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Binomial, Poisson, and Negative Binomial Counts
Goodness of Fit - Chisquared Statistic

16.2 Analysis of Deviance
Goodness of Fit - G Statistic
Likelihood ratio tests
Data Equations
Improvement in fit )G
Analysis of Deviance Table
Analysis of Deviance - Mutant frequency
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Today:   Analysis of Deviance

Model Based Statistics in Biology.   
Part V.  The Generalized  Linear Model.
Chapter 16.2   Goodness of Fit and Analysis of Deviance

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning
ReCap Part II (Chapters 5,6,7)  Hypothesis testing and estimation
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable.
ReCap (Ch 12,13,14) GLM with more than one explanatory variable
ReCap (Ch 15) GLM review
Many of the analyses undertaken in biology are concerned with counts.
The traditional approach to the analysis of count data is the chisquare goodness of fit test.

Wrap-up. 

Frequencies are  analyzed by the Generalized Linear Model, which compares observed to expected (model) values.  

We use the improvement in fit, in the Analysis of Deviance table, to declare statistical decisions.
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Goodness of Fit.  The G-statistic
Another measure of goodness of fit is the G-statistic, also known as the non-Pearsonian Chisquare.
The G-statistic is based on the solid theoretical underpinning of likelihood theory, which considers how likely the
data are, given the model.  
Unlike the Pearsonian Chisquare statistic that we just computed, the G-statistic can be used in complex analyses
involving several explanatory variables. 
We will be using the G-statistic because it allows us to compute the improvement in fit of one model relative to
another, no matter how complex the models.

The G-statistic is based on likelihood ratios L. The greater the value of L the less likely are the values (given the
model)  and the poorer the fit of observed to expected value.

For each observed value the likelihood is:

When the fit is perfect (f/f$ = 1) the likelihood ratio is L = 1.
For all the observed values the likelihood is:

Taking the logarithm of both sides will give us a sum to work with, rather than a product.
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Observed Expected f * ln(f / $f )
�  Purple 705 929*(3/4) = 696.75 705*ln(705/696.75) = +8.29865
�  White 224 929*(1/4) = 232.25 224*ln(224/232.25) = !8.1017
      Total 929 +0.1969

G  =  2 G f ln(f/ $f)   = +0.394

Here is the computation of the G- statistic for the genetic model of pea flower type.

The likelihood based measure of goodness of fit is G =  2 ElnL, twice the sum of the log likelihood ratios.  The
greater the deviation of the data from the model, the larger the G statistic.  In this example the deviation of the data
from the model value f$ has a value of G = 0.394.  In general, the G-statistic will be similar in value to the chisquared
statistic (X  = 0.391 for the Mendel pea data)2

The G-statistic uses the ratio of the observed to fitted values, taken as a likelihood ratio.  In contrast, the Pearsonian
Chisquare statistic uses the squared deviations of the differences between observed and expected values.
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This takes about 10 minutes, because
computations are already completed.

Likelihood Ratio Tests (Goodness of fit). 

In comparing the offspring data to the genetic model we calculated a statistic of 
G = 0.394.   If we examine the flow of calculations, we see that the greater the deviation of the data from the model,
the larger the ratios, and the larger the G-statistic.  If the fit of the data to the model is good, then the G-statistic will
be small. If the fit is not good, this statistic will be large.  

Could the G-statistic we observed have resulted from chance ?   
Equivalently, is the lack of fit too great to ascribe to chance ?

We will use the Generic recipe for Hypothesis Testing.

1.  Population = ? 
All possible outcomes, if the experiment carried out repeatedly with hybrids of pure strains.

2.  ST = ?   The statistic is G
A3.  H :  f � p@N   G > 0 G will be "large" (too large to be chance)
o4.  H :  f = p@N  G = 0

5.  " = 5%
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6.  State distribution.
We need a distribution of all possible outcomes, in order to calculate the probability of the observed statistical value
of G 

As always, we have two options.  
One option is to generate a distribution of outcomes by randomly assigning each of the 929 plants to a phenotype
(white or purple).  We could do this by flipping a pair of coins:  if the outcome is HeadsHeads, then the offspring is
assigned to the white group.  If the outcome is anything else (HT TH or TT) the offspring is assigned to the purple
type.  Obviously we will not obtain exactly the same assignment to the two phenotypes each time we assign the 929
offspring by chance.  But if we make the assignment repeatedly (and calculate the likelihood ratio G-statistic each
time) then we will obtain a distribution of our G-statistic when the data do fit the model (of a ratio of 3:1).

