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EXECUTIVE SUMMARY 

Background: 

This research project was driven by the recurring complaints and concerns voiced in the media by 

residents living in the Valley area of the community of Happy Valley-Goose Bay, Labrador. 

Drinking water in this town is supplied by two water treatment plants (a municipality treatment 

plant and a DND treatment plant), which use raw water from two different sources (groundwater 

from multiple wells versus surface water from Spring Gulch brook) and use two different processes 

of drinking-water treatment. In fact, the drinking water supplied in the Valley area has a unique 

distribution arrangement. To meet demand, the Valley area is served by a blend of treated waters 

from a storage reservoir (Sandhill reservoir), which is fed by both water treatment plants. Most of 

the time, treated water from the municipal treatment plant dominates in the mixture. As water 

travels through the distribution system and household plumbing, specific reactions can occur 

either in the water itself and/or at the solid–liquid interface at the pipe walls; this is strongly 

influenced by the physical and chemical characteristics of the water. These reactions can introduce 

undesirable chemical compounds and/or favor the growth of bacteria in the drinking water, 

causing the deterioration of the quality of water reaching the consumer taps. In the distribution 

system in general, these chemical constituents and bacteria may pose potential threats to health or 

the water’s aesthetic qualities (smell, taste or appearance). Drinking water should be not only safe, 

but also palatable. 

Objectives: 

The focus of this research is on the Valley area of Town. The main objectives were to: (i) evaluate 

the physical parameters and the concentrations of chemical constituents of groundwater and 

surface water (Spring Gulch) sources and municipally supplied water in the distributions systems; 

and (ii) investigate the effects of treatment conditions, distribution arrangements, and seasonal and 

spatial variations on the quality of drinking water. The ultimate purpose is to assist the 

municipality in providing safe and aesthetically pleasing water at consumers’ taps. In addition, 

stable isotope geochemistry was used to assess the importance of precipitation (rain or snow) for 

groundwater recharge and to investigate the relationships between the groundwater, Spring Gulch 

and the Churchill River. 

Design, methodology and approach: 

Water samples were collected in March, June, July and October 2015 at five key locations: (i) 

municipality treatment plant; (ii) DND treatment plant; (iii) Sandhill reservoir; (iv) five private 

households and one government building in the Valley area; and (v) one private household in the 
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northern sector of the town, which is solely served by DND treatment plant, for comparison. 

Moreover, an extra sampling session was done during a period over the winter, when drinking 

water in the town was exclusively supplied by the DND treatment plant, due to the shutdown of 

the municipality treatment plant for repair. This provided an additional opportunity to compare 

the treated water distributed by each plant, while controlling the downstream effects of the 

residence time to water quality in the distribution system, especially in the Valley area. Sampling 

locations were chosen at various distances from the Sandhill reservoir, and a variety of sampling 

periods (winter, spring, summer and fall) and types of tap water sample (“first draw” and 

“flushed”) ensured that seasonal and spatial changes could be adequately described. The 

concentrations of 38 major and trace elements were measured together with inorganic anions, 

alkalinity and THMs. pH, temperature, EC, TDS and ORP were measured directly at the sampling 

sites. Hydrogen and oxygen stable isotope compositions were measured for water samples from 

raw water sources (groundwater and Spring Gulch), treated waters, rainfall, and the Churchill 

River. 

Findings: 

The physical parameters and chemical compositions of raw groundwater differed significantly 

amongst the supply wells and varied between the seasons. As expected, groundwater quality was 

considerably different to that of the surface water (Spring Gulch). Groundwater was fresh or 

brackish, soft or very hard with a nearly neutral pH range. Moreover, groundwater showed a 

change between mildly reducing (negative ORP) and oxidizing (positive ORP) conditions, 

indicating differences in organic material loading. Spring Gulch was fresh, soft and moderately 

alkaline, and showed consistent oxidizing conditions, suggesting very little accumulation of 

organic material. The up-gradient former landfill does not appear to have affected the quality of the 

water wells over the time frame of this study. Given their similar stable isotopic signatures, the 

groundwater, Spring Gulch and the Churchill River are likely interconnected. During the study 

timeframe, they were most likely recharged by snowmelt runoff in spring 2015, with lesser rainfall 

events during the following summer. 

Groundwater was characterized by higher concentrations of Cl−, SO4
2−, Ba, Mg, K, Na, S, Ca, Sr, Si, 

Fe, Mn, and Br− compared to Spring Gulch water; the levels of F− in both water sources were very 

low, and the other analyzed elements were not detected. Similar trends were observed in their 

treated (or finished) waters; yet treated water from the municipal treatment plant was consistently 

hard (i.e. contained high concentration of mineral substances) and showed significantly lower 

levels of Cl−, SO4
2−, Ba, Mg, K, Na, S, Ca, Sr, Si, Fe, Mn, and Br− than the “parent” groundwater. 

Removal efficiencies for Fe and Mn were higher than 90%; however, THMs formed during the 
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treatment process. The difference between raw and treated Spring Gulch water was negligible, 

except that the concentrations of F− were higher in treated water as the result of fluoridation 

(addition of fluoride) done at the DND treatment plant to promote dental health, and THMs also 

formed during the treatment process. The concentrations of total THMs and of each THM species, 

varied among the two treatment plants: THMs in treated water at the municipal treatment plant 

consisted mainly of CHCl3, CHCl2Br and CHBr3 with lesser amount of CHClBr2, whereas CHClBr2 

was the sole THM component in treated water at the DND treatment plant. Levels of total THMs in 

treated water at the DND treatment plant were consistently below the Canadian health-risk 

guideline and considerably lower than the total THMs in treated water at the municipality 

treatment plant; the latter exceeded the health risk guidelines at one particular time. 

The physical and chemical properties of the blend of treated waters at the Sandhill reservoir, as 

well as those of the tap water at the distribution line in the Valley area, typically reflected the 

compositions of the treated waters, which dominated in the mixture. Nonetheless, the constituents 

in the mixture of treated waters were slightly diluted, when treated water from the municipality 

treatment plant dominated in the mixture; the opposite trend was observed when the majority of 

treated water in the mixture was from the DND treatment plant. In tap water, irrespective of the 

physical and chemical characteristics of the dominant treated water in the blend, the elements with 

the lowest variation (both seasonal and spatial) were Cl−, SO4
2−, Ba, Mg, K, Na, S, Ca, Sr, Si, Br− and 

F−, and those which displayed significant changes (mostly spatial, i.e. intra- and inter- household/ 

government building) were THMs, Fe, Mn, Cu, Pb and Zn. The first group of elements typically 

included naturally-occurring elements from the raw water sources, with the exception of F− added 

to water during the treatment process at the DND treatment plant. The concentrations of F− were 

still too low to promote dental health, although they meet the Canadian aesthetic-based standard. 

On the other hand, the second group of elements were either formed by the reactions between the 

organic matter and chlorine in water (i.e. THMs) or released by corrosion reactions with the 

materials of the distribution systems and plumbing inside the private households and government 

building (i.e. Fe, Mn, Cu, Pb and Zn). Both treated waters were corrosive, but treated water from 

DND treatment plant seemed to be less corrosive than the treated water from the municipality. 

Although Cl− levels met the Canada aesthetic-based guideline, high hardness and levels of Fe, Mn, 

Cu, and Zn locally exceeding aesthetic-based guidelines would have likely justified the aesthetic 

problems detected by the consumers. Moreover, concentrations of total THMs increased gradually 

in the distribution line and locally exceeded health-risk guideline, as did Pb. These chemical 

constituents were found to be of the greatest concern as they (and also Cu) have been linked to 

health problems in both children and adults. As a mitigation strategy to lower the metal exposure, 
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flushing effectively reduced the levels of Cu and Zn, but did not always lower levels of Fe, Mn, 

THMs and Pb below the aesthetic- or health-based guidelines. 

Practical implications and recommended actions: 

This research provides crucial information not only on the quality of drinking water sources, but 

also on the variability of water quality at consumer’s taps. It is intended help the municipality 

administrators and plant operators to develop and implement strategies for managing water 

quality across the distribution systems and ultimately, providing safe, aesthetically pleasant tap 

water. Moreover, this study provides sound baseline information on groundwater geochemical 

evolution to foster the sustainable management of fresh groundwater resources in coastal aquifers. 

As demonstrated by our statistical analysis of consumer perceptions of tap water quality in October 

2014, the results presented here also highlights some possible misconceptions of the appropriate 

authorities as to the extent of the chemical safety and aesthetic problems of water reaching 

consumer taps (which are site- specific and differ from house to house), and possible ways they can 

be addressed. Mitigations strategies should be evaluated and implemented at the municipal 

treatment plant to reduce the formation of THMs (and other chlorination disinfection by-products), 

as well as to combat water corrosiveness and hardness. Furthermore, the municipality’s decision to 

add fluoride to drinking water might warrant a re-examination and systematic review, giving the 

low levels of naturally-occurring fluoride in groundwater source. In the meantime, the appropriate 

authorities should encourage residents to test their tap water for Pb (and other metals) by a 

certified laboratory, especially in houses built before 1990, but even in newer houses with plastic 

pipes and brass faucets and other plumbing fixtures. Location-specific testing is necessary because 

the results of this study indicate that Pb comes from materials in the houses’ plumbing, not in the 

town's water distribution pipes, and the composition of plumbing materials varies from house to 

house. Moreover, residents should be encouraged to use topical fluoride (e.g. fluoridated 

toothpaste, varnish, gel or mouth rinse) or other measures to promote dental health, as 

recommended by the Canadian Dental Association. 

Partner organizations and participants: 

 The municipality of Happy Valley-Goose Bay 

 The Canadian Forces Base 5 Wing Goose Bay 

 The NunatuKavut Community Council 

 Water Resource Management Division, Department of Environment and Conservation NL 

 Volunteer homeowners (6 from the Valley area and 1 from the northern sector) 

 Volunteer government building in the Valley area 
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1. INTRODUCTION 

1.1. Project background 

Drinking water is absolutely essential for optimum healthy living and wellbeing, and must be kept 

free of undesirable chemical constituents and bacteria, which are capable of adversely impacting 

human health. It must not only be safe, but also aesthetically acceptable for human consumption. 

The quality of drinking water is determined by the physical, hydrochemical and biological qualities 

of water sources (i.e. surface water, groundwater or others), combined with the applied treatment 

process and distribution practices. Both natural processes (e.g. weathering of bedrock minerals, 

leaching of chemical components from soil and bedrock, surface runoff, saltwater intrusion in 

coastal areas, etc.) and human activities (e.g. landfill leachate, industrial and municipal wastewater 

discharge, etc.) can change the quality of the water source or lead to its contamination (e.g. 

Medema et al., 2003; Appelo and Postma, 2005; Zhu and Schwartz, 2011). In order to enable the 

provision of safe and pleasant water, thereby protecting human health, drinking water suppliers 

must adhere to Canadian and provincial guidelines (except for First Nation reserves) health- and 

aesthetic-based for drinking water quality (e.g. Health Canada, 2014). 

While the fitness of drinking water can be determined through effective monitoring of its physical, 

chemical and biological qualities, standards for the protection of drinking water’s aesthetic 

qualities are much more difficult to establish (Health Canada, 2014; World Health Organization 

WHO, 2011). Because the aesthetic characteristics of drinking water can be assessed directly by 

human senses, they provide consumers with their only empirical basis for judging the safety of at 

their taps (McGuire, 1995; Jardine et al., 1999; WHO, 2011). Therefore, tap water that has an 

objectionable smell, taste or appearance can erode the confidence of consumers in drinking water 

supplies, could considerably affect their attitude towards drinking water suppliers, and possibly 

lead to the use of water from alternative sources, such as water treated with in-home devices, 

commercial bottled water, and untreated water sources, such as spring, river, lake and/or ice-melt 

water in rural communities (Fonkwe 2015; Fonkwe and Schiff, 2016; Goldhar et al., 2013; Hanrahan 

et al., 2014: 2015; Kolodziej, 2004; Sarkar et al., 2015; WHO, 2011). Even though aesthetic aspects 

may not present as direct a health risk as microbiological contamination or the presence of organic 

and inorganic components, several studies have shown that these latter parameters may have an 

effect on or could be associated with aesthetic problems (e.g. Dietrich, 2006). 

Many small and rural communities in Newfoundland and Labrador (and elsewhere in Canada) are 

facing drinking water access and/or quality problems, mainly due to the lack of: (i) government 
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water treatment systems and/or adequate treatment technologies to remove contaminants; (ii) fully 

trained and qualified operators of water treatment facilities; (iii) protection of water resources; and 

(iv) management capacity and financial resources (Dunn et al., 2014; Goldhar et al., 2013; 

Guilherme and Rodriguez, 2014; Lightfoot, 2014; Minnes and Vodden, 2014; Scheili et al., 2015; 

White et al., 2012). Happy Valley-Goose Bay, the largest community in central Labrador, is not an 

exception to the at times poor acceptability of small communities' drinking water, as demonstrated 

by some consumers’ complaints voiced in traditional news and social media. Figure 1 gives images 

from the Happy Valley-Goose Bay in local newspaper, The Labradorian and local CBC News for a 

period between 2008 and 2015. Typical water quality concerns reported by residents are about the 

aesthetic qualities, safety and healthiness of their tap water, its corrosion of household appliances, 

and/or the number of boil water advisories. 

The residents’ complaints and concerns triggered the development and implementation of this 

research project and the ultimate goal of Part 2 (the subject of this report) is to shed some light on 

the question “Is it safe to drink?” As for Part 1 of this research, the focus was an online survey 

questionnaire conducted in October 2014 to measure (quantitatively and qualitatively) residents’ 

satisfaction and acceptance of drinking water in Happy Valley-Goose Bay. The survey research 

showed that most of respondents resided in the Valley area of town and in general, have indicated 

dissatisfaction with the quality of their tap water, corroborating the complaints in the media 

(Fonkwe, 2015; Fonkwe and Schiff, 2016). This represented a convincing indication of the need for 

an evaluation of the quality of drinking water supplied by the municipality, specifically in the 

Valley area, to assess whether or not consumer perceptions of tap water quality are correlated with 

measured physical and chemical water quality. 

