1. (a) Each of the 100 people shakes hands with 99 other people, giving 100 · 99 handshakes. But this counts each handshake twice (e.g. A shaking hands with B and B shaking hands with A.) So the total number of handshakes is

$$\frac{100 \cdot 99}{2} = 4950.$$

(b) There are 9 choices for the first digit, 10 choices for the second digit, 10 choices for the third digit, and 2 choices (0 or 5) for the fourth digit. So the total number of such numbers is

$$9 \cdot 10 \cdot 10 \cdot 2 = 1800.$$

2. If n is even, say n = 2k, then

$$n^2 + 2 = (2k)^2 + 2 = 4k^2 + 2 = 2(2k^2 + 1)$$

which is not divisible by 4 since $2k^2 + 1$ is odd and hence not divisible by 2.

If n is odd, say n = 2k + 1, then

$$n^{2} + 2 = (2k+1)^{2} + 2 = 4k^{2} + 4k + 1 + 2 = 4(k^{2} + k) + 3$$

which is not divisible by 4 since 3 is not divisible by 4. So in either case, $n^2 + 2$ is not divisible by 4, and hence is divisible by 4 for no integer n.

3. Let the odd integers be a = 2n + 1 and b = 2m + 1. Then

$$a^{2} - b^{2} = (2n+1)^{2} - (2m+1)^{2} = 4n^{2} + 4n + 1 - 4m^{2} - 4m - 1$$
$$= 4(n^{2} + n - m^{2} - m) = 4[n(n+1) - m(m+1)]$$

Since the product of two consecutive integers is even, n(n+1) and m(m+1) are divisible by 2, and so is their difference. So $a^2 - b^2$ is divisible by 8.

4.

$$(x+y)^2 = (x+r)^2 + (y+r)^2$$
$$x^2 + 2xy + y^2 = x^2 + 2xr + r^2 + y^2 + 2yr + r^2$$
$$xy = xr + yr + r^2$$

The area of the triangle is

Area =
$$\frac{1}{2}(x+r)(y+r) = \frac{1}{2}(xy+xr+yr+r^2)$$

= $\frac{1}{2}(xy+xy) = xy$

5.
$$2^{x} + 3^{y} = 3^{y+2} - 2^{x+1}$$
$$2^{x} + 2^{x+1} = 3^{y+2} - 3^{y}$$
$$2^{x}(1+2) = 3^{y}(9-1)$$
$$3 \cdot 2^{x} = 8 \cdot 3^{y}$$
$$\frac{2^{x}}{8} = \frac{3^{y}}{3}$$
$$2^{x-3} = 3^{y-1}$$

The only integers m and n for which $2^m = 3^n$ are m = n = 0. So x - 3 = 0 and y - 1 = 0. So x = 3 and y = 1.

6. We want the number of points (x, y), where x and y are integers, which lie strictly inside the square determined by the lines x + y = 100, x - y = 100, -x + y = 100 and -x - y = -100.

On the coordinate axes there are $4 \times 99 + 1 = 397$ points with integer coefficients. Inside each triangle formed in a quadrant there are

$$98 + 97 + \dots + 2 + 1 = \frac{98 \cdot 99}{2} = 4851$$

points. So in total there are $397 + 4 \times 4851 = 19,801$ points.

7. Let the width of the cross be 2x cm. Then each part of the red field is a rectangle of dimension $(24 - x) \times (12 - x)$. There are four such rectangles, given a total red area of

$$4(24-x)(12-x) = 1152 - 144x + 4x^{2}.$$

The white cross consists of two rectangles, each of dimension $(24-x) \times 2x$, and two rectangles, each of dimension $(12-x) \times 2x$, plus a square of dimension $2x \times 2x$. The total area of the cross is

$$4x(24-x) + 4x(12-x) + 4x^2 = 144x - 4x^2.$$

Thus we must have

$$1152 - 144x + 4x^{2} = 144x - 4x^{2}$$
$$8x^{2} - 288x + 1152 = 0$$
$$x^{2} - 36x + 144 = 0$$

The solutions are

$$x = \frac{36 \pm \sqrt{36^2 - 4(1)(144)}}{2} = \frac{36 \pm \sqrt{720}}{2} = \frac{36 \pm 12\sqrt{5}}{2} = 18 \pm 6\sqrt{5}$$

But $18 + 6\sqrt{5} > 12$, and so we must reject this value. So the width of the cross is

$$2(18 - 6\sqrt{5}) = 36 - 12\sqrt{5} \approx 9.167 \,\mathrm{cm}$$

8.
$$\frac{x+1}{2+\sqrt{x}} - \frac{1}{2-\sqrt{x}} = 3$$

$$(x+1)(2-\sqrt{x}) - (2+\sqrt{x}) = 3(2+\sqrt{x})(2-\sqrt{x})$$

$$2x+2-x\sqrt{x}-\sqrt{x}-2-\sqrt{x} = 12-3x$$

$$x\sqrt{x}-5x+2\sqrt{x}+12=0$$

$$y^3-5y^2+2y+12=0$$

$$(y-3)(y^2-2y-4)=0$$

$$y=3, \ y=\frac{2\pm\sqrt{20}}{2}=1\pm\sqrt{5}$$

$$y=\sqrt{x}=3 \ \Rightarrow \ x=9$$

$$y = \sqrt{x} = 3 \implies x = 9$$

 $y = \sqrt{x} = 1 \pm \sqrt{5} \implies x = 1 \pm 2\sqrt{5} + 5 = 6 \pm 2\sqrt{5}$

So the solutions are x = 9, $x = 6 + 2\sqrt{5}$ and $x = 6 - 2\sqrt{5}$.

9. Suppose r is a root of P(x), so P(r) = 0 $[r \neq 0 \text{ since } a_0 \neq 0]$. Then

$$Q\left(\frac{1}{r}\right) = a_0 \left(\frac{1}{r}\right)^n + a_1 \left(\frac{1}{r}\right)^{n-1} + \dots + a_{n-1} \left(\frac{1}{r}\right) + a_n$$

$$= \frac{1}{r^n} \left[a_0 + a_1 r + a_2 r^2 + \dots + a_{n-1} r^{n-1} + a_n r^n \right]$$

$$= \frac{1}{r^n} P(r) = \frac{1}{r^n} \cdot 0 = 0$$

So $\frac{1}{r}$ is a root of Q(x).

 7^3 ends in 3

 7^4 ends in 1