Biopsychosocial factors influencing physical activity participation among people with chronic pain

Jennifer Hulburt, B.S. Exercise Science MSc. Kinesiology (candidate)

Memorial University of Newfoundland Department of Human Kinetics and Recreation

March 15, 2011

Acknowledgements

- Thesis Committee
 - Angela Loucks-Atkinson, PhD
 - LeAnne Petherick, PhD
 - Sandra LeFort, PhD, MN, RN

• NLCAHR-HARP Master's Award

Outline of Presentation

- Introduction to the Research Issue: Chronic Pain and Physical Activity Participation
- Review of the Literature
- Methodology
- Results
- Future Analyses and Discussion

Introduction: Chronic Pain

- Pain
 - "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage" (Merksey, 1994).
- Chronic Pain
 - Ongoing or intermittent pain which has persisted for at least 6 months.

Stats Canada 2008

The Impact of Chronic Pain: Older Adults

27%

Canadian Community Health Survey 2008

Physical Activity Levels Decrease with Age

Leisure-time physical activity (% at least moderately active), Canadians 20+ years, by sex and age group

Canadian Community Health Survey 2007/8, Statistics Canada

Physical Activity Limitations and Chronic Pain

- Chronic pain may interfere with physical activity, particularly among older adults (Sawatsky, R. et al., 2007)
- 53% of those with severe pain report that pain interfered with most activities (Ramage-Morin 2008)

Literature Review

What factors influence physical activity participation among people with chronic pain?

The Biopsychosocial Model of Chronic Pain Biological Chronic Pain Psychological Sociological

The Biopsychosocial Model of Pain

Chronic pain

Worry about cause of pain and future consequences

How can people with chronic pain overcome the barriers to exercise?

Self-efficacy

 an individual's beliefs that he or she will be able to successfully perform the behaviour required to produce desired outcomes (Bandura 1977).

• Higher exercise self-efficacy is associated with higher levels of exercise participation and satisfaction with physical function (Medina-Mirapeix, Escolar-Reina et al. 2009; McAuley, Courneya et al. 1994; Rekeski, King, et al. 2008).

• People with more pain sites have lower exercise selfefficacy (Leveille 2003).

Objectives:

- 1. To explain the associations between pain, physical activity participation, exercise self-efficacy, and stress.
- 2. To explore individuals' beliefs about physical activity and pain.

Research Questions

- 1. What are the associations between stress, pain, physical activity participation, and exercise self-efficacy?
- 2. Does physical activity participation mediate the relation between stress and pain?
- 3. What are the differences between older adults (50 years and older), and younger adults (under 50 years) in terms of these associations?
- 4. What are the differences between more active and less active participants in terms of the study variables?

Methodology

Phase I: Quantitative

- Sampling and Recruitment
 - Purposeful sampling of adults (age 19+) with CP living in Atlantic provinces (NL, NB, PEI, NS).
 - 42% snowball sampling
 - 14% Arthritis Society
 - IO% Community events
 - 10% Posters in physician's offices

Phase I: Quantitative Results

Sample	%	Ν
Survey Response	21%	99/480
Paper Web		91 8
Rural* Urban*		22 43

*34 Missing Data

Socio-demographics	%	Ν	SD
Gender	71% female		
Age		57.6	15.43
Marital Status	59% married or common- law living in same residence		
Income	35% annual household income of \$60,000 or more		
Education	65% had attained a certificate or diploma from a trade school, or a college or university graduate degree		
Employment	53% retired		

Chronic 57% Arthritis Pain

52% chronic low back pain

25% Fibromyalgia

Pain severity: Mean = 4.8 (*SD* = 2.12)

Pain interference: Mean= 4.8 (*SD* = 2.63)

Physical Work PA Range: Activity +2.6 - 7.6 Leisure PA +Mean: 5.4 Sport PA (SD = 1.09)Total PA

Stress 72% score 20 or lower

Mean = 16.56(*SD* = 7.31)

Exercise Self-Efficacy

Confidence in continued exercise participation at least 3 times per week for at least 30 minutes at moderate intensity over incremental week periods for 8 weeks.