Drinking water in the Valley area is a blend of treated waters from two water treatment plants, the 

municipal treatment plant and the Department of National Defence (DND) treatment plant, which 

draw their raw water from two different types of sources (groundwater from multiple wells versus 

surface water) and therefore use two different treatment processes. The municipality has found it 

difficult to maintain water quality across the distribution line throughout the Valley area. Although 

this blending arrangement has been practiced since the municipal water treatment plant began 

operation in 2002, systematic investigations have yet to be undertaken concerning the seasonal and 

spatial changes of the physical and hydrochemical qualities of the water sources, drinking water in 

the distributions systems and the effects of blending treated waters on the water quality in 

distribution lines in the Valley area. The present research fills in these data gaps and provides 

critical information for municipality administrators and plant operators to tailor their actions in 

order to improve the safety and pleasantness of water at consumer taps. 
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“Residents upset at water quality” - The 
Labradorian, December 15, 2008. …………….. 

 

 

“Happy Valley-Goose Bay residents concerned 
over tap water quality” - The Labradorian, January 

06, 2014. 

 
In-house water filter system completely covered in 

an orange residue after only two months usage - 
Courtesy Jenny McCarthy. 

Tap left running overnight to prevent her water lines 
from freezing turned brown a white face cloth put in 

the sink - Courtesy Derek Montague. 

“You don’t know what you’re drinking” - The Labradorian Published on July 23, 2015. 

 
(A) Difference between new filters (white) for a reverse osmosis water filtration system and the old filters 

covered with a brownish “slimy” substance). (B) Corroded part of a two-year-old water                                     
heater - Courtesy Derek Montague. 

“Labrador business owner wants refund for disgusting water” - CBC news on July 3, 2015. 

 
A full bathtub showing water quality in Happy Valley-Goose Bay after an annual flushing of water service 

lines (Photo from CBC New July 03, 2015). 

Figure 1: Selected photographs reported in local newspapers and radio between 2008 and 2015, referring to 

the complaints and concerns about the quality of their tap water from residents living in the Valley area. 

http://www.thelabradorian.ca/section/2008-12-15/article-1514264/Residents-upset-at-water-quality/1
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1.2. Research rationale and motivation 

Before treated water reaches consumer taps, it must pass through a distribution system. One 

challenge facing suppliers is that water quality (microbiological, physicochemical and aesthetic 

parameters) tends to worsen along the way. Given that the municipality has found it difficult to 

maintain water quality during distribution throughout the Valley area of the town, despite the care 

taken to provide residents with safe and aesthetically pleasant tap water, it is critical to address 

resident concerns about the quality and safety of their tap water. Giving that protection measures 

taken at water treatment plants can be very expensive, it is advantageous to investigate the 

physical and hydrochemical qualities of water from the point-of-collection (water treatment plants 

and reservoir) to the point-of-use (i.e. at the household faucets), in order to provide decision-

making personnel with the necessary information to implement strategies for managing water 

quality across the distribution systems. 

This research will contribute critical information for a better understanding of local water treatment 

and distribution arrangements, because it integrates a holistic sampling approach to provide new 

information regarding the current situation of drinking-water quality in Happy Valley-Goose Bay. 

Moreover, given the fact that a former landfill site is located up-gradient from the groundwater 

supply wells and that hydroelectric power generating facilities under construction on the Churchill 

River may affect the groundwater quality of the public supply-wells, it is necessary to understand 

the processes controlling groundwater geochemical evolution in order to assess the degree of 

vulnerability to pollution for long-term management strategies. 

1.3. Research objectives 

The main aim of this project was to investigate the seasonal and spatial variations of the physical 

and hydrochemical qualities of water sources and municipally supplied drinking water in the 

distributions systems. The ultimate purpose is to examine the effects of treatment conditions and 

blending of treated waters on the quality of tap water Valley and to assist the municipality to 

provide safe and aesthetically pleasing water at the consumer’ taps. In addition, stable isotope 

geochemistry was used to investigate the origin of groundwater source and its relationship with 

Spring Gulch and the Churchill River. The research involves the following tasks: 

1. Consulting with community residents and local organizations at various stages of the 

research project. 
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2. Identifying and selecting sampling locations, and recruiting volunteer homeowners in 

targeted areas of the distribution network (i.e. tap water in private households and a 

government building). 

3. Performing test analyses of water samples for the disinfection by-products trihalomethanes 

(THMs) by gas chromatography-mass spectrometry (GC-MS) at the Stable Isotope Laboratory 

of Memorial University of Newfoundland; and selecting reference laboratories for the 

analysis of inorganic anions, alkalinity, major and trace elements and stable isotopes. 

4. Collecting water samples in winter, spring, summer and fall, and analysing water samples for 

THMs, 39 major and trace elements, 7 inorganic anions, alkalinity and stable isotopes of 

hydrogen and oxygen; and also measuring physical parameters (pH, temperature, electrical 

conductivity, total dissolved solids and oxidation-reduction potential). 

5. Investigating the quality of drinking water sources (5 groundwater wells and surface water), 

and the changes in physical parameters, THMs, inorganic anions, and major and trace 

elements of treated drinking water, as functions of treatment and distribution parameters, 

both seasonal and spatial (within and between private households and the government 

building along the distribution system toward the system’s extremity). 

6. Determining the stable isotope ratios for hydrogen and oxygen in groundwater and Spring 

Gulch water sources, as well as in rainwater and the Churchill River (which borders the 

groundwater wells). 

The outcomes of this research are intended contribute to: (i) improving water quality management 

and providing a reliable supply of safe and aesthetically acceptable drinking-water to consumers; 

(ii) building and maintaining consumer confidence; (iii) promoting and protecting the health and 

well-being of residents; (iv) planning for a sustainable drinking groundwater resource; and (v) 

training highly qualified personnel. 

1.4. Knowledge mobilization and deliverables 

The development and implementation of this research project involved several consultations with 

volunteer homeowners and meetings with local government organizations. Research findings have 

been presented to audiences in the local community at Labrador Institute of Memorial University 

in Happy Valley-Goose Bay and at the Municipality of Happy Valley-Goose Bay. One abstract 

submitted in February 2016, has been accepted for oral presentation at the upcoming National 

Water and Wastewater conference 2016 organized by the Canadian Water and Wastewater 

Association (CWWA) in Toronto (ON), November 13–16, 2016. Moreover, three additional 
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manuscripts are in advanced stages of development and preparation. Copies of all papers will be 

given to the Harris Centre upon their publications. 

Specific deliverables provided to date include: 

 Kyla Penney and Merline Fonkwe (2016): Summer Research Program: Evaluation of the 

groundwater source of drinking water and Iron ore mineralogy. The Labrador Institute of 

Memorial University, Happy Valley-Goose Bay, NL (August 11, 2016). 

 Merline Fonkwe and Rebecca Schiff (2016): Is it safe to drink? Residents’ perceptions and 

hydrochemical characteristics of municipally-supplied tap water in the Valley area of the 

community of Happy Valley-Goose Bay, Labrador. 2016 National Water and Wastewater 

Conference, Toronto (ON), November 13–16, 2016 in Toronto (submitted on February 2016; 

accepted on June 2016 for presentation on November 15, 2016). 

 Danielle Spearing and Merline Fonkwe (2015): Assessment of drinking water quality in 

Happy Valley-Goose Bay. The Labrador Institute of Memorial University, Happy Valley-

Goose Bay, NL (August 13, 2015). 

 Merline Fonkwe (2015b): Assessment of municipally-supplied drinking water in the 

community of Happy Valley-Goose Bay, Labrador: Preliminary results. Meeting with the 

councillors of the municipality of Happy Valley-Goose Bay, NL (July 15, 2015). 

 Merline Fonkwe (2015a): A framework for better understanding drinking-water quality in 

Happy Valley-Goose Bay, Labrador: Implications for optimization and protection of 

municipally supplied water. Midterm Project Report to the Harris Centre of Memorial 

University (March 27, 2015). 

In addition, the project has also gained attention from local media, including a newspaper article 

published on August 1, 2014 and February 29, 2016 in The Labradorian Happy Valley-Goose Bay 

(NL), and an interview of the project leader and principal investigator Dr. Merline Fonkwe by the 

local CBC radio on August 25, 2014. The project was featured in news releases by the Municipality 

of Happy Valley-Goose Bay in July 3, 2015 and February 23, 2016. 

2. STUDY AREA: THE COMMUNITY OF HAPPY VALLEY-GOOSE BAY 

2.1. Physiography and climate 

Happy Valley-Goose Bay is a small, remote community in the province of Newfoundland and 

Labrador (53˚30' N and 60˚41' W; Fig. 2). It covers an area of 306 km2 and has a population of about 
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8000. The Town is divided into two parts: the northern sector (which is broken down into five 

neighbourhoods including the Canadian Forces Base (CFB) 5 Wing Goose Bay, the North Side, 

Dock/Terrington Basin, Spruce Park, and MOT/Hamilton Heights, and the down slope Valley area 

(subdivided into Upper Valley and Lower Valley) (Fig. 3). The climate is subarctic, marked by 

heavy snowfall from November to March with snow covering the ground from November to May 

and high rainfall from June to September (average annual precipitation of 762 mm). The average 

daily temperatures remain below freezing from November to April and vary between –17.6˚C and 

15.5˚C. 

The community of Happy Valley-Goose Bay is home to CFB 5 Wing Goose Bay (Fig. 3). This 

military air force base was constructed in 1941 on a flat-lying terrace, which has an elevation 

between 40 to 50 m above sea level and is bordered by the Terrington Basin to the north and the 

Churchill River to the south. CFB 5 Wing Goose Bay operates its own water treatment system and 

landfill, among others and provides supplies part of its potable water to the municipality. Before 

1990, a variety of residential and industrial wastes generated at CFB 5 Wing Goose Bay were 

disposed of on-site at several dumping areas making up a poorly-regulated and unlined landfill 

along the escarpment at the south-southeast boundary of the military property (AMEC, 2009; 

JWEL, 1992; see Fig. 3). This former landfill site is known to be contaminated by organic and 

inorganic chemicals leaching from wastes (see Figs. 3 and 4; Fonkwe, 2016; Fonkwe and Trapp, 

2016). Groundwater from the landfill site is unconfined and flows south to southeast towards the 

Churchill River, following low topography (AMEC, 2009; Figs. 3 and 4). 

2.2. Surface and bedrock geology 

Happy Valley-Goose Bay lies at the western extremity of Lake Melville, an inlet of the Labrador Sea 

that runs over 100 km inland. In this area, Lake Melville is surrounded by lowland, gently sloping 

down toward the lake with very low relief (see Liverman, 1997, and references therein). This 

contrasts with the bedrock-dominated highland plateaux that rise abruptly from this coastal plain. 

These plateaux are heavily vegetated and reach elevations of greater than 300 m above mean sea 

level. Lake Melville is fed by the Churchill River, Goose River and Grand Lake and many other 

rivers. Landforms in the north and southwest are high and those in the southeast are low. Surficial 

geology consists of about 100 m thick Quaternary marine and fluvial sediments (Liverman, 1997). 

These sediments are inferred to overlie the terrestrial red-bed sequence of the Double Mer 

Formation composed of mostly conglomerate and sandstone, and in places interbedded with thin 

layers of siltstone and shale (Wardle, 1994; Nunn and van Nosttrand, 1996). Bedrock outcrops are 

rare at lower elevations (Liverman, 1997). Bedrock is composed of a Paleoproterozoic anorthosite-
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mangerite-charnockite-granite suite and the massif anorthosite of the Cape Caribou River 

Allochthon (Valvasori et al., 2015; Wardle and Ash, 1986). 

 
Figure 2: Map of Canada showing the location the community of Happy Valley-Goose Bay. 

2.3. Drinking water supply in the community of Happy Valley-Goose Bay 

The community of Happy Valley-Goose Bay is supplied the municipal treatment plant, (locally 

called Well Field) and the treatment plant (locally called Spring Gulch) of  CFB 5 Wing Goose Bay, 

maintained by DND (Figs. 3 and 4). The water distribution system’s piping material throughout the 

town consists of cast iron and ductile iron for the water main lines that connects the treatment plant 

or the reservoirs to the looped pipe network in the streets, and copper pipes for service lines that 

connect the water main lines to the customers’ property lines (F. Brown, pers. comm. June 09, 2014). 

DND treatment plant primarily supplies water to CFB 5 Wing Goose Bay and the northern sector of 

the town (Fig. 3). The rest of the town, the Valley area, is served solely by a blend of treated water 

from a storage reservoir fed by the two water treatment plants; the municipal treatment plant 

serves only this storage reservoir (Fig. 3). This unique mixture of treated groundwater and surface 

water sources varies in blending ratios depending on water consumption demand (peak water use 

typically during the summer months) or in occasional periods solely by either the municipal 

treatment plant during low water consumption periods or the DND treatment plant during 
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shutdown of the municipality water treatment plant for maintenance and repair (as it was the case 

in February 2015 during the course of this study). In general, the municipal treatment plant meets 

in average 65% of the town’s total water needs, while DND treatment plant supplies the remaining 

35% of the water at Sandhill reservoir. 

 

Figure 3: Map (from Google Earth) showing the main parts of town in Happy Valley-Goose Bay and 

locations of the drinking water treatment and storage facilities of this research interest. Note the former 

landfill site highlighted in red. 

2.3.1. Municipal water treatment plant 

The municipal water treatment plant is located 6.5 km west of the town, between the Trans 

Labrador Highway and the Churchill River, downstream of a former landfill site (Figs. 3, 4 and 5). 

It has been operated since 2002, using blended water from five groundwater supply wells for its 

water supply. The groundwater wells are located close to one another in the vicinity of the 

treatment plant, bordered by the Churchill River, on which a hydroelectric dam complex is 

currently under construction (Fig. 3 and 4). These wells, named Well #1, Well #2, Well #3, Well #4 

and Well #5, reach down between 130–170 feet (ft) through the thick Quaternary marine and fluvial 

sediments composed of silty clay layers underlain dominantly by fine-grained sand layers 

(Liverman, 1997; Wardle, 1994; Nunn and van Nosttrand, 1996). The water recharge area is likely 

extensive and primarily includes areas north of the Churchill River (e.g. NL Water Resources 

Management Division, 2011). 
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Figure 4: Map (from Google Earth) showing the location of the groundwater wells and the Spring Gulch 

brook impoundment. Note the proximity of the groundwater wells to the Churchill River and their locations 

downstream of a former landfill site. 

