatz@mun.ca

Research: Effects of Environmental and Nutritional Manipulations on Atlantic Salmon Physiology and Transcriptomics

M.Sc. Students

Émile Vadboncoeur

B.Sc. Biology (2017), Université du Québec à Rimouski

Email: evadboncoeur@mun.ca

Research: Effects of Cold Temperatures on Atlantic Salmon Physiology

Emma Porter

B.Sc. Marine Biology (2019), Dalhousie University

Email: esporter@mun.ca

Research: Effects of Temperature Extremes on the Cardiorespiratory Physiology of Salmon

Rachel Eisenberg

B.Sc. Zoology (2019), University of British Columbia (Okanagan)

Email: reisenberg@mun.ca

Research: Influence of Development temperature on the Physiology of Lumpfish

Rebeccah Sandrelli

B.Sc. Biology (Marine Biology) (2017), Memorial University

Email: r.sandrelli@mun.ca

Research:Biologgers as a Tool to Investigate the Thermal Biology of Fishes

Darby Gielewski

B.Sc. Marine Biology (2021), Dalhousie University

Research Staff
Kathy Clow

Kathy Clow picture

B.Sc. Biology (1990), Dalhousie University

Email: kclow@mun.ca

Senior Research Assistant, Ocean Frontier Institute

Rebeccah Sandrelli

Rebeccah Sandrelli picture

B.Sc. Biology (Marine Biology) (2017), Memorial University

Email: rmh486@mun.ca

Research Assistant, MICCSA

Tasha Harrold

Tasha Harrold picture

B.Sc. Agriculture, Environmental Biology, (2001), Dalhousie University/Nova Scotia Agricultural College

Email: tlkharrold@mun.ca

Project Manager for MICCSA and Module J of the Ocean Frontier Institute

Recent Lab Members

Anne Beemelmanns
Dr. Anne Beemelmanns picture

Post-Doc 2017 - 2020

Ph.D. Evolutionary Ecology of Marine Fishes (2016), Helmholtz Centre for Ocean Research, Kiel

M.Sc. Aquatic Ecophysiology (2011), Heinrich-Heine-Universität Düsseldorf

B.Sc. Biology (2009), Heinrich-Heine-Universität Düsseldorf

Email: abeemelmanns@mun.ca

Presently a Post-Doc with the Genome Canada funded FISH-GEN

Lucie Gerber
Dr. Lucie Gerber picture

Post-Doc 2018-2020

Post-Doctoral Fellow (2017), University of Aarhus, Denmark

Ph.D. Fish Physiology (2016), University of Southern Denmark, Denmark

M.Sc. Biology (2013), University of Montpellier, France

B.Sc. Biology (2011), University of Antilles, Guadeloupe

Email: lgerber@mun.ca

Presently a Post-Doc with Goran Nilsson, Oslo Norway

Zoe Zrini

M.Sc. 2020

B.Sc. Zoology (2017), University of Guelph

Email: zazrini@mun.ca

Presently working with the Fish Culture Section, Ontario Ministry of Natural Resources

Ellen Peroni

Research Assistant 2017-2020

MBA in Agribusiness (2020), University of São Paulo (USP), Brazil

M.Sc. Veterinary Medicine (2013), São Paulo State University (UNESP), Brazil

B.Sc. Veterinary Medicine (2009), Franca University, Brazil

Email: edfperoni@mun.ca

Ashley Loveless

Aquaculture Technician, MICCSA 2019-2021

B.Sc. Biology (2020), Memorial University