Graduate Seminar

First Speaker:

Kathleen Barnetson, Memorial University

Thursday, January 30, 2014 1:00 p.m., HH-3017

The Key Player Problems on Graphs

Abstract:

Given a graph G and an integer k, the Key Player Problem asks for the set of k vertices whose removal will maximally disconnect the graph. In this talk I will present a new formulation of the Key Play Problem as a decision problem, which we have shown to be NP-complete. I will also describe a complementary problem which asks for the k vertices best situated to disperse information across a graph, if for example the graph is modelling a social network. Both problems revolve around the identification of "central" vertices in graphs. Finally I will describe our current progress on the case where k is equal to the vertex connectivity of the graph.

Second Speaker:

Robert Luther, Memorial University

Equitably Colourable Combinatorial Designs

Abstract:

For a combinatorial object of order v, the associated *spectrum problem* is the problem of determining all necessary and sufficient conditions on v so that the object can and will exist. We will investigate the spectrum problem for equitably ℓ -colourable balanced incomplete block designs.

Suppose we have a BIBD(v,k, λ) in which the points are coloured with ℓ colours $c_1,...,c_{\ell}$. A block *B* is *equitably* ℓ -coloured if *B* has n_i vertices coloured with colour c_i ($i=1,...,\ell$) and $|n_i-n_j| \le 1$ for any $i,j \in \{1,...,\ell\}$. A design is *equitably* ℓ -colourable if the points can be coloured with ℓ colours such that every block is ℓ -coloured. Here the associated spectrum problem is the problem of determining conditions on v such that an equitably ℓ -coloured (v,k,λ)-BIBD exists for fixed ℓ , k, and λ .

This problem was inspired by some recent research on equitably ℓ -colourable *m*-cycle decompositions of the complete graph.