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1. Solve the system of equations

a2 − 3(b2 + c2 + d2) = 7

abcd = 330

where a, b, c, d are prime numbers. How many different quadruples (a, b, c, d) consisting of 4
prime numbers are there that solve the system?
Solution: The prime factors of 330 are 2, 3, 5, 11. The only possibility for a is a = 11. The
remaining prime numbers (b, c, d) can be 2, 3, 5 in any permutation, so the total number of
distinct quadruples is 3! = 6.

2. Find the values of c for which the equation

|x+ c|+ |x− 6| = 10

has an infinite number of solutions.
Solution: To have an infinite number of solutions we would require that x cancel out of the
above equation. This occurs if (i) x + c > 0, x − 6 < 0 and c + 6 = 10, so c = 4, or (ii)
x+ c < 0, x− 6 > 0, and −c− 6 = 10 so c = −16. These are the only two solutions.

3. Suppose a pole P1 of height 360m is placed on the Signal Hill side of the Narrows and, directly
across, on the Fort Amherst side of the Narrows, second pole P2 of height of 40m is built.
(You can assume the bottoms of each pole are at the same height above sea level). A taut
wire is placed joining the top of P1 to the foot of pole P2. Similarly another taut wire is placed
connecting the foot of P1 to the top of P2. What is the greatest height of a ship that could
sail under the wires?
Solution: Let a represent the distance between P1 and P2 (i.e. the width of the Narrows
along a straight line joining the foots of each pole). Setting up Cartesian coordinates, set
the foot of P1 at (0, 0) and its top at (0, 360). Then the foot and top of P2 have coordinates
(a, 0) and (a, 40) respectively. It is easy to see the equations describing the straight lines
representing the two wires are

y1 = −360x

a
+ 360 y2 =

40x

a

These lines intersect at x+ = 9a
10

. This corresponds to y+ = 36. Thus the maximum height of
a ship that can pass under each wire is 36m.
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4. Suppose that x5− 20qx+ 8r is divisible by (x− 2)2 for real numbers q, r. Determine q and r.
Solution Set

x5 − 20qx+ 8r = (x− 2)2(x3 + bx2 + cx+ d)

= x5 + (b− 4)x4 + (4− 4b+ c)x3 + (4b− 4c+ d)x2 + (4c− 4d)x+ 4d

where (b, c, d) are to be determined by comparing coefficients. We find b = 4 immediately and
vanishing of the cubic term gives

0 = 4− 4b+ c = −12 + c⇒ c = 12 .

A vanishing quadratic term gives 4b− 4c+ d = −32 + d = 0 so that d = 32. The linear term
is then 4c − 4d = 48 − 4 · 32 = −80. Comparing coefficients implies −20q = −80 or q = 4.
Finally the constant term is 4d = 128. Comparing coefficients give 8r = 128 so that r = 16.

5. Find the solutions to the quadratic equation x2 − 8x + 13 = 0 . Then evaluate the function
f(x) given by

f(x) =
x4 − 8x3 + 14x2 − 8x+ 19

x2 − 8x+ 15

at the point x = a where

a =

√
19− 8

√
3 .

Suggestion: Relate a to a solution of the above quadratic equation.
Solution: The roots of x2 − 8x + 13 are seen to be x1 = 4 −

√
3 and x2 = 4 +

√
3. Now

rewrite a:

a =

√
19− 8

√
3 =

√
16 + 3− 8

√
3 =

√
(4−

√
3)2 = 4−

√
3 = x1

Thus a2 − 8a+ 15 = a2 − 8a+ 13 + 2 = 2 . By long division we can check that

x4 − 8x3 + 14x2 − 8x+ 19 = (1 + x2)(13− 8x+ x2) + 6

Setting x = a, the first term vanishes, leaving f(a) = 6/2 = 3.

6. (a) Find the area of intersection of two circles of radius 1 and centres at G = (1, 0) and
F = (0, 1).
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Problem 3A. Find the area of intersection of two circles of radius 1 and centres at
G(1, 0) and F (0, 1).

Solution. Connect the two points of intersection of the circles by the segment DK.

The area between the segment and the portion of the circle is a quater of the circle less
the right triangle with legs 1 and 1. This area is π/4 − 1/2. The area we are looking for is
twice larger, so the answer is π/2 − 1.

Problem 3B. A big circle has centre at J, and 4 small circles (with diameters equal to
the radius of the big circle) are drawn inside of it as shown in the picture.

Determine the fraction of the area of the big circle not inside of either of the 4 small
circles.