As is typical in most coastal areas, the groundwater aquifer is composed of freshwater (or 

terrestrial water) underlain by more dense saltwater, as the result of seawater intrusion (see Fig. 6 

modified after Gale et al., 2004). For this reason, water is pumped from Well #1 (168 ft),Well #2 

(depth unknown), Well #3 (136 ft) and Well #4 (143 ft) using a dual-pump configuration system: an 

upper pump extracts water from the freshwater layer at the top of the water column and transfers 

it into the plant, while a lower pump removes the denser and saltier water from the bottom of the 

well and discharges it as waste in the Churchill River (Figs. 5 and 6; Gale et al., 2004; M. Clarke, 

pers. comm., March 2015). In contrast, pumping at Well #5 (155 ft) is accomplished with one pump, 

which withdraws water, which is transferred into the plant (M. Clarke, pers. comm., March 2015). 

Well #1 is the oldest among the supply wells and supplies most of the raw water to the plant (M. 

Clarke, pers. comm., March 2015). The groundwater is classified as sodium-chloride type water 

(NL Water Resources Management Division, 2011). This indicates that a mixture of freshwater and 

saltwater is transferred into the plant. 
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Figure 5: The municipal water treatment plant, also called “Well Field”. 

 

Figure 6: Schematic of the well dual-pump configuration at the municipal water treatment plant (Modified 

from Gale et al., 2004). 
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At the municipal treatment plant, water treatment is typically an iron and manganese removal 

process, also referred to as a direct filtration process (K. Murphy at CBCL Limited, pers. comm., 

March 2016). Unlike the conventional treatment process, direct filtration doesn’t have a 

sedimentation step, which allows large particles to settle out naturally, prior to the filtration step; 

therefore, all the particles removal takes place on the filters. Thus, direct filtration process is 

recommended primarily for the treatment of raw water, which has fairly consistent quality, very 

low turbidity (5 to 15 NTU) and color (20 to 40 units), and low concentrations of iron and 

manganese (e.g. Spellman, 2013) 

Groundwater is pumped simultaneously from Well #1, Well #2 and Wells #3-4-5 and fed to the base 

of one reactor vessel, where the chemicals are added (Fig. 5). Then, the water is transferred 

simultaneously into three filter vessels. Steps for water treatment process are as follow (K. Murphy 

at CBCL Limited, pers. comm., March 2016): 

Step 1 - In the reactor tank: 

 Oxidation by adding chlorine dioxide (ClO2) at the beginning of the treatment process to: (i) 

convert dissolved forms of iron and manganese into particulate forms that can be 

coagulated and filtered; (ii) disinfect the water (i.e. kill disease-causing bacteria); and (iii) 

eliminate taste and odor compounds (mainly organic matter) in water. 

 Coagulation-flocculation: by adding aluminum sulfate [Al2(SO4)3] or “alum” to react with 

small particles in the water and form particles large enough to be filtered out at the next 

step. 

Step 2 - Simultaneously in the three filtration tanks: 

 Removal of iron and manganese using a greensand filtration system through three filter tanks, 

which are continuously regenerated by the injection of potassium permanganate (KMnO4) 

as the water leaves the reactor vessel, to attract and hold iron and manganese particles. 

Step 3 - Treated (or “finished”) water on-site storage and distribution: 

 pH adjustment by injecting calcium hydroxide or lime [Ca(OH)2] to quickly increase the pH 

of water that is ready to be distributed; 

 Temporary storage in the underground reservoir (or clear water well) at the treatment plant 

site. Depending upon the water demand, the treated water is sent to Sandhill reservoir, a 

concrete underground reservoir located 7 km from the plant, where water is blended with 

water from the DND treatment plant. The blended treated water is then sent into the 

distribution line, which serves the Valley area of the town (Figs. 3 and 8). 
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Filters are frequently cleaned using a backwash process by which treated water flows upward to 

flush out accumulated particles; the backwash process stars automatically after a set volume of 

water is filtered. The slurry sludge released from the filters during backwashing is carried away 

from the water treatment lines through the backwash line and stored in two underground 

backwash holding tanks for about a day, during which time the suspended solids settle to the 

bottom. Then, the supernatant waste-water is drawn off the tanks and discharged into the 

Churchill River, while the wet residues are gravity drained and stored in two drying beds at the 

vicinity the plant. Such residues from the water treatment process typically contain minerals and 

organic matters removed from the raw groundwater, together with the chemicals used during the 

treatment process. Therefore, consideration should be given to the residue nature and toxicity for 

appropriate disposal. 

The municipal treatment plant is equipped with monitoring equipment for daily sampling and 

testing of treated water for free chlorine, total chlorine, turbidity and pH to assist with operational 

decision-making. Free chlorine, which is the concentration of residual chlorine present in treated 

drinking water as dissolved gas (Cl2) varied in concentrations between 0.77 and 1.08 milligrams per 

liter (mg/L) during the sampling period (Table 1). Because chlorine is not stable in water, free 

chlorine is monitored at representative points in the distribution system by the municipal plant 

operators. Drinking water is also tested quarterly for trace elements and chlorination disinfection 

by-products, THMs and haloacetic acids (HAAs) by the Water Resources Management Division of 

the Department of Environment and Conservation in Happy Valley-Goose Bay (G. De Beer, pers. 

comm., March 13, 2014). All data are archived at the water treatment plant or through online at the 

Newfoundland and Labrador Water Resources web portal at http://maps.gov.nl.ca/water/. 

2.3.2. Water treatment plant of the Department of National Defence 

The DND water treatment plant is located within the CFB 5 Wing Goose Bay property. It was 

constructed in 1952 and upgraded in 1994 (Figs. 3, 4 and 7). It withdraws raw water from an 

impoundment of the Spring Gulch brook, which flows from a small, discrete watershed located up-

gradient to the town. Spring Gulch originates from a combination of rainfall, surface runoff and 

local groundwater discharge (NL Water Resources Management Division, 2011). Water from 

Spring Gulch is classified as calcium-bicarbonate type water, suggesting that the water has quick 

travel times from recharge points and therefore, short contact times with local surficial sediments 

and other materials (e.g. NL Water Resources Management Division, 2011; AECOM, 2013). The 

DND treatment plant is located beside the Spring Gulch brook and the water is directly pumped 

into the plant (as indicated by the arrow in Fig. 7). 

http://maps.gov.nl.ca/water/
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The treatment process at the DND treatment plant is typically a purification method. Spring Gulch 

water is pumped from the Spring Gulch brook and is treated as it flows continuously through the 

pipes into the underground clear water well (Figs. 3, 4 and 7). The treatment process includes the 

following steps (DND treatment plant staff pers. comm., October 2015): 

1. Filtration to remove particulate matter from the water; 

2. Ultraviolet (UV) disinfection to kill or prevent the reproduction of disease-causing bacteria, 

which may be resistant to chlorine;  

3. Chlorine disinfection, using chlorine gas (Cl2) to ensure the water is free from microbiological 

contaminants (such as bacteria); and 

4. Fluoridation and storage, addition of a fluoride compound into treated water to help promote 

dental health, followed by temporary storage in an underground reservoir near the 

treatment plant site. The water is then distributed to CFB 5 Wing Goose Bay, the northern 

sector of the town and the Sandhill reservoir, where it is mixed with the treated water from 

the municipal treatment plant (see Fig. 8). 

The authorities of CFB 5 Wing Goose Bay are responsible for routine testing and monitoring of 

drinking water quality. Free chlorine concentrations in summer and fall were 0.90 and 1.08 mg/L, 

respectively. 

 

Figure 7: Water treatment plant of the Department of National Defence, also called “Spring Gulch”. 
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3. METHODOLOGY 

3.1. Sampling design and approach 

A total of 175 samples were collected between March and October 2015 during each of the four 

seasons, as divided under the Drinking Water Quality Monitoring and Reporting for Public Water 

Supplies in Labrador by the NL Department of Environment and Conservation: “winter” (January 

1st–March 15th), “spring” (May 1st–June 30th), “summer” (July 1st–August 30th), and “fall” 

(October 1st–November 15th). The main focus of this project was the municipally supplied 

drinking water in the Valley area of the town. However, sampling was also done at one location in 

the northern sector of the town (see Fig.3), served by DND treatment plant for comparison. Also for 

comparison, an extra sampling session took place in winter (March), when the entire town was 

supplied with drinking water solely from the DND treatment plant, due to the shutdown of the 

municipal treatment plant for repair. During the timeframe of this study, the percent blends of the 

treated waters from the municipal and DND treatment plants, varied considerably. Table 1 

summarizes the percentages of both treatment plants in the blended water at Sandhill reservoir, 

together with concentrations of free chlorine residual (Cl2) provided by each treatment plant. 

Table 1: Free chlorine residual (the concentration of residual chlorine, which is present in treated drinking 

water as dissolved gas, Cl2) and percent blends of the treated water at Sandhill reservoir recorded during the 

timeframe of this study. *Free chlorine range for summer and fall only. 

 

Free 

chlorine 

residual 

(mg/L) 

Percent (%) blend at Sandhill reservoir 

Winter  

Spring Summer Fall 1st 
sampling 

2nd 
sampling 

Water 

treatment 

plant 

MUNICIPAL 

Source: Mix of groundwater 

from Wells #1, #2, #3, #4 and #5 

Treatment Process: Oxidation, 

coagulation-flocculation, 

filtration and pH adjustment 

0.77 – 1.08 0 

5 

(Well #4 

not in 

operation) 

60 88 90 

DND 

Source: Surface water from 

Spring Gulch brook 

Treatment process: Filtration, 

UV and chlorine disinfection, 

and fluoridation to help 

promote dental health 

0.90 – 1.0* 100 95 40 12 10 
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Water samples were collected at: (i) both water treatment plants; (ii) Sandhill reservoir; (iii) five 

private households and one government building in the Valley area; and (iv) one private household 

in the northern sector (Fig. 8; Table 2). A single pipeline is used to transfer water from Wells #3, #4 

and #5 into the plant and therefore the wells cannot be sampled separately. Thus, only their 

resulting mix samples were analyzed. Permission to access the DND treatment plant was granted 

only during summer and fall sampling sessions, and therefore water samples were not collected in 

winter and spring. In the Valley area, the households and government building were selected at 

increasing distance up to 7 km from the Sandhill reservoir to capture the location changes 

(temporal changes) in the tap water quality. The selected private households and government 

building were between 2 and 65 years old at the timeframe of this study (i.e. year 2015). Their 

plumbing (below the kitchen sink) were made of either copper pipes, plastic pipes or a mix of 

copper pipes and pipes with other metal alloys. 

 

Figure 8: Sketch map (which is not to scale) showing the locations of the municipal and DND treatment 

plants, and selected households (H1, H2, H4, H5, H6 and H7) and the government building (H3) in the 

distribution systems, served by the two treatment plants. (Sketch map prepared by Danielle Spearing). 
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3.2. Sample collection, preservation and analytical methods 

Spring and summer sample collections were conducted by the research assistants, Daniel Frawley 

and Danielle Spearing, under the supervision of Dr. Merline Fonkwe; the sampling in winter 1, 

winter 2 and fall was done by Dr. Fonkwe alone. All collected samples were kept at temperatures 

below 4˚C and analyzed within 4 to 10 days for major and trace elements, inorganic anions and 

total alkalinity, and 1 or 2 days for THM compounds. Table 2 summarizes the characteristics of the 

sampling sites and description of the water samples collected with respect to water source, age of 

the private households and government building, in-house plumbing materials, and distances from 

the treatment plants or Sandhill reservoir.  

At each sampling location, water were collected from the kitchen cold-water faucet, because this is 

where water is drawn most often for drinking and cooking. Two types of water samples were 

collected: (i) a “first-draw” sample representing water, which has been sitting in the house 

plumbing system overnight or for at least six hours to determine whether the quality of household-

specific tap water was affected by the in-house plumbing; and (ii) a “flushed” sample taken after 

running the cold water faucet for five minutes to flush out the stagnant water in contact with the 

in-household pipes and other plumbing fixtures in order to access water from the main drinking-

water distribution line. This sample determines whether the municipal water distribution system 

and distances from the Sandhill reservoir or the DND treatment plant influence the tap water 

quality. Collected samples were in total, 60 samples in Winter 1*, 78 samples in Winter 2, 80 in 

spring, 81 samples in summer and 78 samples in fall. 

Major and trace elements 

106 water samples were analyzed for their total content (sum of dissolved and suspended) of 38 

major and trace elements. The concentrations are expressed in mg/L for both major and trace 

elements. The collected samples consist of raw groundwater (12), raw surface water source (4), 

treated water at the municipal treatment plant (4), treated water at the DND treatment plant (2), 

municipally-supplied treated water at the Sandhill reservoir before blending (4), DND-supplied 

treated water at the Sandhill reservoir before blending (6), blended treated water at the Sandhill 

reservoir (4), tap water (60) in the Valley area, and tap water (10) in the northern sector (see Fig. 8; 

Table 2). Both “first-draw” and “flushed” samples were collected at the households and 

government building taps, whereas only “flushed” samples were taken at the treatment plants and 

at Sandhill reservoir (Table 2). All samples were collected in 125 mL High Density Polyethylene 

(HDPE) plastic bottles containing 1.5mL of 18% nitric acid (HNO3) for immediate adjustment of the 

sample pH to less than 2, in order to preserve trace metals and reduce precipitation, microbial 
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activity and sorption losses to sampling container walls. Analysis was done by inductively coupled 

plasma mass spectroscopy (ICP-MS) at ALS Environmental laboratory (Mississauga, Canada), 

following the United State Environmental Protection Agency (U.S. EPA) method 200.8 (U.S. EPA, 

1994). The obtained concentrations of major and trace elements are mg/L. 

Total alkalinity and inorganic anions 

65 water samples were analyzed for total alkalinity (as CaCO3) and the concentrations of 7 

inorganic anions. The collected samples consisted of raw groundwater source (12), raw surface 

water source (4), treated water at the municipal treatment plant (4), treated water at the DND 

treatment plant (2), municipally-supplied treated water at the Sandhill reservoir before blending 

(4), DND-supplied treated water at the Sandhill reservoir before blending (6), blended treated 

waters at the Sandhill reservoir (4), tap water (30) in the Valley area, and tap water (5) in the 

northern Sector (see Fig. 8; Table 2). Only “flushed” samples were collected in 250 mL HDPE 

plastic bottles. Analysis of inorganic anions was done by ion chromatography following the EPA 

method 300.0 (Pfaff, 1993), except that orthophosphate content was determined by a colorimetric 

technique, following the American Public Health Association (APHA) Method 4500-P B.E. (APHA, 

1999). Water alkalinity (as CaCO3) was determined by autoanalyzer following the EPA method 

310.2 (U.S. EPA, 1974). All the samples were analyzed at ALS Environmental laboratory 

(Mississauga, Canada). The obtained concentrations for the total alkalinity and inorganic anions are 

reported in mg/L. 