The other option is to use the Chi-square distribution.  This is less work.  We will use this because we know from
statistical theory that if we have a binomial outcome with probability of p = 0.25 successes in 929 trials, and we
compute the G-statistic, that the statistic will be distributed as Chisquare.  Randomization is not necessary, provided
the 929 trials (plants) were independent trials.

7.  Calculate statistic.  G = 0.394 (above).
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MTB> cdf 0.394;
SUBC>chisquare 1.
   0.394     0.4697

8.  Calculate the p-value. 
Here is the computation, using Minitab.
We have two data equations (n = 2)
Hence: df = n!1 = 1

We have only one degree of freedom because once we compute the expected frequency of white flowers  (p@N =
232.25) the expected frequency of purple flowers will not be free to vary.  It must be 929!232.25 = 669.75

The p-value from the chisquare distribution is p = 1!0.4697 = 0.53

What about assumptions for computing p-values from chisquare distributions?
< We have too few residuals to undertake any diagnosis of homogeneity.
<  We can check the assumption of 929 independent trials.  This could be checked by looking for runs of white or

purpleflowers in the data, based on neighboring plants.  A quick check, if neighbors are known, is to plot scores
(0/1, y/n,  present/absent etc) against neighbors.

What if neighbors were not independent ?  
Is the violation serious ?  
If we found some serious problem we should do the experiment again,
as randomization is not the answer to the problem of non-independent
trials. 
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9.  Compare p to " to make decision.
Using the theoretical distribution (Chi-square, df = 1), we calculate that 99.91% of the G-statistics will be less than
10.97, if the data do indeed fit the model.  The p-value is p = 1!0.4697 = 0.53, a very high probability.  

0.53 = p > " =  5%
We accept chance as an explanation of the small deviation of observed from theoretical ratio of 3:1.

10.  Decision, with statistical evidence.
G = 0.394  df = 1   p  =  0.53   

oAccept  H    that observed frequencies fit a 3:1 ratio.
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f = p@N + res

705 = (1/2)929 + res

224 = (1/2)929 ! res

f = f$ + res

705 = 464.5 + 240.5

224 = 464.5 ! 240.5

Data Equations
Next we undertake a model-based analysis of the Mendel pea data.  We will be comparing two models.  One (pre-
Mendelian) considers whether two flower types are equally probable.  The second (Mendelian) considers the fit to
the 3:1 ratio from genetic theory.

The response variable is f, the count of pea plants with white or purple flowers.
  f = [705 224]
 
The explanatory variable is phenotype: type = white or purple. 
The explanatory variable is categorical, just like a t-test. 
The statistical model is 

f  = type  +  residual type = white or purple

1.  A coin tossing model.  If we expect white and purple flowers to be equally probable, the statistical model is 

f  = type  +  residual type = white or purple
f  = p@N   +  residual p = 1/2 for white, 1/2 for purple

The data equations corresponding to this coin tossing model are

The residuals are the deviations of the observed frequencies f  from the
predicted frequencies p@N = f$.



9Chapter 16.2

f = p@N + res

705 = (3/4)929 + res

224 = (1/4)929 ! res

f = f$ + res

705 = 696.75 + 8.25

224 = 232.25 ! 8.25

2.  A genetic model.  Based on genetic theory the expected proportions are 
p = 1/4 for white and  p = 3/4 for purple.

The expected frequency is p@N = (1/4)N for white, pN = (3/4)N for purple 
where N = Ef = 929. 

The data equations corresponding to this genetic model are

The residuals are the deviations of the observed frequencies f  from the
predicted frequencies p@N = f$.

Note the substantial improvement in fit due to far smaller residuals.
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Improvement in Fit )G.
Up until now, we have been looking at goodness of fit: how well does the data fit the model?  Are deviations due to
chance?  With the G-statistic we can do better.  We can evaluate the improvement in fit: Is one model better than
another?   To measure improvement we take the difference in two G-statistics.  