Mean = 56.8% (*SD* = 37.53)

Bivariate Correlation Analyses

	1	2	3	4	5	6
1. Age		.202*	061	129	049	265**
2. Total PA			360**	285**	.389**	086
3. Pain Severity				.598**	360**	.261**
4. Pain Interference					504**	.514**
5. Exercise self- efficacy						140
6. Stress						

Regression Analyses

- Sport PA
 - Stress (β = -.356, $p \le .001$)
 - Pain severity (β = -.416, $p \le .001$)
 - Pain interference (β = -.681, $p \le .001$)
 - + Exercise self-efficacy ($\beta = .584, p \le .001$)

Mediation Analysis

Mediation Analysis

Mediation Analysis - Participants Under Age 50

Mediation Analysis – Participants 50+

Phase II: Qualitative

- 1. What influences physical activity participation among people with CP?
- 2. What is the meaning of physical activity to people with CP?
- 3. Why are some people with CP more active while others are less active?
- In-depth semi-structured interviews, ~ 1 hr
- Participants (N= 6)
 - Age 50+
 - 3 rural; 3 urban
 - Extreme cases
- Content analysis

Introduction

• Kinesis = self-induced movement

Self-kinesis

An individual's self-chosen movement, influenced through the interactive energy of biopsychosocial factors

Self-Kinesis

Endurance

Purpose through routine movement

If I stopped from my pain I wouldn't do what I want to do in life. You know I want to do whatever I can. I mean I'm not gonna give up – that'd be pretty stupid... I do all that because I have a purpose. There's purpose...I get up, I get dressed, there's a purpose. That's how I look at it. (Mary)

Power

Control of the mind

You have to change the focus. So whether that's getting up from your chair, whether that's getting a cup of tea, whether it's changing the station, whether it's recognizing the fact that you may need to turn your body in a different direction. Whatever it is, you need to do something. (Dee)

Strength

Influence of others

"If you have 100 pounds of flour to carry, it makes it easier to have someone help you carry it doesn't it? A burden shared is the same as sharing a heavy weight." (Lucy)

Flexibility

Adaptability to change

"I work through the pain...let's say my hip is really bad one day. I go to the gym and the instructor says, 'we're gonna do 87 squats'. I'm gonna say, 'well you know I prefer to go out and walk the track', which is easier for me, easier on the joint, still exercising. It's always a matter of choices...you have to know your limitations, but you also have to know your capabilities. " (Dee)

Balance

Listening to and ignoring the body

"You know your body will always react to stresses.. your body will tell you – you need to make changes but we're not really good at listening to it." (Dee)

Energy

A blockage called pain

I find with Fibromyalgia – I don't know if everyone finds the same thing, but I find it moves – it's moving from one part of your body to another continually (Lucy).

Like in myself, there's a battle every day, to live, to cope with everything when you've got so much stuff in your body going on. (Joy)

Discussion of Findings

- Total PA increases with age Leisure PA did not.
 - Subculture of work physical activity in NL (Witcher et al., 2007).
- More active versus less active participants reported less pain interference.
- Sport PA moderates the relation between stress and pain interference.

Pain Interference

- Distraction (power)
- Adaptability (flexibility)
- Influence of others (strength)

Future Analysis

• Path Analysis

 To examine hypothesized models of associations between stress, pain, PA, and exercise self-efficacy

