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Basic Numerical Analysis

A1. Given a point x0 and (small) h, suppose you are given values for f(x0), f(x0+h/2), and f(x0+2h).

(a) Give three different approximations for f ′(x0) that are O(h) accurate. Give the leading-order
error term for each in terms of f ′′(x0). Which is most accurate?

(b) What is the highest-order accurate approximation of f ′(x0) that you can construct from these
three values? Give the leading-order error term in terms of higher-order derivatives of f eval-
uated at x0.

(c) Give an approximation to f ′′(x0) based on these three values. State the order and give the
leading-order error term in terms of higher-order derivatives of f evaluated at x0. Compare the
accuracy of this approximation with that of the usual approximation to f ′′(x0) based on f(x0)
and f(x0 ± h).

A2. Assuming f ∈ Cn+1[0, 1], what is the error between f(x) and the degree N + 1 polynomial P (x)
which interpolates f(x) at the N + 1 nodes xj = jh, j = 0, . . . , N with h = 1/N ?

Now suppose p(x) is a piecewise linear interpolant to a function f(x) on the interval [0, 1] using the
nodes xj = jh, j = 0, . . . , N and h = 1/N . Starting from the error formula, if xj ≤ x ≤ xj+1,
prove that there is a point ξ such that

|p(x)− f(x)| ≤ |f (2)(ξ)|h
2

8
.

Finally, consider f(x) = ex. How many nodes are needed are the interval [0, 1] to ensure an inter-
polation error of no more than 10−6 when using piecewise linear interpolation? You can leave your
answer in exact form.

A3. Show that when the integral
∫ 1

0
x2 dx is approximated by composite trapezoidal rule with n intervals

that the error is exactly h2/6.

What is the maximum precision possible using a Gaussian quadrature formula with n quadrature
node? Explain why this is the case.

Linear and nonlinear algebraic equations

B1. Consider the matrix

A =

 4 −2 −2
−2 10 4
−2 4 2 + α

 .

For what values of α can a Cholesky factorization be computed? Give the Cholesky and LDLT

factorizations of the matrix (assuming α satisfies any conditions necessary for each factorization,
and stating these conditions clearly).

Describe the relative advantages and disadvantages of the Cholesky and LU factorizations. Discuss
the role of pivoting in the Cholesky factorization of sparse matrices.
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B2. Fully describe the steepest descent method for minimizing a function f(x) : Rn → R. Explain how
line search is incorporated into the algorithm. Why is line search a good idea even though it is itself
an optimization problem?

Take one complete step of steepest descent with exact line search for the function f(x1, x2) =
(x1 − 3)2 + 3(x2 − 5)2 starting from the point (x1, x2) = (2, 4).

B3. For a parameter θ > 0, consider the fixed-point iteration

xn+1 =
x3n + 3θxn
3x2n + θ

.

Show that there are three fixed points of the iteration, only one of which is positive. State a local
convergence theorem for the general fixed-point iteration xn+1 = f(xn), and use it to show that the
method converges to the positive fixed point for suitable initial guesses with a local convergence rate
that is at least quadratic. Can you make the same conclusion for both of the other fixed points?

Numerical Methods for ODEs

C1. Consider the ODE v′′′ = v′v − 2t(v′′)2, v(0) = α1, v
′(0) = α2, v

′′(0) = α3.

(a) Convert the ODE into a first order initial value problem.

(b) State an existence and uniqueness theorem for a general first-order system of IVPs: y′ =
f(t, y), y(0) = η. Include an expression for tmin so that the unique solution exists at least for
0 ≤ t ≤ tmin. Justify this expression, and evaluate it for the system from part (a).

(c) Given 0 < t1 < t2, give approximations for v(t2), v′(t2), and v′′(t2) computed using explicit
Euler to first approximate v(t1), v′(t1), and v′′(t1), then BDF2 to approximate v(t2), v′(t2),
and v′′(t2) from these values. Why can’t we use BDF2 to directly approximate the values at
t1?

C2. Consider the method
yn = yn−1 +

h

2
(fn + fn−1)

for solving y′ = f(t, y) on a mesh of the interval [a, b] with uniform mesh-size h = (b − a)/N ,
using an appropriate interpolating polynomial. Here, at time tn = a+nh, we use the approximation
yn ≈ y(tn), to compute the value fn = f(tn, yn).

(a) What type of linear multistep method is this?

(b) If we were to refer to this as a k–step method, what would k be?

(c) Write down the recursion that would result by applying this method to the test problem

y′ = −5ty2 +
5

t
− 1

t2
, y(1) = 1.

(d) A nonlinear equation has to be solved at each step in the above example. Write down the fixed
point iteration to solve for yn above at each step. What start value would you use for the fixed
point iteration?
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C3. Consider the Butcher array
0 0 0 0

2
3

2
3

0 0

2
3

2
3
− 1

4α
1
4α

0

1
4

3
4
− α α

,

where α is a parameter.

(a) Write this method down explicitly showing all stages.

(b) Is this method explicit or implicit? How can you tell from the Butcher array?

(c) Find the order of the method for all values of α.

Numerical Methods for PDEs

D1. Consider a uniform mesh of [0, 1]2 with h = ∆x = ∆y, and derive the relation

∇2uij =
1

2h2
(ui+1,j−1+ui+1,j+1+ui−1,j−1+ui−1,j+1−4uij)−

h2

12
(uxxxx+6uxxyy+uyyyy)+O(h4),

where uk,` = u(kh, `h) and all derivatives are evaluated at node (ih, jh). Use this to give a dis-
cretization of −∇2u = f(x, y) on a uniform mesh of [0, 1]2 with O(h2) truncation error.

D2. Using Taylor series, derive the Lax-Wendroff scheme for the pure advection problem ut + aux = 0.
What is the order of the scheme in space and time? (Be sure to fully justify your answer!) Define
and investigate the stability of the scheme using a technique of your choosing.

D3. Consider the Dufort-Frankel finite-difference discretization of the one-dimensional heat equation,
ut = auxx,

vn+1
j = vn−1j +

2ak

h2
(
vnj+1 −

(
vn+1
j + vn−1j

)
+ vnj−1

)
,

where vnj ≈ u(jh, nk) for constant spatial step-size h and temporal step-size k. Under what con-
ditions (if any) is this a consistent discretization for the heat equation given above? Under those
conditions, give the accuracy of the scheme with respect to h and k. What conditions (if any) does
von Neumann stability analysis give for the scheme to be stable? State the Lax Equivalence Theo-
rem, and what you can conclude from it for this discretization.
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