To evaluate the genetic model of the pea data we compare the observed fit (G = 0.393) to a perfect fit (G = 0).  The
change in fit is
)G = 0.393 ! 0 = 0.393

This new statistic, )G, allows us to evaluate whether the improvement is significant (greater than expected by
chance).  The improvement in fit is not statistically significant - - - (G = 0.393  df = 1   p  =  0.53)

Analysis of Deviance Table 
Change in fit is tabulated in an Analysis of Deviance table. In the AnoDev table reports the change in fit due to each
term in the model.
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 Source    df  G = 2*lnL  )G       -----> Pr>ChiSq
Intercept (3:1) 1 0.393
Colour(705:224) 1 0.0 0.393 0.53

Here is the analysis of deviance table for the genetic model of pea flower colour.

Source.  The model terms are listed as sources, just as in the ANOVA table.   The AnoDev table has no residual
term.  It lists the intercept term.  In this example the intercept is the fit to the extrinsic hypothesis (2 colours in a 3:1
ratio).  The colour term is the fit to the ratios estimated from the data (perfect fit). 

df.  The degrees are freedom are calculated in the same way as with the ANOVA table, except that now we have only
total residualthe terms in the structural part of the model.  We have no df  or df .  The df of the colour term is 1 because one

parameter is estimated from the data (the ratio p:(1!p) = (705/929):(224/929) = 705:224

G replaces Seq SS.  The first G value is the fit of the model to the intercept.  In this example the intercept is the
extrinsic ratio or 3:1.
The deviance associated with intercept term is G = 0.393. 
The deviance associated with colour term is G = 0 (the fit is perfect)

)G This is the change in fit associated with each term in the model.
The change in fit is )G = 0.393
In this example the change in fit is the same as the fit to the extrinsic hypothesis.  In more complex analyses we will
look only at the change in fit.

p-value  For each change in fit, we can compute a p-value from a Chisquare distribution.
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f = gtype + res

80 = 67.5 + 12.5

10 = 22.5 ! 12.5

f = f$ + res

Analysis of Deviance.   Mutant Frequency.

Data from Table 17.1 in Sokal and Rohlf 1995

The response variable is f, the number of offspring.  f = [80 10]

Complete the analysis of this data the model-based approach and the G-statistic. 

The model is expected genotypic frequency in two categories wild and mutant. Based on genetic theory gtype is
either mutant = 1/4 N, or wild = 3/4 of N

The statistical model is f  =  gtype  +  residual
f  =  f$  +  residual

The data equations corresponding to this model are
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Generic recipe for hypothesis testing. 
1.  Population = ?  All possible outcomes, given random combination of wild and mutant alleles [ W M ] at this
locus, for N = 90 offspring.
2.  ST = ?   The statistic is G, for the model f  = p@N  +  residual

A3.  H :  f � p@N   G > 0 G will be "large" (too large to be chance)
o4.  H :  f = p@N  G = 0

5.  " = 5%

6.  State distribution.
We need a distribution of all possible outcomes, in order to calculate the probability of the observed statistical value
of G 
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f = p@N + residual lnL = f ln(f/e N)$

80 = 0.75@90 + residual 13.592
10 = 0.25@90 + residual !8.109

G f ln(f/(p@N)) 5.483

G  =  2 G f ln(f/(p@N))   = 10.97

MTB> cdf 10.97;
SUBC>chisquare 1.
   10.97     0.999074

7.  Calculate statistic.

8.  Calculate the p-value. 
Here is the computation, using Minitab.
We have two data equations (n = 2)
Hence: df = n!1 = 1

The degree of freedom is lost because once we compute the expected frequency of mutant phenotypes  (p@N = 22.5)
the expected frequency of wild types will not be free to vary.  It must be 90!22.5 = 67.5

What about assumptions for computing p-values from chisquare distributions?

We have too few residuals to undertake any diagnosis of
homogeneity.

We can check independent trial assumption.  The assumption of 
90 independent trials could be checked by looking for runs of wild or
mutant phenotypes in the data, in the order it was obtained.  A quick
check, if neighbors are known, is to plot scores (0/1, y/n, 
present/absent etc) against neighbors.
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9.  Compare p to " to make decision.
Using the theoretical distribution (Chi-square, df = 1), we calculate that 99.91% of the G-statistics will be less than
10.97, if the data do indeed fit the model.  The p-value is 1 ! 0.999074  =  0.00093, a very small probability.  

0.00093 = p < " =  5%
We reject chance as an explanation of the poor fit of the model to the data.

10.  Decision, with statistical evidence.
G = 10.97  df = 1   p  =  0.00093   

o AReject H   Accept H  that observed frequencies differ from 3:1 ratio.
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