Solution. Let the big circle have radius R. The area of the big circle is πR2. Then each of
the small circles has area π(R/2)2 and the 4 of them have area πR2 again. To find the area
of the region inside the big square and outside of the 4 small squares we need to subtract
the 4 small areas from the big, and add the parts that were subtracting twice. So we get
(2π− 4)R2. Here we used (generalized) result from part A. Thus, the fraction of the area of
the big circle not inside of either of the 4 small circles is (2π − 4)/π = 2 − 4/π.

Figure 1: Diagram for Problem 6(a).

(b) A large circle has centre at the point J and 4 small circles (with diameters equal to the
radius of the larger circle) are drawn inside of it as shown below. Find the fraction of
the area of the larger circle not inside any of the 4 small circles.

Problem 3A. Find the area of intersection of two circles of radius 1 and centres at
G(1, 0) and F (0, 1).

Solution. Connect the two points of intersection of the circles by the segment DK.

The area between the segment and the portion of the circle is a quater of the circle less
the right triangle with legs 1 and 1. This area is π/4 − 1/2. The area we are looking for is
twice larger, so the answer is π/2 − 1.

Problem 3B. A big circle has centre at J, and 4 small circles (with diameters equal to
the radius of the big circle) are drawn inside of it as shown in the picture.

Determine the fraction of the area of the big circle not inside of either of the 4 small
circles.

Solution. Let the big circle have radius R. The area of the big circle is πR2. Then each of
the small circles has area π(R/2)2 and the 4 of them have area πR2 again. To find the area
of the region inside the big square and outside of the 4 small squares we need to subtract
the 4 small areas from the big, and add the parts that were subtracting twice. So we get
(2π− 4)R2. Here we used (generalized) result from part A. Thus, the fraction of the area of
the big circle not inside of either of the 4 small circles is (2π − 4)/π = 2 − 4/π.

Figure 2: Diagram for Problem 6(b)

Solution: (a) Connect the two points of intersection of the circles by the segment DK (see
Figure 3 below). The area between the segment and the portion of the circle is a quarter of
the circle less the right triangle with legs 1 and 1. This area is π/4 − 1/2. The area we are
looking for is twice larger, so the answer is π/2− 1.
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(b) Let the big circle have radius R. The area of the big circle is πR2. Then each of the small
circles has area π(R/2)2 and the 4 of them have area πR2 again. To find the area of the region
inside the big circle and outside of the 4 small circles we need to subtract the 4 small circular
areas from the big one, and add the parts that were subtracted twice. So we get

πR2 − 4π(R/2)2 + 4(π/2− 1)(R/2)2 = (π/2− 1)R2.

Here we used (a generalized) result from part (a). Thus, the fraction of the area of the big
circle not inside of either of the 4 small circles is (π/2− 1)/π = 1/2− 1/π.

Problem 3A. Find the area of intersection of two circles of radius 1 and centres at
G(1, 0) and F (0, 1).

Solution. Connect the two points of intersection of the circles by the segment DK.

The area between the segment and the portion of the circle is a quater of the circle less
the right triangle with legs 1 and 1. This area is π/4 − 1/2. The area we are looking for is
twice larger, so the answer is π/2 − 1.

Problem 3B. A big circle has centre at J, and 4 small circles (with diameters equal to
the radius of the big circle) are drawn inside of it as shown in the picture.

Determine the fraction of the area of the big circle not inside of either of the 4 small
circles.

Solution. Let the big circle have radius R. The area of the big circle is πR2. Then each of
the small circles has area π(R/2)2 and the 4 of them have area πR2 again. To find the area
of the region inside the big square and outside of the 4 small squares we need to subtract
the 4 small areas from the big, and add the parts that were subtracting twice. So we get
(2π− 4)R2. Here we used (generalized) result from part A. Thus, the fraction of the area of
the big circle not inside of either of the 4 small circles is (2π − 4)/π = 2 − 4/π.

Figure 3: Solution for Problem 5(a)

7. Consider the sum

S =
52 + 3

52 − 1
+

72 + 3

72 − 1
+

92 + 3

92 − 1
+ . . .+

20172 + 3

20172 − 1

(a) How many terms are there in S?

(b) Calculate S.

Solution: (a) The terms are of the form ((2n+ 1)2 + 3)/((2n+ 1)2 − 1) starting from n = 2
to n = 1008. In total there are 1007 terms.
(b) Write the general term as

n2 + 3

n2 − 1
= 1 +

4

n2 − 1
= 1 +

2

n− 1
− 2

n+ 1

Thus each term in S apart from the first and last will contribute a 1, while the first and last
contribute a 1 + 1/2 and 1 − 2/2018 = 1 − 1/1009. There are a total number of 1007 terms
in the sum. Thus in total we have

S = 1007 +
1

2
− 1

1009
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This is the simplest way to write the solution. One can clear fractions to get

S =
2033133

2018

although this final step can be ignored.