Trihalomethane compounds 

55 water samples were analyzed for the four THM compounds: chloroform (CHCl3), 

dibromochloromethane (CHClBr2), bromodichloromethane (CHCl2Br) and bromoform (CHBr3). 

The focus was on “flushed” treated water samples to investigate the spatial variation of THMs 

concentrations across the municipality main distribution systems and the relationship between 

treatment conditions, quality of treated water, blending of treated waters, the location of sampling 

sites along the distribution systems (distance from Sandhill reservoir and DND treatment plant) 

and the formation of THMs. In addition, a water sample was collected from one hot water faucet in 

winter 2 sampling session to compare its THM content with that of water sample from cold water 

faucet at one household. Samples were collected in duplicate, following the method described by 

U.S. EPA (1998), at the municipal treatment plant (4), DND treatment plant (2), municipally-

supplied treated water at the Sandhill reservoir before blending (5), DND-supplied treated water at 

the Sandhill reservoir before blending (5), blended treated waters at the Sandhill reservoir (4) and 

tap water in the Valley area from Sandhill reservoir (24), and tap water (5) in the northern sector 
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(see Fig. 8; Table 2). Flushed samples were collected in 60 mL glass vials containing 1.00 g of a 

buffer mixture of potassium phosphate and sodium phosphate (KH2PO4/Na2HPO4 99:1) and 6.0 mg   
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Table 2: Characteristics of the sampling sites and description of the collected samples and the measured physical and hydrochemical parameters. Details 

are given in the text.*Refers to the pipe materials from the wall and connector to the faucets under the kitchen sink. ** From hot water faucet. 

Sampling sites Water source 
Sample 

collected 

Type of water sample 

collected for analyses 

Measured physical and hydrochemical parameters 

Physical parameters Alkalinity 

and 

inorganic 

anions 

Major 

and trace 

elements 

THMs 
Stable 

isotopes pH T˚C EC TDS ORP 

DND treatment plant 
Surface water, 

Spring Gulch 

A0a 
Raw (untreated) water from 

the impoundment 
         

A0b 
Raw water inside the plant - 

flushed 
         

A1 Treated water - flushed          

Municipal treatment  plant 
Mix of groundwater  

from 5 wells 

Well #1 
Raw water inside the plant - 

flushed 
         

Well #2 
Raw water inside the plant - 

flushed 
         

Mix of 

Well #3-4-5 

Raw water inside the plant - 

flushed 
         

B1 Treated water - flushed          

Sandhill reservoir 

7 km from municipal treatment 

plant/8 km from DND treatment 

plant 

Treated Spring 

Gulch water 
A2 

Treated water from DND 

treatment plant - flushed 
         

Treated mixed 

groundwater 
B2 

Treated water from the 

municipal treatment plant - 

flushed 

         

Blend of treated 

Spring Gulch water 

and treated mixed 

groundwater 

A2+B2 

Blend of treated waters 

from the municipal and 

DND treatment plants - 

flushed 

         

Private 

households 

(age at the 

time of 

sampling in 

2015) 

H1 

Age 2/ 3.5 km 

from Sandhill 

reservoir/plastic 

pipes* 

Blend treated waters 

from Sandhill 

reservoir 

H1-0 First-draw          

H1-1 Flushed          

H1-2 Flushed**          

H2 

Age ~15-20/ 4 km 

from Sandhill 

reservoir/cooper 

pipes and metal 

faucet connector* 

Blend treated waters 

from Sandhill 

reservoir 

H2-0 First-draw          

H2-1 Flushed          
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H4 

Age 15/ 5 km 

from Sandhill 

reservoir/ cooper 

pipes and metal 

faucet connector* 

Blend treated waters 

from Sandhill 

reservoir 

H4-0 First-draw          

H4-1 Flushed          

H5 

Age 65/ 6 km 

from Sandhill 

reservoir/copper 

faucet connector* 

Blend treated waters 

from Sandhill 

reservoir 

H5-0 First-draw          

H5-1 Flushed          

H6 

Age 50/ 7km 

from Sandhill 

reservoir/copper 

faucet connector* 

Blend treated waters 

from Sandhill 

reservoir 

H6-0 First-draw          

H6-1 Flushed          

H7 

Age  ~40-50/ 6km 

from DND 

reservoir/copper 

faucet connector* 

Treated water from 

DND plant 

H7-0 First-draw          

H7-1 Flushed          

Government 

building 

(Age in 

2015) 

H3 

Age 42/ 3 km 

from Sandhill 

reservoir/ copper 

faucet connector* 

Blend treated waters 

from Sandhill 

reservoir 

H3-0 First-draw          

H3-1 Flushed          

Rainfall          

Churchill River          
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ammonium chloride NH4Cl for immediate preservation and dechlorination; the vials were closed 

with polytetrafluoroethylene (PTFE)-lined septa lined screw caps. All the water samples were 

analyzed at the Stable Isotope Laboratory, Memorial University of Newfoundland in St. John’s by 

Dr. Geert Van Biesen by gas chromatography-mass spectrometry (GC-MS), following a modified 

EPA Method 551.1, which includes liquid–liquid extraction with Methyl Tertiary Butyl Ether 

(MTBE) (U.S. EPA, 1998). The concentrations of each individual THMs compound, as well as the 

sum of these four compounds, are reported in micrograms per litre (µg/L). 

Physical parameters 

The physical parameters, pH, temperature (T˚C), electrical conductivity (EC), total dissolved solids 

(TDS) and oxidation-reduction potential (ORP) were measured immediately after the collection of 

“flushed” samples at the sampling site, because they are unstable and change during storage and 

transport (see Fig. 8; Table 2). A Hanna Instruments (HI) multiprobe HI 98129 meter was used for 

pH (±0.05 pH @ 20°C), T˚C (±0.5 °C @ 20°C), EC (±2% full scale @ 20°C) and TDS (±2% full scale @ 

20°C), whereas an HI 98120 meter was used for ORP (±2 mV @ 20°C). Both testers were calibrated 

and checked every day before sampling. The HI 98129 was calibrated using calibration solutions, 

including pH buffer solutions 4.01 (HI 7004) and 7.01 (HI 7007) and conductivity solution 1.413 

mS/cm (HI 7031); the meter was not calibrated in TDS, since there is a known relationship between 

EC and TDS readings. HI 98120 is factory calibrated and was checked using ORP test solutions 240 

mV (HI 7021) and 470 mV (HI 7022). Because EC/TDS depends on the measured water 

temperature, the obtained values were automatically corrected to the standard temperature value 

of 25°C. 

 

Figure 9: Kyla Penney measures physical parameters of groundwater at the municipal water treatment plant. 

Hydrogen and oxygen stable isotopes 

Water samples were collected in spring and summer from groundwater wells and Spring Gulch 

impoundment, as well as from rainfall and the Churchill River bordering the groundwater wells to 
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determine the importance of precipitation (rainfall and snowfall), with respect of the origin of the 

recharge water for the groundwater source and its relationships with surface water bodies, i.e. 

Spring Gulch and the Churchill River (Table 2). All samples were collected in 20 ml scintillation 

glass vials with rubber-lined screw-top caps. Filled vials had tape wrapped around the caps to 

prevent caps from coming loose and the sample becoming evapoconcentrated. Hydrogen and 

oxygen isotopes were measured using a gas stable isotope mass spectrometer at Isotope Tracer 

Technologies Inc. (IT2) in Waterloo, Canada. Results are expressed in parts per thousand (‰) as 

ratio of the heavy to light isotope of hydrogen (δ2H) and oxygen (δ18O) relative to the Vienna 

Standard Mean Ocean Water (VSMOW) reference. The precision for δ2H and δ18O were ±1.0‰ and 

±0.1‰, respectively. 

3.3. Quality assurance and quality control 

For quality assurance and quality control (QA/QC), “blind” duplicate samples collected at a 

frequency of 10% of the total number of samples were used to monitor analytical performance in 

addition to the laboratory quality for alkalinity, inorganic inions, major and trace elements and 

THMs. For all the analyses, duplicate pairs showed comparable results. Moreover, for THM 

analysis, trip blanks consisting of vials filled with nano-pure water did not indicate contamination. 

Furthermore, each of the contracted laboratories independently followed their internal QA/QC 

programs. 

4. RESULTS AND DISCUSSION 

The physical and hydrochemical parameters of the raw sources, treated waters and tap waters 

were determined to assess their physical properties and the concentrations of chemical 

constituents, and to investigate the effects of treatment conditions, distribution arrangements, and 

seasonal and spatial variations on the quality of drinking water. Tap water results were compared 

with Canada health- and aesthetic-based guidelines (Health Canada, 2009: 2014), and other 

international guidelines (WHO 1999: 2004). 

4.1. Physical parameters 

Temperature 

The temperature (T˚C) of water samples varied widely between 2˚C to 24˚C across seasons, sources 

(groundwater and Spring Gulch), and the location (private household vs. government building) 

(Fig. 10). The Canadian aesthetic-based guideline value of tap water T˚C is less than or equal to 

15°C (Health Canada, 2014). Tap water T˚C at most of the households met the guideline, and the 
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values were commonly below 10˚C in winter and spring and between 10˚C and 14˚C in fall and 

summer. Exceptionally, at the government building H3, tap water T˚C was above the guideline 

value in winter, spring and summer. This is probably caused by greater size of the building, 

smaller demand volumes of water from the kitchen tap, and consequently longer periods of 

stagnancy of water in the building piping system; these factors seem to have more influence than 

the ambient/outside temperature in this case. However, the weather forecast information can be 

used to predict water temperature in drinking water distribution networks (Agudelo-Vera et al., 

2014). Moerman et al. (2014) have demonstrated that when water is demanded at the tap, the force 

that pushes the water through the domestic water supply system (i.e. between the water meter or 

connection to drinking water distribution network and the tap) also causes a temperature increase 

between 1°C to 4°C. 

 
Figure 10: Seasonal and spatial changes of water temperature in the distribution systems. See the sampling 

locations in Figure 8. 
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Although the water temperature does not have direct health effects, it remains nonetheless an 

important determinant of water quality because of its influence on the physical and chemical and 

biological proprieties of drinking water (Health Canada, 2014; Liu et al., 2013; Powell et al., 2000). 

High temperature accelerates chlorine loss and the formation of disinfection by-products (see 

section 4.2), and favors bacteria growth and the corrosion of housing plumbing materials. This 

results in adverse effects on the chemical and aesthetic qualities of drinking water reaching the 

consumers’ taps in comparison with water at the main distribution line. 

pH 

Measured pH ranged between 6.5 and 7.6, indicating a slightly acidic to slightly basic condition 

(Fig. 11). No clear trends are observed between seasons or sampling sites. Except for the 

government building H3 in Winter 2, the samples showed pH values within the recommended 

desirable range of 6.0 – 8.5 for groundwater, 6.5 – 8.5 for surface water and of 6.5 – 8.5 for tap water 

(WHO, 2004; Health Canada, 2014). 

 

Figure 11: Seasonal and spatial changes of water pH in the distribution systems. Note: the legend is the same 

as in Figure 10. Sampling locations are shown in Figure 8. 

pH is one of the most important operational parameters of water quality and it should therefore, be 

checked routinely during water treatment and distribution. There is no direct effect of pH on 

consumer health. However, improper pH can affect the disinfection action of chlorine, the degree 
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of metals corrosion and the formation and distribution of disinfection by-products (e.g. Rodrigez 

and Sérodes, 2001; Liang et al., 2003). These outcomes, however, also depend on the composition of 

the raw water and the nature of the piping materials used in the drinking-water distribution 

system. 

Electrical conductivity 

Electrical conductivity (EC) is commonly used as a good indicator of salinity. The variation of EC 

values during the sampling period is illustrated in Figure 12. Measured EC values of the 

groundwater source varied widely, between 103 and 2771 µS/cm. The EC of the groundwater 

samples were generally higher in winter than those collected during the other seasons. The lowest 

values were recorded for Well #2 and the highest values for Well #1. Slight variations in the EC 

values of the wells were observed between the seasons; however, the pattern remained constant, 

Well #2 having the lowest values follow by Wells #3-4-5 and Well #1 having the highest values. 

Higher EC values suggest higher concentrations of salts in Well #1, indicating that mixed 

freshwater and saltwater was pumped from Well #1 into the treatment plant. Pumping of well 

freshwater from the freshwater-saltwater aquifer depends on the upward movement of saltwater 

within the aquifer when the well is pumped (Zack, 1988). Given that Well #1 provides most of the 

raw water into the municipality treatment plant, this implies that the groundwater mix for 

treatment was salt-enriched and not entirely freshwater. In contrast, EC values for Spring Gulch 

water, which supplies the DND treatment plant were significantly lower, varying from 41 to 52 

µS/cm; the lowest EC value was obtained in spring and the highest EC value in summer. This 

suggests lower content of salts. 

The EC of treated water ranged between 681 and 1142 µS/cm at the municipality treatment plant 

and was strongly influenced by the EC of water from Well #1, whereas lower values of 26 – 38 

µS/cm were obtained for the treated water at DND treatment plant. The EC of the treated waters 

from the municipality and DND treatment plants varied a little when reaching Sandhill reservoir 

with values of 553 – 1237 µS/cm, and 19 – 37 µS/cm, respectively. After the mixture of the treated 

waters occurred at the Sandhill reservoir, EC ranged from 304 to 866 µS/cm. The EC the blend of 

treated waters was strongly influenced by the proportions of each treated water in the mixture. In 

the Valley area served by a blend of the treated waters, the EC of tap water varied slightly with 

increasing distance of the private households H1, H2, H4, H5 and H6, and government building H3 

from Sandhill reservoir and between seasons, reaching up to 919 µS/cm. EC of tap water from the 

private household H7 in the northern sector (served by DND treatment plant) also varied slightly 

with seasons, reaching up to 166 µS/cm. 
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Figure 12: Seasonal and spatial variations of the electrical conductivity in the distribution systems. Note: the 

legend is the same as in Figure 10. See the sampling locations in Figure 8. 