References

- Atlantic, A. (2007). "Patients Suffering from Chronic Pain Launch Campaign to Improvement Treatment." Retrieved November 2, 2009, from http://www.paincantwait.ca/news.php?news_id=12.
- Baecke, J. A. H., J. Burema, et al. (1982). "A SHORT QUESTIONNAIRE FOR THE MEASUREMENT OF HABITUAL PHYSICAL-ACTIVITY IN EPIDEMIOLOGICAL-STUDIES." <u>American Journal of Clinical Nutrition</u> 36(5): 936-942.
- Bandura, A. (1977). "Self-Efficacy toward a Unifying Theory of Behavioral Change." <u>Psychological Review</u> 84(2): 191-215.
- Canada, P. H. A. o. (2009). "Who are Canada's Seniors?" Retrieved February 27, 2010, from <u>http://www.phac-aspc.gc.ca/seniors-aines/publications/public/various-varies/papier-fed-paper/fedreport1-eng.php</u>.
- Canada, S. (2008). "Canadian Community Health Survey." Retrieved February 21, 2010, from <u>http://www.statcan.gc.ca/daily-quotidien/090625/dq090625b-eng.htm</u>.
- Canada, S. (2008). "Chronic pain in Canadian seniors, 2008." Retrieved October 5, 2009, from <u>http://www.statcan.gc.ca/pub/82-003-x/2008001/article/10514-</u> eng.pdf.
- Center for Disease Control and Prevention, N. C. f. C. D. P. a. H. (1996). Physical activity and health: a report of the surgeon general. Atlanta.
- Clark, G. T., S. Sakai, et al. (1995). "CROSS-CORRELATION BETWEEN STRESS, PAIN, PHYSICAL-ACTIVITY, AND TEMPORALIS MUSCLE EMG IN TENSION-TYPE HEADACHE." <u>Cephalalgia</u> 15(6): 511-518.
- Cohen, S., T. Kamarck, et al. (1983). "A Global Measure of Perceived Stress." Journal of Health and Social Behavior 24(4): 385-396.
- Coleman, D. and S. E. Isoahola (1993). "Leisure and Health the Role of Social Support and Self-Determination." Journal of Leisure Research 25(2): 111-128.
- Dobkin, P. L., M. Abrahamowicz, et al. (2005). "Maintenance of exercise in women with fibromyalgia." <u>Arthritis & Rheumatism-Arthritis Care & Research</u> 53(5): 724-731.
- Dundar, U., O. Solak, et al. (2009). "Clinical Effectiveness of Aquatic Exercise to Treat Chronic Low Back Pain A Randomized Controlled Trial." Spine **34**(14): 1436-1440.
- Gowans, S. E. and A. deHueck (2004). "Effectiveness of exercise in management of fibromyalgia." Current Opinion in Rheumatology 16(2): 138-142.
- Harris, T. J., C. G. Owen, et al. (2009). "What factors are associated with physical activity in older people, assessed objectively by accelerometry?" <u>British</u> Journal of Sports Medicine **43**(6): 442-450.
- Heyland, D. K., P. Dodek, et al. (2006). "What matters most in end-of-life care: perceptions of seriously ill patients and their family members." <u>Canadian</u> <u>Medical Association Journal</u> **174**(5): 627-U1.
- Jakobsson, U., I. R. Hallberg, et al. (2004). "Overall and health related quality of life among the oldest old in pain." <u>Quality of Life Research</u> **13**(1): 125-136.
- Jones, K. D., D. Adams, et al. (2006). "A comprehensive review of 46 exercise treatment studies in fibromyalgia (1988-2005)." <u>Health and Quality of Life</u> <u>Outcomes</u> **4**.

