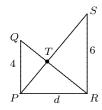
THE TWENTY-EIGHTH W.J. BLUNDON MATHEMATICS CONTEST*

Sponsored by
The Canadian Mathematical Society
in cooperation with
The Department of Mathematics and Statistics
Memorial University of Newfoundland

February 24, 2011

- 1. Find all the sets of three consecutive integers such that the sum of their squares is 194.
- 2. Each of the vertices of a rectangle is located on the circle $x^2 + y^2 = 25$. If the perimeter of the rectangle is 28, what is its area?
- 3. Solve: $x^{\log_{10} x} = \frac{x^3}{100}$.
- 4. A triangle has sides of length 2, 2, and $\sqrt{6}-\sqrt{2}$. Show that the angles are exactly 75 degrees.
- 5. At each vertex of a regular hexagon, a sector of a circle of radius one-half of the side of the hexagon is removed. Find the fraction of the hexagon remaining.

- 6. The graphs of $y = \sqrt{3}x^2$ and $x^2 + y^2 = 4$ intersect at A and B.
 - (a) Determine the co-ordinates of A and B.
 - (b) Determine the length of the minor arc AB of the circle.
- 7. A pair of telephone poles d metres apart is supported by two cables which run from the top of each pole to the bottom of the other. The poles are $4\ m$ and $6\ m$ tall. Determine the height above the ground of the point T, where the two cables intersect. What happens to this height as d increases?



- 8. The equation $x^3 px^2 + qx r = 0$ has roots which are consecutive integers. Determine r and q in terms of p.
- 9. Show that if $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0$, then $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 10. Show that if $abc \neq 0$ and $(x^2 + y^2 + z^2)(a^2 + b^2 + c^2) = (ax + by + cz)^2$, then $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$.