Total Dissolved Solids 

Total dissolved solids (TDS) includes inorganic constituents (salts) and organic matter. TDS values 

ranged from 51 – 1379 mg/L for the groundwater source (Figure not shown). The lowest values 

(TDS <1000 mg/L) were recorded for Well #2 and Wells #3-4-5, classified as freshwater, and the 

highest values (>1000 mg/L) were recorded for Well #1 in winter and spring, classified as brackish 

water, i.e. a mixture of freshwater and saltwater (Freeze and Cherry, 1979). This implies that the 

groundwater mix for treatment was salt-enriched or brackish and not freshwater, given that which 

Well #1 provides most of the raw water into the municipality treatment plant. Therefore, 

desalination technology should perhaps be considered to remove the dissolved salt content from 

the brackish groundwater. TDS values of Spring Gulch were much lower, ranging between 20 and 

25 mg/L, indicating freshwater (Freeze and Cherry, 1979). The TDS values of the treated waters 

varied from 339 – 474 mg/L at the municipal treatment plant and from 14 – 19 mg/L at DND 

treatment plant; these TDS values changed little at the Sandhill reservoir. Blending of the treated 

waters diluted the TDS content in tap water to a maximum of 461 mg/L in the Valley area, when 

dominated by treated water from the municipal treatment plant; minimum values were observed 

in cases of dominance by treated water from DND treatment plant. TDS of tap water at the private 
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household in the northern sector (served by DND treatment plant) also varied seasonally from 10 – 

74 mg/L. 

In the Valley area, TDS concentrations were moderate and just below the Canadian aesthetic-based 

guideline of 500 mg/L. Higher TDS concentrations impart an undesirable salty taste of drinking 

water, and can cause excessive scaling and corrosion of plumbing materials and household 

appliances (Health Canada, 2014). Nevertheless, because sensitivity to taste varies from person to 

person, some people might still detect the salty taste of water at moderate-TDS concentrations 

(Dietrich and Gallagher, 2003). 

Oxidation-Reduction Potential 

Oxidation-reduction potential (ORP) or redox potential measures the capacity of water to either 

lose (oxidation) or gain (reduction) electrons from chemical (redox) reactions. It indicates the 

oxidizing (aerobic) or reducing (anaerobic) tendency of water; positive values indicate oxidizing 

conditions, while negative values occur when the water is more reducing. Redox reactions strongly 

influence the mobilization or immobilization potential of metals (or contaminants) from both 

natural and anthropogenic sources; the mobility of some metals increases under reducing 

conditions, while others metals are more mobile under oxidizing conditions (e.g. McMahon and 

Chapelle, 2008). 

The variation of ORP during the sampling period is illustrated by Figure 13. Seasonal changes in 

reducing and oxidizing conditions of the groundwater source were observed at all the wells. Redox 

potential alternated from modestly negative values in spring to positive values during the other 

seasons and ranged between -45 and +106 mV. The ORP concentrations obtained for Spring Gulch 

water were higher than those for groundwater wells, from +326 and +545 mV in summer and fall, 

respectively. Groundwater treatment produced positive and higher ORP from +546 to +554 mV, 

due to the oxidizing nature of the chlorine and permanganate added to the water during the 

treatment process. A similar trend of higher ORP values between +554 and +658 mV was recorded 

for treated water from DND treatment plant, as the result of chlorine addition during water 

disinfection. ORP values for both treated waters at the Sandhill reservoir and tap water in the 

private households and the government building were variable, but in general decreased with 

increasing distance along the distribution line in the Valley area. The ORP of drinking water from 

DND treatment plant showed no change to little increase with distance from the plant, as 

demonstrated by the ORP concentrations measured at household H7 (Fig. 13). 
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Figure 13: Seasonal and spatial changes of the redox potential in the distribution systems. Notes: The legend 

is the same as in Figure 10. The ORP meter was not working during Winter 2** sampling session. See 

sampling sites in Figure 8. 

4.2. Disinfection by-products trihalomethanes 

Disinfection by-products (DBPs) result from chlorination in drinking water treatment, and also 

when other disinfectants, such as ozone and chloramines are used (e.g. Rook, 1974; Williams et al., 

1997; Singer, 1994; Rodriguez and Sérodes, 2001; Liang and Singer, 2003; Nikolaou et al., 2004; 

Rodrigez et al., 2004; Nikolaou et al., 2004; Guilherme and Rodriguez, 2014; Scheili et al., 2015). 

Although more than 600 different species of disinfection by-products (DBPs) have been identified 

in tap water (Richardson, 2002; Richardson et al., 2007), only trihalomethanes (THMs) and 

haloacetic acids (HAAs) are regulated, because of public health concerns. This study focused on the 

four THM species: chloroform (CHCl3), dibromochloromethane (CHClBr2), bromodichloromethane 

(CHCl2Br) and bromoform (CHBr3), because THMs are the most prevalent DBP class in drinking 

waters and are often used as indicators for all other potentially harmful DBP classes (e.g. Krasner et 

al. 1989). The sum of these four compounds or total THMs, is regulated at the heath-based 

guideline value of 0.1 mg/L (or 100 μg/L) in tap water (Health Canada, 2006: 2014). 

Figure 14 shows the concentrations and changes of total THMs in treated and tap waters as a 

function of treatment and distribution conditions (see Table 1), season and residence time in the 

http://ehp.niehs.nih.gov/1409480/#r23
http://ehp.niehs.nih.gov/1409480/#r23
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distribution systems before reaching the consumer’s tap. When comparing the two treatment 

plants, considerable variability was observed in concentrations of specific THMs species and 

therefore of total THMs. Total THM levels were higher in treated water at the municipal treatment 

plant than at the DND treatment plant. A possible explanation is the difference in water source, 

and therefore in the content of THM precursors (i.e. organic and inorganic material which reacts 

with chlorine to form THMs) and/or the difference in the chlorine doses. Only the THM species 

CHCl3 was found in treated water from DND treatment plant, whereas in treated water from the 

municipal treatment plant, CHClBr2, CHCl2Br and CHBr3 species dominated with minor amount of 

CHCl3. This is probably due to the presence of bromide in groundwater (see section 4.4 of the text). 

 

Figure 14: Seasonal and spatial changes of THMs in the distribution systems. Notes: water samples were not 

collected at the DND treatment plant (A1) during winter 1, winter 2 and spring sampling sessions. The 

sampling locations are shown in Figure 8. 

The levels of total THMs in municipally treated water were higher at the plant and Sandhill 

reservoir than at DND treatment plant. The highest concentrations of total THMs of 108 and 

121μg/L respectively, exceeding the Canada health-risk guideline, were obtained in winter when 

the plant was operating on a temporary basis after a shutdown for repair. This is likely due to 
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changes in operational parameters during the period following the repair, indicating a need to 

verify the potability of threated water upon resuming operations, and prior to pumping water into 

the distribution system. 

Concentrations of total THMs in the treated water at the DND treatment plant remained fairly 

constant at Sandhill reservoir, reaching 21 μg/L. When dominant in the blend at Sandhill reservoir, 

the lower total THM levels of the treated water from DND treatment plant caused a reduction (up 

to 3 times lower) of total THMs content in the mixture of the treated waters before distribution in 

the Valley area. After the blending, when treated water from the DND treatment plant was 

dominant, CHClBr2, CHCl2Br and CHBr3 remained the dominant species; however, their 

concentrations decreased considerably, whereas the level of CHCl3 slightly increased in blended 

treated water at Sandhill reservoir. On the other hand, when treated water from the municipal 

treatment plant dominated in the mixture at Sandhill reservoir, CHClBr2, CHCl2Br and CHBr3 

remained the dominant species, and their concentrations generally decreased slightly, whereas 

CHCl3 content increased considerably. 

From site to site across the distribution line in the Valley area, concentrations of total THMs varied 

slightly, but remained lower (up to 55 μg/L), when treated water from DND treatment plant 

accounted for 100 % and 95 % of the mixture at Sandhill reservoir (Fig. 14; Table 1). In contrast, 

when treated water from the municipal plant dominated in the mixture, total THM levels in tap 

water remained higher and increased with increasing distance from Sandhill reservoir, and 

exceeding the Canada health-risk guideline at some households H4, H5 and H6, and the 

government building H3 (Fig. 14). Higher total THM levels were reported at the beginning of the 

distribution line at the government building H3 and not toward the end of the distribution line as 

expected, probably because of higher stagnation times and the higher temperature (see Fig. 10) of 

water in the plumbing. This building has longer plumbing lines and the kitchen tap is used only 

periodically, compared to the private households toward the end of the distribution line.  

The effect of seasonal changes on total THMs, especially in tap water at the distribution line, could 

not be inferred with confidence from this study, because of the significant variations in the percent 

blend of treated waters from the two treatment plants over the timeframe of this study. Constant 

mixing proportions of the treated waters, and to some extent, similar operational parameters 

between the seasons are crucial for such evaluation. However, it can be seen in Figure 14 that the 

concentrations of total THMs were, in general, higher in spring, summer and fall (warmer seasons) 

than in winter and this corroborates with other studies (e.g. Rodriguez and Sérodes, 2001; Toroz 

and Uyak, 2005). An increase with travel time and a seasonal variability were observed at 
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household H7, which is served only by the DND treatment plant, with higher levels of total THMs 

(32 μg/L) in warmer periods (spring, summer and fall) and lower levels in winter (up to 9 μg/L). 

Higher THM content was observed in kitchen hot water taps than in cold water taps, because of 

higher water temperature and longer stagnation time in the hot water tank. A difference in the 

THM species present in water was also observed. For instance, at household H1 during Winter 1 

sampling session (when drinking water was supplied solely by DND treatment plant), the level of 

total THMs in water from the cold faucet tap (at a temperature of 9˚C) was 6 μg/L and consisted 

exclusively of CHCl3. In contrast, the concentration of total THMs in water from the hot faucet tap 

(at a temperature of 32˚C) was 6.8 times higher than that from the cold faucet tap, reaching 41 μg/L 

(not shown in Figure 14) and THMs consisted dominantly of CHCl3 with lesser amounts of 

CHClBr2, CHCl2Br and CHBr3. This suggests that THM levels increase when cold water stagnates 

in household pipes and that this increase is even more significant when water sits in hot water 

tanks. This observation corroborates findings by Dion-Fortier et al. (2009). 

There is evidence that long-term exposure to levels of THMs above the guideline value has 

potential adverse effects on human health (e.g. Canada Health, 2014: Mohamadshafiee and 

Taghavi, 2012). Although total THMs are monitored under the regulations, the request for specific 

concentrations of individual THM species is recommended, because potential health effects 

associated with the exposure to elevated THMs may be different for each THMs species (e.g. IARC, 

1999a: 1999b; Hunter et al., 2006). For instance, CHCl3 and CHCl2B are considered by the 

International Agency for Research on Cancer (IARC) to be possibly carcinogenic in humans (IARC, 

1999a: 1999b). Moreover, epidemiologic studies suggest possible relationships between exposure to 

CHCl3 and increased risk of cancer, especially of the urinary bladder and colorectum (e.g. King and 

Marrett, 1996; IARC, 2004; Richardson et al., 2007; Villanueva et al., 2004: 2007). Furthermore, 

exposure to high concentrations of DBPs has been associated with significant increases in risks of 

reproductive, developmental and birth defects (e.g. Nieuwenhuijsen, et al., 2000; Tardiff et al., 2006; 

Chisholm et al., 2008; Smith et al., 2016). Humans are exposed to THMs by drinking tap water, as 

well as through dermal absorption and inhalation during showering and bathing (Lin, 2000; 

Backer, 2000; Nuckols et al., 2005). 

4.3. Total alkalinity and total hardness 

Total Alkalinity 

Alkalinity measures water’s capacity to resist to pH changes. Adequate alkalinity, typically above 

100 mg/L, will protect pH from fluctuation and therefore, will keep it stable. Alkalinity is primarily 

http://oem.bmj.com/search?author1=Mark+J+Nieuwenhuijsen&sortspec=date&submit=Submit
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a function of the presence of naturally-occurring carbonates, bicarbonates and to a lesser degree, 

hydroxides and phosphates (e.g. Griggs and Ficke, 1977). It is influenced by local geology and by 

the percolation of rain and surface water along with the dissolved carbon dioxide of the 

atmosphere. Alkalinity is a commonly used indicator in the interpretation and control of water 

processes. 

Total alkalinity (as CaCO3) values of the groundwater vary from 31 to 79 mg/L between the wells. 

Except for summer, a very narrow variation range was observed in each individual well. In 

summer, total alkalinity was significantly lower for Well #1 and higher for Well #2 and Wells #3-4-

5. The total alkalinity of Spring Gulch water was lower than that of the groundwater, with values 

of 17 and 15 mg/L in summer and fall. Treated groundwater showed total alkalinity values of 40 – 

55 mg/L at the municipal treatment plant and a comparable range at the Sandhill reservoir. Treated 

water from DND treatment plant had slightly lower total alkalinity, ranging from 10 to 14 mg/L at 

both the plant site and Sandhill reservoir. The low total alkalinity obtained (below 100 mg/L) 

suggests poor buffering capacity in both groundwater and surface water sources. This is possibly 

due to the fact that the sedimentary rocks through which the groundwater and surface water move 

through contain little carbonate or bicarbonate minerals or compounds. The total alkalinity of the 

mixture of the treated waters varied between 21 and 51 mg/L and was strongly influenced by the 

proportion of treated water from each of the treatment plants in the blend: the higher the 

proportion of treated water from DND treatment plant in the blend, the lower the total alkalinity of 

the mixed treated waters; the opposite was observed when treated water from the municipal 

treatment plant dominated in the mixture. The total alkalinity of tap water samples varied little 

along the distribution line in Valley area compared to corresponding treated water mixtures at the 

Sandhill reservoir. “First-draw” and “flushed” samples from individual households and the 

government building showed either similar values of total alkalinity or narrow variation ranges. 

Similarly, the total alkalinity of tap water supplied by DND treatment plant at household H7 

varied little, ranging between 12 and 15 mg/L, and was comparable to the values for corresponding 

treated water at the DND treatment plant. 