References

- Jovey, R. E., J; Garder-Nix, J; Goldman, B; Hays, H.; Lynch, M.; Moulin, D. (2003). "Use of opioid analgesics for the treatment of chronic noncancer pain-A consensus statement and guildelines from the Canadian Pain Society, 2002." Pain Research and Management 8 (Suppl A)(3): A-14A.
- Keller, S., C. M. Bann, et al. (2004). "Validity of the brief pain inventory for use in documenting the outcomes of patients with noncancer pain." Clinical Journal of Pain 20(5): 309-318.
- Leveille, S. G., S. Ling, et al. (2001). "Widespread musculoskeletal pain and the progression of disability in older disabled women." <u>Annals of Internal Medicine</u> 135(12): 1038-1046.
- . Lincoln, Y. a. G., E. (1958). Naturalistic Inquiry. Newbury Park, Sage.
- . Lincoln, Y. G., E. (1985). Naturalistic Inquiry. Newbury Park, Sage.
- Loucks-Atkinson, A. and R. C. Mannell (2007). "Role of self-efficacy in the constraints negotiation process: The case of individuals with fibromyalgia syndrome." Leisure Sciences 29(1): 19-36.
- McAuley, E. (1993). "Self-Efficacy and the Maintenance of Exercise Participation in Older Adults." Journal of Behavioral Medicine 16(1): 103-113.
- McAuley, E., K. S. Courneya, et al. (1994). "Enhancing Exercise Adherence in Middle-Aged Males and Females." Preventive Medicine 23(4): 498-506.
- Melzack, R. W., P.D. (1988). <u>The challenge of pain</u>. London, Penguin Books.
- Morris, C. E. and V. Goli (1994). "THE PHYSIOLOGY AND BIOMEDICAL ASPECTS OF CHRONIC PAIN IN LATER LIFE." Journal of Women & Aging 6(4): 9-24.
- Ramage-Morin (2008). "Chronic pain in Canadian seniors." <u>Health Reports</u> 19(1).
- Rejeski, W. J., T. Craven, et al. (1996). "Self-efficacy and pain in disability with osteoarthritis of the knee." Journals of Gerontology Series B-Psychological Sciences and Social Sciences 51(1): P24-P29.
- Rejeski, W. J. and S. L. Mihalko (2001). "Physical activity and quality of life in older adults." Journals of Gerontology Series a-Biological Sciences and Medical Sciences 56: 23-35.
- Reyes-Gibby, C. C., L. Aday, et al. (2002). "Impact of pain on self-rated health in the community-dwelling older adults." Pain 95(1-2): 75-82.
- * Sauro, K. M. and W. J. Becker (2009). "The Stress and Migraine Interaction." <u>Headache</u> 49(9): 1378-1386.
- Sawatzky, R., T. Liu-Ambrose, et al. (2007). "Physical activity as a mediator of the impact of chronic conditions on quality of life in older adults." Health and Quality of Life Outcomes 5.
- Selye, H. (1955). "Stress and Disease." <u>Science</u> 122(3171): 625-631.
- Sen, D. and D. Christie (2006). "Chronic idiopathic pain syndromes." <u>Best Practice & Research in Clinical Rheumatology</u> 20(2): 369-386.
- Spirduso, W. W. and D. L. Cronin (2001). "Exercise dose-response effects on quality of life and independent living in older adults." Medicine and Science in Sports and Exercise 33(6): S598-S608.
- Tsai, E. H. L. and D. J. Coleman (2009). "The Influence of Constraints and Self-Efficacies on Participation in Regular Active Recreation." Leisure Sciences 31(4): 364-383.
- Tashakkori, A. T., C. (1998). Mixed Methodology: Combining qualitative and quantitative approaches. Thousand Oaks, CA, Sage.
- Varkey, E., K. Hagen, et al. (2008). "Physical activity and headache: results from the Nord-Trondelag Health Study (HUNT)." Cephalalgia 28(12): 1292-1297.
- Wells, N. (1994). "PERCEIVED CONTROL OVER PAIN RELATION TO DISTRESS AND DISABILITY." <u>Research in Nursing & Health</u> 17(4): 295-302.
- Wolfe, F., H. A. Smythe, et al. (1990). "The American-College-of-Rheumatology 1990 Criteria for the Classification of Fibromyalgia Report of the Multicenter Criteria Committee." <u>Arthritis and Rheumatism</u> **33**(2): 160-172.
- Yunus, M. B. (1994). "Psychological-Aspects of Fibromyalgia Syndrome a Component of the Dysfunctional Spectrum Syndrome." <u>Baillieres Clinical Rheumatology</u> 8(4): 811-837.
- Yunus, M. B. (2007). "Role of central sensitization in symptoms beyond muscle pain, and the evaluation of a patient with widespread pain." Best Practice & Research in Clinical Rheumatology **21**(3): 481-497.
- Zautra, A. J., N. A. Hamilton, et al. (1999). "Comparison of stress responses in women with two types of chronic pain: Fibromyalgia and osteoarthritis." Cognitive Therapy and Research 23(2): 209-230.

