The Fifteenth W.J. Blundon Contest - Solutions

1. (a)
$$\frac{1}{\log_2 36} + \frac{1}{\log_3 36} = \log_{36} 2 + \log_{36} 3 = \log_{36} 6 = \frac{1}{2}$$

(b)
$$1 = \log_{15} 15 = \log_{15} (5 \cdot 3) = \log_{15} 5 + \log_{15} 3 = a + \log_{15} 3$$

 $\log_{15} 3 = 1 - a \implies \log_{15} 9 = \log_{15} 3^2 = 2\log_{15} 3 = 2(1 - a)$

2. (a)
$$V_2 = \pi (1.5r)^2 (.8h) = 1.8 (\pi r^2 h) = 1.8 V_1$$

So the volume is increased by 80%.

(b)
$$2^{1998} \cdot 5^{1988} = 2^{10} \cdot 2^{1988} \cdot 5^{1988} = 1024 \cdot 10^{1988}$$

which has $1988 + 4 = 1992$ digits

3.
$$3^{2+x} + 3^{2-x} = 82$$
$$9 \cdot 3^x + \frac{9}{3^x} = 82$$
$$9(3^x)^2 - 82(3^x) + 9 = 0$$
$$(9 \cdot 3^x - 1)(3^x - 9) = 0$$
$$3^x = \frac{1}{9}, \ 3^x = 9$$
$$x = -2 \quad x = 2$$

4.
$$x^{6} = y^{2} + 53$$

 $x^{6} - y^{2} = 53$
 $(x^{3} - y)(x^{3} + y) = 53$
 $x^{3} - y = 53$
 $x^{3} - y = 1$
 $x^{3} + y = 1$
 $x = 3$
 $y = -26$
 $x^{3} - y = 1$
 $x^{3} - y = -53$
 $x^{3} - y = -1$
 $x^{3} + y = -1$
 $x = 3$
 $x = -3$
 $x = -26$

5. Let A be the number of adults and C be the number of children initially at the picnic. After one-fifth of the adults left, four-fifths remain. So

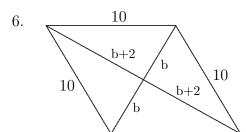
$$\frac{\frac{4}{5}A}{C} = \frac{2}{3} \quad \Rightarrow \quad 6A = 5C.$$

After 44 children left

$$\frac{C-44}{\frac{4}{5}A} = \frac{2}{5} \implies 8A = 25C - 1100.$$

Solving the two equations gives A = 50, C = 60. The number remaining is then

$$\frac{4}{5}(50) + (60 - 44) = 40 + 16 = 56.$$



10

$$(b+2)^{2} + b^{2} = 100$$

$$2b^{2} + 4b - 96 = 0$$

$$b^{2} + 2b - 48 = 0$$

$$(b-6)(b+8) = 0$$

$$b = 6, b \neq -8$$

Since the area of a rhombus is one half the product of the diagonals we get

$$A = \frac{1}{2}(2b)(2b+4) = \frac{1}{2}(12)(16) = 96$$

7. Let q be the number of quarters and d be the number of dimes. Then

$$25q + 10d = 1000$$
$$d = 100 - \frac{5}{2}q$$

Since d must be an integer, q must be even. Also d must be positive. So

$$100 - \frac{2}{5}q > 0$$
$$q < 40$$

So q must be an even positive integer less than 40, of which there are 19.

8. Let $y = \sqrt[4]{x+10}$, then $y^2 = \sqrt{x+10}$, and the equation becomes

$$y^2 + y = 12$$
 Then: $\sqrt[4]{x + 10} = 3$
 $y^2 + y - 12 = 0$ $x + 10 = 81$
 $(y + 4)(y - 3) = 0$ $x = 71$
 $y \neq -4, y = 3$

9.
$$x^{135} + x^{125} - x^{115} + x^5 + 1 = (x^3 - x)Q(x) + ax^2 + bx + c$$

= $x(x-1)(x+1) + ax^2 + bx + c$

This must be valid for all values of x. Substituting in x = 0, x = 1, and x = -1 gives:

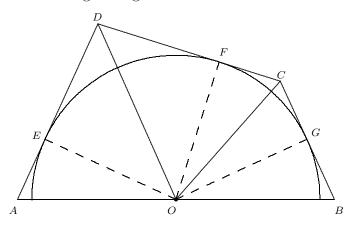
$$x = 0$$
: $1 = 0 + c \implies c = 1$
 $x = 1$: $3 = 0 + a + b + c \implies a + b = 2$
 $x = -1$: $-1 = 0 + a - b + c \implies a - b = -2$

Solving the system

$$a+b = 2$$
$$a-b = -2$$

gives a = 0, b = 2. So the remainder is 2x + 1.

10. First join the obvious lines in the given figure:



By the properties of tangents, DE = DF and CF = CG.

Therefore $\angle EDO = \angle FDO = \phi$ and $\angle FCO = \angle GCO = \psi$.

Since OA = OB, we have $\angle EAO = \angle GBO = \theta$.

Summing the angles of quadrilateral ABCD, we get $\theta + 2\phi + 2\psi + \theta = 360^{\circ}$.

Hence $\theta + \phi + \psi = 180^{\circ}$; that is, they are the angles of a triangle.

Considering triangles AOD, DOC and COB, we get $\angle AOD = \psi$, $\angle DOC = \theta$ and $\angle COB = \phi$.

Thus the three triangles are similar. Considering the triangles ADO and BOC, we have

$$\frac{AD}{AO} = \frac{OB}{BC}$$
, or $AD \times BC = AO \times OB$.
Since $AO = OB = \frac{1}{2}AB$, we get the result.