Comprehensive Exam: Differential Equations (August 24, 2011)

1. Consider the initial value problem (IVP):

$$y' = f(t, y), \quad y(t_0) = y_0.$$

(a) Write down a set of conditions on the scalar function f(t, y) so that this IVP has a unique solution in some interval containing t_0 .

(b) Outline the method of successive approximations (i.e., the Picard iteration method) for the existence of a solution to the IVP.

2. Assume that $\omega^2 \neq 4$. Use the Laplace transform to solve the initial value problem $y'' + \omega^2 y = \cos 2t$, y(0) = 1, y'(0) = 0.

3. Let $C((\alpha, \beta), \mathbb{R}^n)$ be the standard vector space over \mathbb{R} of all continuous functions from (α, β) to \mathbb{R}^n , and $\mathbf{P}(t)$ be a continuous $n \times n$ matrix function on (α, β) . Define the set

$$X = \{ \mathbf{x} \in C((\alpha, \beta), \mathbb{R}^n) : \mathbf{x}(t) \text{ is a solution of } \mathbf{x}' = \mathbf{P}(t)\mathbf{x} \text{ on } (\alpha, \beta) \}.$$

Show that X is an *n*-dimensional vector space over \mathbb{R} .

4. (a) Give the definition of the (Liapunov) stability, instability, and asymptotic stability of an equilibrium point $\mathbf{x}^* \in D$ for the autonomous system $\mathbf{x}' = f(\mathbf{x})$, where f is a Lipschitz continuous vector field on the domain $D \subset \mathbb{R}^n$.

(b) For two dimensional system u' = v, v' = -u, prove that the equilibrium point (0,0) is stable but not asymptotically stable.

5. Use the method of separation of variables to solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ inside a rectangle $0 \le x \le L$, $0 \le y \le H$, with the boundary conditions $\frac{\partial u}{\partial x}(0, y) = 0$, $\frac{\partial u}{\partial x}(L, y) = 0$, u(x, 0) = 0, and u(x, H) = f(x).

6. (a) Verify that $v(t,x) = \sum_{n=1}^{\infty} a_n \sin(n\pi x) e^{-(n\pi)^2 t}$ is a solution of the heat equation $\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2}, t > 0, x \in (0,1)$, subject to the boundary condition v(0,t) = 0 and v(1,t) = 0, and give the formula for a_n in terms of the initial function v(x,0).

(b) Find a solution of the nonhomogeneous problem

$$\begin{aligned} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \quad t > 0, \ x \in (0, 1), \\ u(0, t) &= 20, \quad u(1, t) = 11, \quad t \ge 0, \\ u(x, 0) &= f(x), \quad x \in [0, 1]. \end{aligned}$$