Total hardness 

Water hardness is caused primarily by the presence of dissolved calcium- and magnesium- 

carbonates, bicarbonates and hydroxides (namely carbonate hardness) and dissolved non-

carbonate salts, calcium- and magnesium- chlorides and sulphates (namely non-carbonate 

hardness) with to some extent, several other dissolved metals forming divalent or multivalent 

cations, such as aluminum, barium, strontium, iron, zinc, and manganese in water. Carbonate 

hardness is equivalent to total alkalinity and any excess of hardness above total alkalinity is 
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considered to be non-carbonate hardness (e.g. Rice et al., 2012). Carbonate hardness can be 

removed by boiling and as such is referred to as temporary hardness, whereas non-carbonate 

hardness is permanent in water. Its constituents are from natural sources and are expected to occur 

in higher concentrations in groundwater compared to surface water, because groundwater moves 

through sedimentary rocks and is contaminated by seawater intrusion. Drinking water is classified 

based on total hardness (TH) as CaCO3, which represents the sum of carbonate hardness and non-

carbonate hardness as: soft (TH less than 60 mg/L), moderately hard (TH between 60 and 120 

mg/L), hard (TH between 120 and 180 mg/L), and very hard (TH above 180 mg/L) (Durfor and 

Becker, 1964; Health Canada, 1979). Total hardness (as CaCO3) of water was calculated using the 

formula below: 

Total hardness as CaCO3 (mg/L) = 2.497 [Ca, mg/L] + 4.118 [Mg, mg/L] 

The variability of TH in water presented in Figure 15 is similar to that of total alkalinity (figure not 

shown). It can be seen in Figure 15 that groundwater samples from the wells fall within different 

water hardness zones. With the exception of fall, water from Well #1 was very hard and had TH of 

277 – 323 mg/L, whereas water from Well #2 and Well #3-4-5 was within the soft water zone (TH 

>60 mg/L) in summer, spring and winter. In the fall, although slightly higher, water from Well #2 

remained soft. On the contrary, water from Well #1 became soft with a substantial decline in TH to 

23 mg/L, while a significant increase in TH of water from Well #2 was observed and reached 292 

mg/L. The difference and seasonal changes in groundwater TH quality from the wells can possibly 

be explained by the pumping of a mixture of freshwater and saltwater (i.e. brackish water) into the 

treatment plant; saltwater is enriched in magnesium and sodium salts and non-carbonate salts, 

such as chloride (see Figs. 17, 19 and 20). 

The surface water source (Spring Gulch) supplying the DND treatment plant was soft, having a TH 

of 12 mg/L. Treated water at the municipal treatment plant was hard and remained so, in general, 

at the Sandhill reservoir (between 109 and 152 mg/L). On the other hand, treated water from DND 

treatment plant remained soft with TH of 12 mg/L after treatment and after reaching the Sandhill 

reservoir. Due to the high proportions in the blend of treated water distributed in the Valley area, 

the hardness characteristic of the treated water from the municipal treatment plant dominated the 

tap water TH in spring, summer and fall (also see Table 1). Tap water TH along the distribution 

system was between moderately hard and hard, ranging between 99 and 138 mg/L, and in general 

was above the Canada aesthetic-based guideline range of 80 – 100 mg/L (Health Canada, 2014). In 

winter (Winter 1 and Winter 2), the percent blends of the treated waters were, in contrast, 

dominated by treated water from DND treatment plant (also see Table 1). As result, tap water 

showed TH range of 12 – 42 mg/L, indicating soft water. At household H7, supplied only by the 
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DND treatment plant, TH levels ranged from 11 to 16 mg/L, indicating soft water. Only negligible 

changes were observed within the households and the government building. 

 

Figure 15: Seasonal and spatial changes of the total hardness in the distribution systems. The classification of 

the hardness in water is shown. See Figure 8 for the sampling locations. 

Depending on pH and alkalinity, water with hardness above 100 mg/L may cause problems, such 

as incrustation of pipes and deposition of off-white chalky scale in in-house plumbing fixtures and 

water use appliances (Fig. 16); in the long term, this can shorten the operational lives or otherwise 

damage domestic water-use machinery (e.g. Hudson and Gilcreas, 1976; Gray, 2008; Spellman, 

2013). In addition, hard water may have corrosion tendencies and also, reduce the effectiveness of 

soaps and detergents and thereby, increasing soap consumption. The breakdown of major 
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appliances such as dishwashers, washing machine and water boilers have prompted frequent 

complaints from residents living in the Valley area (See Fig. 1), where TH concentration at the taps 

ranged between 99 and 138 mg/L. Therefore, the reduction and monitoring of drinking-water 

hardness is necessary to avoid not only more frequent cleaning, but also expensive repair and/or 

replacement of household water-use appliances. Softening processes are common practices in 

water treatment (Curtis and El-Midany, 2006; Spellman, 2013). The type of chemical used depends 

on the type of hardness in the water. 

 

Figure 16: The electric kettle at one household shows a build-up of off-white, chalky scale from tap water. 

4.4. Nutrients and inorganic anions 

Nutrients, nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N) and orthophosphate-phosphorus 

(PO4-P) were not present in detectable levels (i.e. obtained concentrations were below their lower 

limits of detection) or were present only at very low concentrations in all samples. 

Bromide 

Bromide (Br−) was detected only in groundwater and in tap water at the private households and 

the government building in the Valley area (figure not shown). Groundwater from Well #1 

contained Br− only in winter, spring and summer and the concentrations ranged from 1.79 to 1.95 

mg/L. Well #2 contained Br− at 0.15 mg/L only in fall and Br− levels detected in groundwater Well 

#3-4-5 were 0.15 and 0.41 mg/L in summer and fall, respectively. Br− in groundwater typically 

originates from natural sources (Davis et al., 2004; Magazinovic et al., 2004). Although 
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anthropogenic sources of Br− have also been identified (e.g., Br− containing pesticides and fuel 

additives), their contribution to overall Br− levels are, in general, expected to be negligible (Price et 

al., 1988; Magazinovic et al., 2004). Given their similar physical and chemical properties, Br− is 

commonly found in groundwater with sodium and chloride in coastal settings, such as Happy 

Valley-Goose Bay (Davis et al., 1998; Davis et al., 2004). Therefore, the presence of Br− in raw 

groundwater was likely the result of pumping a mix of saltwater and freshwater into the treatment 

plan; it is also possible that sedimentary rocks made contributions. When present in raw 

groundwater, Br− can react with chlorine and naturally-occurring organic matter, leading to 

increasing formation of the brominated and mixed chlorinated–brominated species of THMs 

(CHClBr2, CHCl2Br and CHBr3) and HAAs in drinking water (Chang et al., 2001; Chowdhury et al., 

2010). The presence of Br−, therefore, explained the dominance of these brominated and mixed 

chlorinated–brominated THM species in treated water from the municipal treatment plant. 

The content of Br− varied across the distribution line in the Valley area. With the exception of 

household H3, Br− in tap water was commonly found in “first draw” samples at the households 

closer to Sandhill reservoir (H1 and H2), while it was present in both “first draw” and “flushed” 

samples towards the end of the distribution line at households H4, H5 and H6. The concentrations 

of Br− were higher in “first draw” (up to 0.45 mg/L) than “flushed” samples (up to 0.25 mg/L). At 

the government building H3, bromide was detected in both “first draw” and “flushed” samples 

and its levels were either higher in “first draw” or in “flushed”; in both cases, the highest Br− level 

obtained was 0.42 mg/L in “flushed” sample. There are no adverse health effects due to the 

presence of Br− in drinking water (WHO, 2009). 

Chloride 

The variation of chloride (Cl−) levels in groundwater, surface water, treated and tap waters is 

presented in Figure 17. The trend of Cl− is comparable to that of total hardness with regards to the 

seasonal and local variations. In raw groundwater, Cl− concentrations varied over a wide range 

among the wells, with the highest concentrations in Well #1 (2.29 – 715 mg/L), followed by Well #3-

4-5 (58.7 – 145 mg/L) and Well #2 (2.60 – 56.1 mg/L). As for EC and TDS, this suggests that mixed 

saltwater and freshwater was pumped from Well #1 into the treatment plant. Lower Cl− level in 

Well #1 was observed in the fall, whereas the level was higher during the other seasons. The 

opposite was observed in Well #3-4-5, where Cl− content was lower in winter, spring and summer, 

and higher in fall. Well #2 displayed similar Cl− seasonal evolution as in Well #3-4-5; however, the 

obtained Cl− concentration range was narrower (Fig. 17). The seasonal changes in Cl− levels in raw 

groundwater were likely due to the variation of saltwater proportion in water pumped into the 
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plant. Cl− was not present in raw surface water at the DND treatment plant, but it was found at 

lower concentrations of 1.7 and 2.1 mg/L in treated water. This sudden appearance of Cl− in treated 

water was likely due to reactions between the chlorine used for disinfection and elements in water 

to form Cl− compounds. 

 

Figure 17: Seasonal and spatial variations of chloride concentrations in the distribution systems. Note: The 

legend is the same as in Figure 15. See sampling locations in Figure 8. 

After the treatment process, Cl− content in treated water at the municipal treatment plant varied 

between 233 and 292 mg/L. In the Valley area, when the blended treated water at Sandhill reservoir 

included higher proportion of the water were from the municipal treatment plant in (also see Table 

1), its Cl− content had a significant impact on the Cl− concentrations of tap water (spring, summer 

and fall). The levels of Cl− in tap water along the distribution line showed a narrow range of 

variability, from 199 to 250 mg/L. Because the percent blends of the treated waters were, in 

contrast, dominated by treated water from DND treatment plant in winter (Winter 1 and Winter 2; 

also see Table 1), Cl− content in tap water was significantly lower and ranged between 2.25 and 

64.7 mg/L. At Household H7, which was supplied only by DND treatment plant, Cl− 

concentrations ranged from 1.79 to 3.41 mg/L (Fig. 17). Negligible intra-household changes in the 

levels of Cl− were observed. 
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Because of the taste concern posed by high levels of Cl− in tap water, Health Canada (2014) has 

established an aesthetic-based guideline of 250 mg/L. Above that limit, consumer acceptability of 

drinking-water can be hampered by the salty taste. Nevertheless, acceptability depends on the 

sensitivity of the consumer and therefore, may vary among consumers. Cl− levels in treated water 

from the municipality treatment plant exceeded the permissible limit in winter, spring and summer 

(Fig. 17). On the other hand, Cl− concentrations in tap water, across all the seasons, distances from 

the Sandhill reservoir, and sampling locations, tended to clusters near or at the permissible limit 

(Fig. 17). 

Chloride also has a significant influence on the corrosion of materials in the distribution system, as 

well as household pipes and other plumbing materials. This may lead to detrimental consequences 

by permitting the leaching of toxic metals into tap water (see section 4.5 of the text), and also may 

shorten the life of household plumbing materials and water-use appliances. As already pointed 

out, desalination should perhaps be considered for implementation to remove the salts, including 

Cl− from the brackish groundwater. 

Sulphate 

Based on taste considerations, Health Canada (2014) recommends the aesthetic-based guideline 

value of 500 mg/L for sulfate (SO42−) in drinking water. Moreover, SO42− concentrations exceeding 

500 mg/L may cause diarrhea (Heizer et al., 1997). SO42− occurs naturally in groundwater and 

surface water from the dissolution and/or oxidation of sulfate minerals in mineral deposits, soils 

and rocks (e.g. shales), from seawater intrusion, or due to human activities, such as power plants 

and industrial wastes (e.g., Krouse and Mayer, 1999; Seller and Canter, 1980). 

Sulphate concentrations showed seasonal, intra-household/government building changes similar to 

those observed for chloride concentrations and total hardness (figure not shown). SO42− 

concentrations in groundwater varied among the wells, with the highest concentrations in Well #1 

(1.73 – 86.6 mg/L), followed by Well #3-4-5 (7.42 – 82.6 mg/L) and Well #2 (1.86 – 7.47 mg/L). The 

lower SO42− level in Well #1 was observed in the fall, while levels were high for the other seasons. 

The opposite was observed in Well #3-4-5, where SO42− content was lower in winter, spring and 

summer, and higher in fall. Well #2 showed similar SO42− seasonal change as in Well #3-4-5, but 

with a much narrower range of SO42− concentrations. SO42− content in treated water at the 

municipal treatment plant and Sandhill reservoir varied from 27.1 to 37.2 mg/L. Like chloride and 

the total hardness, SO42− is likely from a natural source, i.e. the mixture of freshwater and saltwater 

pumped into the plant. SO42− in raw surface water at DND treatment plant was very low and 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575751/#R63
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575751/#R87
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reached up to 1.05 mg/L; this remained constant after treatment and at Sandhill reservoir and at 

household H7 in the northern sector of the town. The level of SO42− in tap water at the distribution 

line in the Valley area was influenced by the percent blend of the treated waters from the municipal 

and DND treatment plants at Sandhill reservoir (see Table 1). With higher proportions of treated 

water from the municipal treatment plant in spring, summer and fall, SO42− concentrations in tap 

water were between 22.4 and 30.0 mg/L. In contrast, when the percent blend of the treated waters 

was dominated by treated water from DND treatment plant in winter (Winter 1 and Winter 2), the 

SO42− content in tap water was much lower, between 1.09 and 8.27 mg/L. Intra-household 

variations were insignificant. Concentrations of SO42− were well below the Canadian aesthetic-

based guideline. 

Fluoride 

Fluoride (F−) occurs naturally in groundwater and surface water from many types of sedimentary 

and igneous rocks. Health Canada (2014) suggests an aesthetic-based guideline value of 1.5 mg/L 

for F− in drinking water. Although today exposure of humans to F− is through a variety of sources, 

fluoridated drinking-water remains the principal source of the daily F− intake (WHO, 2004). The 

benefits for dental health of drinking water fluoridation to increase naturally low fluoride 

concentrations F− in water sources is still a matter of debate (e.g. Canadian Dental Association, 

2012; Peckham and Awofeso, 2014). Nevertheless, since fluoridation of drinking water was 

introduced in 1945, it has been agreed that a fluoride level of 0.7 mg/L represents the best balance 

of F− in drinking water to promote dental health in both children and adults, while minimizing the 

risk of excess F− intake through multiple daily sources of exposure (e.g. Griffin et al., 2007; Loskill 

et al., 2013; Rabb-Waytowich, 2009; Yeung, 2007; WHO, 2004). Increase in the rates and severity of 

dental caries may occur when levels fluoride in drinking water are less than 0.7 mg/L, whereas the 

development of dental fluorosis (pitting and yellow to brown staining of teeth) has been linked to 

long-term ingestion of higher levels of fluoride above the aesthetic-based guideline; and skeletal 

and crippling fluorosis at much higher concentrations, above 4.0 mg/L (e.g. DenBesten and Li, 2011; 

Health Canada, 2014; Rabb-Waytowich, 2009). 