How do we respond to stress?

General Adaptation Syndrome (Seyle, 1956)

Which of the following have you been diagnosed with?

- Arthritis
- AIDS
- Cancer
- Chronic fatigue syndrome
- Chronic neck/shoulder pain
- Chronic low back pain
- Chronic pelvic pain
- Irritable bowel syndrome
- Fibromyalgia

- Motor vehicle accident related pain
- Never injury pain
- Phantom limb pain
- Peripheral neuralgia
- Post surgical pain
- Raynaud's disease
- Spinal cord injury
- Sport-related injury
- Work-related injury
- Other
- Don't Know

Do you have chronic pain?

Are you able to participate as you like in physical activities?

What things in life seem to influence your pain?

PARTICIPANTS NEEDED FOR CHRONIC PAIN RESEARCH

I am looking for volunteers and invite you to complete a survey aimed at understanding your pain and beliefs about physical activity. Please ask the receptionist for a survey if you are willing to help, or you can complete the survey online at www.surveymonkey.com If you have questions, please contact Jen Hulburt at 737-3138 jenhulburt@gmail.com Memorial University of Newfoundland, Department of Human Kinetics and Recreation

Regression Analyses

Table 13: Hierarchical regression analysis of stress and painseverity controlling for gender and age

Variable	Beta	β	F	df	R ²	R ² _{adj}	$R^2\Delta$
Step 1			2.135	2,94	.043	.023	.043
Gender ^a	101	.214					
Age	178	.099					
Step 2			4.012*	3,93	.115	.086	.071
Pain severity ^b	.274**	.100**					

* p < .05, ** p<.01

^a 0 = male, 1 = female

^b o= "no pain", 10 = "pain as bad as you can imagine"

Regression Analyses

Table 13: Hierarchical regression analysis of stress and paininterference controlling for gender and age

Variable	Beta	β	F	df	\mathbb{R}^2	R ² _{adj}	$R^2\Delta$	
Step 1			2.135	2,94	.043	.023	.043	
Gender ^a	.014	.006						
Age	142	141						
Step 2			13.514***	3,93	.304	.281	.260	
Pain interference ^b	0.517***	.088***						
*** p < .001 ^a 0 = male, 1 = female								
0 = "does not interfere"; 10 = "completely interferes"								

Physical Activity

Work PA

Sport

PA

91% low activity occupations

Mean = 2.4 (SD = 1.08)

74% low intensity sport; 55% walking

Mean = 2.8 (SD = .64)

Physical Activity Leisure PA

48.4% said their Leisure PA was "less" or "much less" than others their age

> Mean = 0.6 (SD = .55)

2.6 (min) to 7.6 (max)

Total PA

Mean: 5.4 (SD =1.09)

Physical Activity and Chronic Pain

"Any bodily movement caused by muscle contraction and characterized by the level of physical effort" (ACSM/AHA 2007).

Physical activity is now well recognized as being beneficial for individuals with CP (Jones, Adams et al. 2006).

Chronic Pain and Stress

- Pain predicts daily stress and disability (Tsai, Tak et al. 2003)
- Perceived stress can initiate chronic pain, contribute to its perpetuation, or pain itself can be a stressor (Sauro and Becker 2009).

Differences Among More Active and Less Active Participants

- More active participants (*M* = 4.1, *SD* = 2.58) versus less active participants (*M* = 5.9, *SD* = 2.23) also reported less pain interference.
- Active participants compared to less active participants reported lower stress.
 *not statistically significant