8. For how many integer values n does the function

f(n) =
22017

3n+ 1

take a positive integer value?

Solution: We require 3n+ 1 = 2m for some m = 0, 1, 2 . . . 2017. Then 2m − 1 is divisible by
3. Trying out a few values one sees this requires m = 2j for j = 0, 1, 2 . . .. More precisely, we
know 22−1 is divisible by 3. Suppose 22j−1 = 4j−1 is divisible by 3, so we can write 4j−1 = 3k
for some k. It follows 4j+1−1 is divisible by 3 as well (that is 4j+1−1 = 3(k+4j)). Thus we see
that any number 22j − 1 = 4j − 1 is divisible by 3 for j ≥ 0. We can have j = 0, 1, 2 . . . , 1008.
This gives 1009 possible values for n.

9. (a) Consider the graph of the function f(x) = x2 and let (p, q) and (s, t) be two distinct
points lying on the curve. Show that the line that passes through these two points has
a y-intercept b that satisfies b = −ps.

(b) Find all real-valued functions f(x) that have the property that the line connecting two
distinct points on the graph of f(x) has an y− intercept given by −1 times the product
of the x− coordinates of each point.

Solution Since the points lie on the curve, so q = p2, t = s2. The slope of the line passing
through the points is (s2 − p2)/(s− p) = s+ p. Thus the equation for the line is

y = (s+ p)x+ b

where b is the y-intercept. Since y(p) = p2 (or y(s) = s2) it follows that b = −ps. For (b),
suppose that f(x) is a function with the above property. Then we take as two points lying on
the graph P = (p, f(p)) and Q = (s, f(s)). The equation of a line that connects these points
is

y =
f(s)− f(p)

s− p x+ b

for some constant b. By assumption b = −ps. Thus

y =
f(s)− f(p)

s− p x− ps

Now use the fact (s, f(s)) lies on this line. Rearranging gives

f(s) = s2 +
f(p)s

p
− ps (1)
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which holds for s 6= p. However it can be checked it also holds trivially for s = p as well.
Hence we find for all x that

f(x) = x2 +

(
f(p)

p
− p
)
x

where the values for and p, f(p) can be chosen arbitrarily. The case in (a) corresponds to
setting p = 1 with f(p) = 1.

It is also an acceptable solution to state that f(x) must take the general form

f(x) = x2 + ax

where a is an arbitrary constant.

10. (a) Recall that the geometric mean-arithmetic mean inequality states that if {a1, a2, a3 . . . an}
is a set of positive real numbers, then

a1 + a2 + . . .+ an
n

≥ [a1 · a2 · . . . · an]1/n

with equality if, and only if ai = a, i.e. all the ai are equal. Prove this for n = 2.

(b) Consider a triangle with sides of length a, b, c with a perimeter of 2. Show that

abc+
28

27
≥ ab+ bc+ ca

Solution: (a) Let a1 = a, a2 = b and a, b > 0. Recall the identity

(a+ b)2 − (a− b)2 = 4ab⇒ (a+ b)2 = (a− b)2 + 4ab⇒ (a+ b)2 ≥ 4ab

Since a, b > 0 taking the square root of both sides gives a + b ≥ 2
√
ab as required. If

a = b then it is obvious that the equality is reached. Conversely if the inequality is
saturated then (a+ b)2 = 4ab which implies a2 − 2ab+ b2 = (a− b)2 = 0 so that a = b.
(b) Use the triangle identity: the length of any side of a triangle is less than the sum of
the other two. The sum is a + b + c = 2 and each a, b, c > 0. Thus a < b + c = 2 − a
which implies a < 1. Similarly b < 1, c < 1. This means

0 ≤ (1− a)(1− b)(1− c)
Now apply the arithmetic mean-geometric mean inequality from (a) for a1 = 1− a, a2 =
1− b, a3 = 1− c:

1− a+ 1− b+ 1− c
3

≥ [(1− a)(1− b)(1− c)]1/3

Combining these inequalities gives

0 ≤ [(1− a)(1− b)(1− c)]1/3 ≤ 3− (a+ b+ c)

3
=

1

3
Therefore

1 + ab+ bc+ ac− a− b− c− abc ≤ 1

27
which gives, using 1− a− b− c = −1,

ab+ bc+ ac ≤ abc+
28

27
as required.
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