Figure 18 shows F− concentrations in groundwater, surface water (Spring Gulch), and treated and 

tap water samples. When detected, F− concentrations in groundwater were, in general, very low in 

all the wells and ranged from 0.04 to 1.00 mg/L. This observed range in raw groundwater remained 

unchanged after the treatment process, since the municipality does not add F− to its treated water. 

At the DND treatment plant, F− in raw Spring Gulch water was also low with concentration of 0.04 

mg/L. However, this level increased (up to 0.58 mg/L) in treated water due to addition of a F− 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20W%5Bauth%5D


 

41 

compound, and this level remained constant in tap water served by the DND treatment plant only 

(i.e. household H7, see Fig. 18). F− content at Sandhill reservoir and in tap water at the distribution 

line in the Valley area was influenced by the percent blend of the treated waters from the municipal 

and DND treatment plants (see Table 1). With the higher proportions of treated water from the 

DND treatment plant in winter (Winter 1 and Winter 2; see Fig. 17), F− concentrations in tap water 

were higher and varied between 0.34 and 0.43 mg/L. In contrast, when the percent blend of the 

treated waters was dominated by treated water from the municipal treatment plant in spring, 

summer and fall, the F− content in tap water was much lower and ranged from 0.09 to 0.22 mg/L. 

Intra-household variations of fluoride content appears almost negligible. 

 

Figure 18: Fluoride concentrations in the distribution systems. Note: The legend of the sampling locations is 

the same as in Figure 15. Sampling locations is presented in Figure 8. 

Overall, the concentrations of F− in tap water in the distribution systems at the Valley area and the 

northern sector were well below the aesthetic-based guideline, below optimal promotion of dental 

health (Fig. 18). For this reason, residents should be encouraged by the appropriate authorities to 

use topical fluoride (e.g. fluoridated toothpaste, varnish, gel or mouth rinse) or other measures to 

protect dental health, as recommended by the Canadian Dental Association (2012). 

4.5. Major and trace elements 

The following elements were either not detected (obtained concentrations were below their limits 

of detection) or were present only in trace quantities (concentrations were close to their limits of 

http://ec.europa.eu/health/scientific_committees/opinions_layman/fluoridation/en/glossary/def/fluoride.htm
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detection) in groundwater and surface water sources, and treated waters and tap water samples: 

antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), 

chromium (Cr), cobalt (Co), lithium (Li), molybdenum (Mo), phosphorus(P), selenium (Se), nickel 

(Ni), silver (Ag), tellurium (Te), thallium (Tl), tin (Sn), titanium (Ti), tungsten (W), uranium (U), 

vanadium (V) and Zirconium (Zr). 

Elements actually detected in the analyzed water samples have been divided into three groups 

based on their origin: (i) naturally-occurring elements, barium (Ba), magnesium (Mg), potassium 

(K), sodium (Na), calcium (Ca), sulfur (S), strontium (Sr) and silicon (Si); (ii) Natural- and plumbing 

corrosion-induced metals, iron (Fe) and manganese (Mn), and (iii) plumbing corrosion-induced 

metals, copper (Cu), lead (Pb) and zinc (Zn). 

4.5.1 Naturally-occurring elements 

The variations of Ba, Mg, K, Na, Ca, S, Sr and Si in water samples are presented in Figure 19, 20 and 

21. Their seasonal and special variations were similar to those of total hardness (Fig. 15), Cl− (Fig. 

17), and SO42− and Br− (figures not shown). The variations in Ba, Mg, and K (Fig. 19), Na, Ca and S 

(Fig. 20) and Sr and Si (Fig. 21) were predominantly controlled by seasonal differences in 

concentration in groundwater from Well #1, Well #2 and Well #3-4-5. In addition, the percent blend 

of the treated waters from the municipal and DND treatment plants at Sandhill reservoir (given in 

Table 1) influenced the concentrations of these elements at taps in the Valley area. Except for Si, the 

concentrations of the other elements were considerably higher in Well #1 in winter, spring and 

summer compared to Well #2 and Well #3-4-5 (Figs. 19, 20 and 21). The opposite was observed in 

fall, with groundwater from Well #3-4-5 containing substantially higher concentrations of Ba, Mg, 

K, Na, Ca, S and Sr, followed by Well #2 and finally Well #1 (Figs. 19, 20 and 21). Groundwater Si 

concentrations showed a less pronounced seasonal variation (Fig. 21). The treatment process at the 

municipal treatment plant resulted in considerable reduction of these elements in the treated water. 

On the other hand, the surface water source (Spring Gulch) had considerably lower contents of Ba, 

Mg, K, Na, Ca, S, Sr and Si compared to groundwater supply wells; equivalent lower 

concentrations were observed after treatment and in tap water supplied by the DND treatment 

plant only, i.e. household H7 (Figs. 19, 20 and 21). After the mixture of the treated water occurred 

at Sandhill reservoir, a higher percentage of treated water from DND treatment plant in winter 

resulted in a significant dilution of Ba, Mg, K, Na, Ca, S, Sr and Si in tap water at the distribution 

line in the Valley area. In contrast, the dominance in the mixture of treated water from the 

municipality treatment plant in spring, summer and fall maintained the elevated concentrations in 

these elements in water reaching the consumer’s taps (Figs. 19, 20 and 21). 
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Figure 19: Seasonal and spatial changes of barium, magnesium and potassium concentrations in the 

distribution systems. Note: The legend of the sampling locations is the same as in Figure 15. See the sampling 

locations in Figure 8. 
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Figure 20: Seasonal and spatial variations of sodium, calcium and sulfur concentrations in the distribution 

systems. Notes: Sulfur was not determined in Winter 1 and Winter 2 samples. The legend of the sampling 

locations is the same as in Figure 15. Sampling locations are shown Figure 8. 
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Figure 21: Seasonal and spatial variations of strontium and silicon concentrations in the distribution 

systems. Note: The legend of the sampling locations is the same as in Figure 15. See the sampling locations in 

Figure 8. 

There are no documented adverse health effects due to the presence of Mg, Ca, K, S, Sr and Si in 

drinking water and, therefore, no guidelines values have been issued for these elements (Health 

Canada, 2014). Sr is, however, being reconsidered and evaluated further for establishment of 

regulatory levels in drinking water by the U.S. EPA (Alfredo et al., 2014). An aesthetic-based 

guideline level has been established at 200 mg/L for Na (Health Canada, 1992: 2014), because of 

possible noticeable salty taste at higher concentrations; however, this limit may varies substantially 

among people. For people on salt (or sodium)-restricted diet, it is suggested to consume drinking 

water with less than 20 mg/L Na (Health Canada, 1992; U.S. EPA, 2003). Higher sodium 
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concentrations in tap water in the Valley area were observed (average 120 mg/L) compared to that 

at household H7 (1.2 mg/L) at the northern sector, which was served only by DND treatment plant; 

but all were below the Canadian aesthetic-based guideline. 

4.5.2 Natural- and plumbing corrosion-induced metals 

Natural- and plumbing corrosion-induced metals here refer to iron (Fe) and manganese (Mn). High 

concentrations of Fe and Mn in drinking water are associated with colored (orange, red-brown or 

black-brown) stains, which were one of the main reasons for drinking-water quality complaints 

from customers (Fonkwe, 2015: Fonkwe and Schiff 2016; also see Fig. 1). Fe and Mn often occur 

together and in higher concentrations in groundwater than surface water. While, naturally 

occurring Fe and Mn in groundwater is generally the major source, because of weathering minerals 

in the bedrock, human contamination from landfill leachate, sewage, and industrial wastewater 

may also occur. It has also been demonstrated that depending on the chemical compositions of the 

water, corrosion of cast iron and ductile iron pipes in drinking water distribution systems can 

cause the formation of internal corrosion scales, especially as the pipes’ age increase, resulting in 

the release of Fe and Mn into drinking water (Hallam et al., 2001; Maneesha et al., 2011; Sun et al., 

2014). The pipe materials of the water main supply line in Happy Valley-Goose Bay are made of 

cast iron and ductile iron (F. Brown, pers. comm. June 09, 2014). Moreover, household pipes and 

other plumbing materials can also contribute to the Fe and Mn load into tap water. 

The variability of Fe and Mn in analyzed water samples is shown in Figures 22 and 23, respectively. 

As expected, Fe and Mn concentrations were negligible in surface water from Spring Gulch, 

reaching up to 0.10 mg/L for Fe and 0.014 mg/L for Mn. On the other hand, Fe content was much 

higher in groundwater from Well #1 (up to 10.9 mg/L), followed by Well #2 (up to 6.6 mg/L) and 

Well 3-4-5 (1.7 mg/L) in winter, spring and summer. In fall, the higher concentration of Fe in 

groundwater was found in Well #3-4-5 (10.8 mg/L), followed by Well #1 (6.2 mg/L) and Well #2 (1.5 

mg/L). This indicates seasonal variability of Fe in the groundwater supply wells. Similarly, Mn 

showed higher concentrations in groundwater from Well #1 (up to 0.95 mg/L), whereas Well #2 and 

Well 3-4-5 had similar Mn content, up to 0.4 mg/L in winter, spring and summer. A different Mn 

trend in groundwater was observed in spring; higher concentration occurred in Well #3-4-5 (0.94 

mg/L) and similar low concentration of 0.34 mg/L in Well #1 and Well #2. 

Treated water (B1; see Fig. 22) had very low levels of Fe (up to 0.072 mg/L) and Mn (up to 0.034 

mg/L) compare to raw groundwater (Figs. 22 and 23), demonstrating removal efficiencies higher 

than 90% during treatment. Levels in tap water, however, increased with increasing distance from 
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the treatment plants or Sandhill reservoir. In general, the further a location in the Valley area was 

from Sandhill reservoir, the higher the concentrations of Fe and Mn in its tap water. At the 

households and the government building, the obtained concentrations of Fe and Mn were nearly 

equal or equivalent in both the “first-draw” and “flushed” samples. This suggests that Fe and Mn 

were released in tap water from corroded cast iron and ductile iron pipes of the main water line 

(Figs. 22 and 23), and that in general, household/government building pipes and fixtures 

contributed only to a small extent; this also depended upon the stagnation times of the water in the 

pipes. As shown in Figure 23, much higher Mn concentrations in “first draw’ samples at household 

H4 during winter and spring were due to significantly longer-stagnation times (more than 24 

hours), compared to about 6 hours (or overnight) at the other locations. Fe and Mn concentrations 

varied from season to season, but showed no clean trends (Figs. 22 and 23). In general, seasonal 

maximum levels occurred during winter and fall for Fe and spring and fall for Mn; minimum levels 

were observed during summer and fall for Fe and winter and summer for Mn. 

 

Figure 22: Seasonal and spatial changes of iron concentrations in the distribution systems. Note: The legend 

of the sampling locations is the same as in Figure 15. See the sampling locations in Figure 8. 
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Figure 23: Seasonal and spatial changes of manganese concentrations in the distribution systems. Note: The 

legend of the sampling locations is the same as in Figure 15. See the sampling locations in Figure 8. 

4.5.3 Plumbing corrosion-induced metals 

Plumbing corrosion-induced metals in this study include copper (Cu), lead (Pb) and Zinc (Zn). 

These elements were either not detected or found to be present only at very low concentrations 

(close to their limits of detection) in groundwater, surface water from Spring Gulch and treated 

waters from the municipal and DND treatment plants (Figs. 24, 25 and 26). However, Cu, Pb and 

Zn were found at varied concentrations in tap water at the households and the government 

building, depending upon housing ages in the Valley area and the northern sector (Figs. 24, 25 and 

26; also see Table 2). This indicates that these metals were released by the corrosion of pipes and/or 

other plumbing materials. Therefore measures to reduce water corrosivity and the exposure of tap 

water to these metals should be evaluated and implemented. 

Copper 

Copper was detected in the “first draw” samples at concentrations well above the aesthetic-based 

guideline value of 1.0 mg/L (Fig. 24; Health Canada, 2014) in all the households/government 
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building, except for household H1. The households/government building have Cu pipes and other 

metal plumbing materials, whereas household H1 has plastic pipes and metal plumbing materials. 

This explains the elevated levels of Cu in “first draw” samples in the former locations. Cu 

concentrations did not show clear seasonal differences, whereas significant spatial (intra- and inter-

household/government building) variations in Cu content were observed (Fig. 24). 

 

Figure 24: Seasonal and spatial changes of copper concentrations in the distribution systems. Note: The 

legend of the sampling location is the same as in Figure 15. See the sampling locations in Figure 8. 

On the other hand, “first draw” samples from household H1 with the plastic pipes contained lower 

Cu, but higher than Cu content in the “flushed” samples, demonstrating a contribution of brass 

fixtures and/or faucets to the load of Cu released in tap water (Fig. 24). In general, Cu content in 

“flushed” samples increased with increasing distance from the DND treatment plant at household 

H7, and from Sandhill reservoir in the Valley area at households H1, H2, H4, H5 and H6, and the 

government building H3 (Fig. 24). Except at the government building H3, flushing was effective in 

reducing the levels of Cu below the aesthetic-based guideline, but still in general, above the Cu 

content in the blended treated water at the Sandhill reservoir. This indicates that Cu also entered 

drinking water before reaching consumers’ household plumbing, while travelling through the 

municipal copper pipes that connect the water main line to customers' property lines throughout 
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the town (F. Brown, pers. comm. June 09, 2014). The nearly constant high Cu levels in both the 

“first draw” and “flushed” samples from the government building H3 indicate that the allowed 

flushing time of five minutes did not successfully clear all the standing water in the building’s 

plumbing and was therefore, ineffective in reducing the levels of Cu exposure, as observed at the 

households. This is due to the greater size of the building. The effectiveness of flushing therefore 

varies between the locations. 

Corrosion of copper pipes can leave obvious bluish-green stains around sinks and bathroom 

fixtures. At levels at or above the guideline 1.0 mg/L, Cu can also give a bitter, metallic taste to tap 

water. Small amounts of Cu are essential to human health, but excess intake can cause adverse 

health effects (e.g. Dietrich et al., 2004). Exposure to elevated Cu concentrations (4.0 – 7.0 mg/L) in 

drinking water has been associated with gastrointestinal symptoms such as nausea, abdominal 

pain, diarrhea, and vomiting in the short term (e.g. Potera, 2012). Based on limited evidence from 

studies in humans, ingestion of very high concentrations of Cu over long period of time can lead to 

liver and kidney damage (de Romaña et al., 2011; Stern, 2010). The long-term health effects of 

copper at moderately high intake, as observed in the present study, are still not well defined. 

