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1. An automobile went up a hill at an average speed of 30 km/hr and down the same distance

at an average speed of 60 km/hr. What was the average speed for the trip?
Let d be the distance one way, ¢; the time going up the hill and ¢, the time going down. Since

30t; = d = 60ts, then t; = 2t5. The required speed is s where s = . Hence,

t1 + 1o

2d 120t 120
s = = 2 = =40 km/hr.
t1 + 1o 2ty + 5 241

. Let P be a point in the interior of rectangle ABC'D. If PA =9, PB =4 and PC = 6, find
PD.

C
Since PD? = 2 4+ d?, ¢> = 92 — a? and d? = 6% — b?,
we have
d| \b PD* = 9*—a®+6>— b
= 81+36— (a®>+b?)
N = 117 - 16 = 101.
a / 9 Hence PD = +/101.
B b c A

3. Find the area of the region above the x-axis and below the graph of 2 + (y + 1)? = 2.

The graph of the equation 22 + (y+1)? =2 is a
circle of radius v/2 with centre at (0,—1). The

m/m,mmm Wﬂmﬂm circle intersects the z-axis at (+1,0). The area
(=1,0) (1,0)  of the required region is clearly a quarter of the
circle of radius v/2 minus the area of the triangle
with base length V2 and height V2. That is, the

V2 V2 1 , 1 1 w2
areaziﬂ(\/i) _5(\/5)(\/5)757_17 5
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4. A square is inscribed in an equilateral triangle. Find the ratio of the area of the square to the

*

area of the triangle.
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Let = be the length of each side of the square. Note that
the top triangle is equilateral and all the right trian-
gles are 30-60-90 triangles. Using the values of tan 60°
and sin 60°, the sides of the right triangles are calcu-
lated as shown. The base of the equilateral triangle is

2 \/gx

x + — and the height is x + ——. The required ra-
/3 g 5 q

L x? 43 44/3

t10 1s —

st )G VP THaVs
28v/3 — 48. (Note this number is 0.4974 which is close
to 1/2.)

. Find the number of solutions to the equation 2x + 5y = 2005 for which both x and y are

positive integers.

Note that 5 divides evenly into 2x and hence x must have a factor 5. Let z = 5¢, then

401
10t + by = 2005 so that 2t +y = 401. Since y = 401 — 2t > 0, then ¢t < ER so t < 200. For

each positive t there is a positive solution. Hence there are exactly 200 solutions.

. For what values of a does the equation 42 + 4ax + a + 6 = 0 have real solutions?

A quadratic equation has real solutions if and only if the discriminant is nonnegative. That
is, there are real solutions for those a for which

A = (4a)* — 4(4)(a + 6) = 16a*® — 16a — 96 > 0.

After dividing by 16, we have to solve > —a—6 = (a —3)(a+2) > 0. Hence a > 3 or a < —2.

. Ace runs with constant speed and Flash runs z times as fast, z > 1. Flash gives Ace a head
start of y metres, and, at a given signal, they start off in the same direction. Find the distance

Flash must run to catch Ace.

Let d be the distance Flash must travel to catch Ace, let v be Ace’s speed, and let t be the
time needed to catch up. Then we have two expressions for d, namely, d = vat and d —y = vt.

Eliminating v we have d —y = —t = —. Hence d — — =y and so d =

d

xt

xry
x x r—1

. Show that 3" — 2n — 1 is divisible by 4 for any positive integer n.

We take two cases. First choose n to be even. Let n = 2m. Then 3"—2n—1 = 3?"—2(2m)—1 =
3 — 1 —4m = (3™ — 1)(3™ + 1) — 4m. Clearly 3™ — 1 and 3™ + 1 are even so 4 divides
their product, and hence divides 3" — 2n — 1. For n odd we write n = 2m + 1. Then
3" —2n—1=3""_202m+1)—1=3""" -3 —4m =3(3™ - 1)(3™ + 1) — 4m. Clearly 4
divides this last expression since, as before, both 3" — 1 and 3™ + 1 are even.
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9. If the polynomial P(x) = x* — z* + x — 2 has the three zeros a, b and ¢, find a® + b + 3.

Since a, b and ¢ are the roots, then

@ —a’+a—2 = 0
B—bV+b—2 = 0

G —Ftc—2 =

Adding, we have a® +0* + & — (a* + V> + )+ (a+ b+ ¢) — 6 = 0. Since a® + b* + ¢* =
(a+b+c)? —2(ab+ bc + ca), then

a®+b+c=(a+b+c)? —2(ab+be+ca) — (a+b+c) + 6.
The right side consists of the so-called “symmetric” functions involving the roots. Since
-2 +r—-2=(r—a)(v—0b)(x—c)=2"— (a+b+c)x®+ (ab+ bc + ca)x — abe,
thena+b+c=1, ab+bc+ca=1,s0a®>+b+c=1>-2(1) —1+6=4.

10. A circle of radius 2 is tangent to both sides of an angle. A circle of radius 3 is tangent to the
first circle and both sides of the angle. A third circle is tangent to the second circle and both
sides of the angle. Find the radius of the third circle.

Let the radius of the third circle be & and the length of the shortest distance from the vertex

2 7
to the first circle be a. Then, by similar triangles, cre_a _:I; and hence a = 8. By similar
10 2 18
triangles again we have ot Dtr_a ;_ , SO T 5. Hence z = 3
x x
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