Lead 

The health-based guideline value for Pb in drinking water is 0.010 mg/L (Health Canada, 2014). Pb 

was detected primarily in all “first draw” tap-water samples; but was also present in “flushed” 

samples in two households, H5 and H7 and the government building H3 (Fig. 25). Pb content was 

higher in the “first draw” samples than in “flushed” samples. No clear seasonal variations in Pb 

concentrations were observed (Fig. 25). In contrast, the difference in lead levels within and between 

the households and the government building was substantial in the Valley area, influenced mainly 

by the types of plumbing materials (see Table 2). At household H5 (Winter 1 data was excluded 

from analysis, because flushing instructions were not followed), Pb concentrations in “first draw” 

tap water samples were up to 3.5 times higher than the health-based guideline. Pb exceedance in 

“first draw” samples from the other households and the government building was sporadic and 

occurred in both the Valley area and northern sector, during one sampling session in each case. At 

household H1 with plastic pipes, Pb likely entered tap water from corrosion of the brass faucets or 

other metallic plumbing fixtures. On the other hand, lead was, in general, not detected in “flushed” 

samples. But at two households, H7 in the northern sector and H5 in the Valley area, Pb was found 

in “flushed” samples at concentrations considerably less that than their corresponding “first-draw” 

samples, but still exceeding the health-based guideline value in spring for H5 and fall for H7. The 

results suggest that Pb in tap water solely arises from plumbing pipes and/or fixtures and faucets 

in the households and the government building. They also demonstrate that although effective in 
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some cases, flushing for five minutes may not always reduce the level of lead and therefore, the 

effectiveness of flushing should be verified and tailored to each household. 

 

Figure 25: Seasonal and spatial changes of lead concentrations in the distribution systems. Notes: The legend 

of the sampling location is the same as in Figure 15. Winter 1 result of household H5 was excluded because 

flushing instruction was not followed. See the sampling locations in Figure 8. 

Because Pb is a known cumulative toxicant (meaning that it remains in the body following 

exposure), elevated lead in drinking water is a significant public health concern (Health Canada, 

2007). Water lead levels have been shown to contribute significantly to blood lead levels in 

humans; children under the age of 6 are especially vulnerable to the harmful health effects of Pb 

(Edwards et al., 2009; Levallois et al., 2014; Ngueta et al., 2016). Lead exposure in children has been 

linked to anemia, renal dysfunction, impaired hearing and postnatal growth, intellectual deficit (in 

Ngueta et al., 2016). In adult, long-term lead exposure have been linked to renal dysfunction 

(Loghman-Adham et al., 1997) and hypertension (Navas-Acien et al., 2007). 

Lead is released in drinking water from Pb pipes (commonly in houses built before 1950), 

galvanized (zinc-coated) pipes and/or lead solders (commonly in houses built before 1990), and/or 



 

52 

brass fittings or faucets, which are also found in newer houses/buildings with plastic pipes (Clark 

et al., 2015; Elfland et al., 2010; Ng and Lin, 2016). 

Zinc 

Zinc in drinking water is not regarded as a health hazard to humans; however, the aesthetic-based 

guideline level has been set at 5.0 mg/L, because of potential problems associated with taste, milky 

appearance (opalescence), and the formation of greasy films at water surface upon boiling (Health 

Canada, 2014). 

Zinc (Zn) was found, in general, in “first draw” tap-water samples in significant amounts, whereas 

“flushed” water samples typically contained small amounts, mostly below 0.1 mg/L (Fig. 26). Zn 

content in “first draw” tap-water samples varied significantly, but irrespectively of the seasons and 

Sandhill reservoir-to-household/government building distances in the Valley area (Fig. 26). At 

household H2 and government building H3, “first draw” samples exceeded the Canadian 

aesthetic-based guideline in fall, spring and summer, respectively (a “first draw” sample was not 

collected for analysis in the fall at H3). The concentrations of Zn at other households were within 

the aesthetic-based guideline. This suggests that the observed differences in Zn levels in tap-water 

were solely controlled by the types of plumbing materials inside the households and the 

government building (see Table 2). Zinc typically enters drinking water from the corrosion of 

galvanized (zinc-coated) pipes and brass fittings. Flushing for five minutes was effective in 

reducing the Zn level in tap water in all the households and the government building. 

4.6. Stable hydrogen and oxygen isotopic compositions 

Stable isotopes of hydrogen (δ2H) and oxygen (δ18O) of water have been widely used, as 

complements to hydrochemical and physical data, in order investigate the origin of groundwater 

and its interactions with surface water to assess groundwater recharge and vulnerability to 

pollution (e.g. Clark, 2015; West et al., 2014; Yeh et al., 2014). In general, groundwater originates 

from direct infiltration of water runoff from rainfall and snowmelt, or via infiltration of surface 

water (lakes or rivers), or a combination of both. Groundwater recharge can also be impacted by 

human activities. Since hydrogen and oxygen are components of the water molecule H2O, their 

isotopic compositions in water tend to be conserved and thus ideal indicators of the origin of water 

resources and the presence of potentially contaminating water sources. The water stable isotope 

ratios provide a unique means to assess the long-term viability of water resources in terms of both 

quantity and quality, and they are therefore essential indicators for the implementation of 

strategies to achieve sustainable management (Clark, 2015; Elliot, 2014). 
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Figure 26: Seasonal and spatial changes of zinc concentrations in the distribution systems. Notes: The legend 

of the sampling locations is the same as in Figure 15. “First draw” sample was not collected for analysis in 

the fall at H3. See the sampling locations in Figure 8. 

The results of the δ2H and δ18O analysis of groundwater, Spring Gulch water, the treated waters at 

Sandhill reservoir, the Churchill River water and rainwater are plotted on a conventional δ2H and –

δ18O diagram (Fig. 27). For comparison the variation trend of Global Meteoric Water Line (GMWL; 

δ2H = 8 δ18O + 10; Craig, 1961), a global average of several local meteoric water lines, is also 

indicated in Figure 27. The δ2H and δ18O values of rainwater averaged respectively −76.1‰ ± 

0.99‰ and −11.5‰ ± 0.32‰ and were significantly different from those of wells’ groundwater 

(average −110.4‰ ± 0.47‰ δ2H and −15.1‰ ± 0.11‰ δ18O), Spring Gulch (−110.9‰ δ2H and 

−15.5‰ δ18O) and the Churchill River (average −118.3‰ ± 0.37‰ δ2H and −16.1‰ ± 0.15‰ δ18O). 

δ2H and δ18O data of rainwater lies along but slightly above the GMWL, indicating contribution of 

the local re-evaporated (recycling) water vapor to the raining cloud. This corroborates with the 

deuterium excess (or d-excess) values of rainwater, which range between 14‰ and 18‰ with a 

mean value of 16‰. These values are higher than the d-access value GMWL of 10‰, which is 

indicative of un-evaporated water (Craig, 1961). The d-excess, defined as d = δ2H – 8δ18O 

(Dansgaard, 1964), has been widely used as isotopic indicator to assess the effect of evaporation in 
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modifying the isotopic compositions of rainwater prior to recharge of groundwater or surface 

water (e.g. Clark, 2015; Lai and Ehleringer, 2010). 

 

Figure 27: The relationships between δ2H and δ18O of the water samples. For comparison, the dashed line 

shows the Global Meteoric Water Line (Craig, 1961). 

The stable isotopes data of groundwater, Spring Gulch and the Churchill River are clustered on the 

GMWL to the lower left corner, indicating precipitation recharge by rainfall (summer precipitation) 

or snowfall (winter precipitation) or a combination of both. Their isotopic similarity may reflect the 

hydraulic interconnections amongst the groundwater, Spring Gulch and the Churchill River. The 

substantial depletion of δ2H and δ18O (most negative) in groundwater, Spring Gulch and the 

Churchill River compared to water from rainfall likely indicates that in addition to rainwater, there 

was a significant contribution from another sources of water with depleted isotopic signatures, 

possibly water from snowmelt runoff in spring 2015. On the other hand, stable isotopic 

compositions of both treated waters from the municipal and DND treatment plants were 

representative of their groundwater and Spring Gulch sources (Fig. 27), possibly suggesting that 

water had a short residence time in these reservoirs. δ2H and δ18O measurement in tap waters has 

been successfully used to describe the flow of water in the human-hydrological system (Bowen et 

al., 2007; Leslie et al., 2014). 

This initial δ2H and δ18O results provide a basis of isotopic characteristics of groundwater, Spring 

Gulch, the Churchill River and treated waters; however, considerable insight can still be gained 

from this limited data. Further study is necessary to achieve a better understanding of the local 

isotope hydrological characteristic and seasonality. 
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5. CONCLUDING REMARKS AND RECOMMENDATIONS 

The results of this project lead to the following conclusions: 

 Groundwater showed a heterogeneous composition across supply wells and seasons. Water 

pumped into the municipal treatment plant was a mixture of freshwater and saltwater, hard 

to very hard with nearly a neutral pH range. The redox state of groundwater changed 

between mildly reducing (negative ORP) and oxidizing (positive ORP) conditions. 

 Spring Gulch water was very distinct from groundwater, as expected; it was soft, 

moderately alkaline, and characterized by oxidizing conditions. 

 The hydrochemical comparison between the two water sources indicates higher 

concentrations of Cl−, SO4
2−, Ba, Mg, K, Na, S, Ca, Sr, Si, Fe, Mn and Br− in groundwater, 

compared to Spring Gulch water, and very low levels of F− in both water sources. 

 The absence of typical landfill leachate contaminants (e.g. NO3-N, NO2-N, PO4-P, Cu, Pb 

and Zn) in groundwater suggests that the former landfill located up-gradient of the 

groundwater supply wells did not affect the quality of groundwater over the timeframe of 

this study. 

 Stable isotopic compositions indicate that most recharge of groundwater, Spring Gulch, and 

the Churchill River is from snowmelt runoff in spring 2015, with a small amount from 

rainfall of the following summer; isotopic similarity possibly reflects hydraulic 

interconnections between the groundwater, Spring Gulch and the Churchill River. 

 Treated waters at the municipal treatment plant shared similar trends with the “parent” 

groundwater. However, treated water showed significantly lower levels of elements than 

found in “parent” groundwater, while THMs dominated by CHCl3, CHCl2Br and CHBr3 

with lesser amount of CHClBr2 were formed during the treatment process. The removal 

efficiencies for Fe and Mn were higher than 90%. 

 Raw and treated Spring Gulch water shared similar physical and chemical characteristics, 

except that the concentrations of F− were higher in treated water as the result of fluoridation 

applied at the DND treatment plant to help promote dental health, and CHCl3 was formed 

during the treatment process (the only THM species to arise). 

 The physical and chemical properties of the blended treated waters at Sandhill reservoir, as 

well as those of the tap water along the distribution line in the Valley area, typically 

reflected the proportions of the treated water that dominated in the mixture. 
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 The elements with the lowest variation (both seasonal and spatial) in tap water were Cl−, 

SO4
2−, Ba, Mg, K, Na, S, Ca, Sr, Si, Br− and F−, all originating from natural sources, except 

for F−, which related to the treatment process at the DND treatment plant. 

 Among the elements, which displayed considerable variations (mostly spatial, i.e. within 

and between the private households and the government building) were THMs formed by 

the reactions between the organic matter and chlorine in water, and Fe, Mn, Cu, Pb and Zn 

released by corrosion reactions with the materials of the distribution systems and plumbing 

inside sampling locations. Both treated waters were corrosive, but the water from the DND 

treatment plant seemed to be less corrosive than that from the municipal treatment plant. 

 Chloride levels at the Canada aesthetic-based guideline, in combination with high hardness 

and elevated of Fe, Mn, Cu, and Zn, which locally exceeded the aesthetic-based guidelines, 

likely explained the aesthetic problems detected by the consumers. 

 The levels of fluoride in tap water are lower than optimal for the promotion of dental 

health. 

 Concentrations of THMs in tap water increased with increasing distance from Sandhill 

reservoir in the Valley area or from the DND treatment plant in northern sector with 

exceedance of the health-risk guidelines for THMs (in the Valley area) and Pb (locally in 

both the Valley area and northern sector). 

 Although flushing, as a mitigation strategy to lower metal exposure, effectively reduced the 

levels of Cu and Zn, it did not always lower the levels of Fe and Mn below the aesthetic-

based guidelines, or those of THMs and Pb below health-based guidelines. 

Based on the findings of the present study, the following recommendations are appropriate: 

 Seasonal variability of the quality of groundwater supply wells should be taken into 

account during the treatment operations. 

 Systematic evaluation of groundwater quality would be beneficial to better understand how 

the quality of water pumped from the wells changes over (i) short (daily to monthly) and (ii) 

long (seasonal to yearly) time period, so that plant operators may adjust the treatment to 

changes in raw water quality. Given that the groundwater wells are located down gradient 

of a former landfill, its quality must be continually monitored for contamination. 

 The appropriate authorities should encourage residents to use topical fluoride (e.g. 

fluoridated toothpaste, varnish, gel or mouth rinse) or other measures to promote dental 

health, as recommended by the Canadian Dental Association. 

http://ec.europa.eu/health/scientific_committees/opinions_layman/fluoridation/en/glossary/def/fluoride.htm
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 Giving that the groundwater source does not contain high levels of naturally-occurring 

fluoride, the decision whether or not to add fluoride compound to drinking water at the 

municipality treatment plant might warrant a re-examination and systematic reviews. 

 Mitigation strategies to further reduce the formation of THMs (and other DBPs) in the 

treated water leaving the municipal treatment plant should be evaluated and implemented 

for consistent protection from DBPs and to ensure compliance across the entire distribution 

line in the Valley area. 

 Desalination technology should perhaps be considered to remove the dissolved salt content 

from the brackish groundwater. 

 Measures to reduce or prevent tap water corrosivity and hardness should be evaluated and 

implemented with the objectives to: (i) lower exposure to toxic metals; (ii) improve aesthetic 

quality (e.g. chloride, hardness, iron and manganese); and (iii) improve consumer 

satisfaction. 

 Since household pipes and plumbing materials are most likely to be the source of Pb (as 

shown in this research), homeowners should be encouraged by the appropriate authorities 

to do a two-sample test at an authorized laboratory to determine whether the tap water 

contains lead (and other metals) and whether exposure can be avoided or reduced by 

flushing the cold water tap for a specified length of time (e.g., five minutes). 
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