Generalized Linear Model Analysis

in Ecology

Christina M. Bourne ${ }^{1}$, Paul M. Regular ${ }^{2}$, Bei Sun ${ }^{3}$, Suzanne P. Thompson ${ }^{3}$, Andrew J. Trant ${ }^{1}$, and Julia A. Wheeler ${ }^{1}$
${ }^{1}$ Department of Biology, Memorial University of Newfoundland and Labrador, St. John's, NL, A1B 3X9, Canada
${ }^{2}$ Cognitive and Behavioural Ecology, Memorial University of Newfoundland and Labrador, St. John's, NL, A1B 3X9, Canada
${ }^{3}$ Department of Environment Science, Memorial University of Newfoundland and Labrador, St. John's, NL, A1B 3X9, Canada

Over the past two decades, advances in statistical analysis provided by generalized linear models (GzLMs) have improved the ability of researchers to investigate ecological processes. Relative to traditional general linear models (GLM), GzLMs provide greater flexibility due to their ability to analyze data with non-normal distributions. Considering the limitations of the GLM, we review the specific rationale of applying the GzLM in several fields of ecological research, and the number papers applying GzLMs. Through this review we revealed that GzLM has great potential for application across many fields of ecological research, and that there are an increasing number of research papers in ecology presenting results from GzLMs. We also analyze a series of exemplary ecological data sets using the GLM and GzLM, and used p-values to compare the relative sensitivity of the models. Finally, we assess the benefits and difficulties of applying GzLMs to ecological data. Because GzLMs allow for the specification of error structure, we found that GzLMs provided a much more appropriate fit to data sets with non-normal distributions, resulting in lower and more reliable p-values. Since most ecological data is non-normal, GzLMs provide a more effective analytical method than traditional linear models.

Introduction

Data and statistical models of data are used in empirical sciences in order to gain a better understanding of processes and parameters. Statistical models provide a mathematical basis for the interpretation and examination of parameters and determine the roles and relative importance of different variables on a particular process ${ }^{1}$. Statistical scientists have worked with ecologists for many years to improve the methods used to investigate, and thus better understand, ecological processes. Consequently, there are many modeling techniques available to ecological researchers. An important statistical development from the last 30 years is the introduction of the Generalized Linear Model (GzLM) ${ }^{2}$, and the advancement and application of analysis provided through the GzLM regime in ecological research ${ }^{3}$. GzLMs are mathematical extensions of General Linear Models (GLM). GLMs provide familiar linear modeling and analysis of variance (ANOVA) tests which rely on traditional estimation techniques such as the least squares algorithm. The GzLM uses more flexible maximum likelihood parameter estimates; these estimates rely on an algorithm that iteratively uses a weighted version of least squares ${ }^{4}$. GzLMs are based on an assumed relationship, called a link function, between a linear predictor function of the explanatory variables and the mean of the response variable. Data are assumed to fall within one of several families of probability distributions, including normal, binomial, Poisson, negative binomial, or gamma ${ }^{2}$. In comparison, GLMs are restricted to a normal error distribution and an identity link. Although a powerful approach when appropriately applied, GLMs are limited by the assumptions that errors are identically, independently, and normally distributed. Thus, the main improvements of GzLMs over GLMs are their ability to handle a larger class of error distributions, and
provide an efficient way of ensuring linearity and constraining the predictions to be within a range of possible values through the link function ${ }^{3}$. Thus, GzLMs provide a unified theory of modeling that encompasses the most important models for dealing with non-normal error structures. Since many of the data collected in ecological studies are poorly represented by normal distributions, GzLMs provide a flexible, suitable means for analyzing ecological relationships. Consequently, this approach has been extensively applied in many fields of ecological research, as evidenced by the growing number of published papers incorporating GzLMs.

Here, we evaluate the rationale, capabilities, and benefits of applying GzLMs within several fields of ecological research. We first present a literature review of the specific rationale for the use of GzLMs in various fields of ecological research, then proceed to evaluate the recent increase in usage of GzLMs across these fields. We then analyze several sample data sets from each field using both the GLM and GzLM, and evaluate the performance of each of these methods. We outline the advantages and disadvantages of these methods, and describe how the GzLM can be applied to optimize the analysis and maximize our understanding of ecological processes.

Field Rationale

The prevalence of GzLM in the existing literature is not evenly distributed across subdisciplines of ecology. Reasons for the common use or paucity of GzLM in a particular sub-discipline may be dependent on a variety of factors including types of data or lack of
sophisticated analyses. This section addresses the potential for using GzLM and intrinsic/extrinsic limitations within six sub-disciplines of ecology:

Avian population monitoring

Monitoring long-term population change in birds is an integral part of effective conservation-oriented research and management. Since censuses of whole populations are often logistically impossible, population monitoring almost always relies on counts of subsets of a population. However, count data is often highly variable and overdispersed as a result of varying effort, missing data, observer differences, and actual natural variation. A number of analytical methods have been developed which attempt to deal with these complications, however, there is no consensus on which method is most suitable. The GzLM approach offers some promising solutions to these problems.

Boreal treeline dynamics

Many boreal researchers are studying the migration of the treeline, or tree invasion into alpine and tundra habitats. The GzLM, specifically logistic regression, is appropriate for this type of study. Logistic regression is useful for testing presence/absence, spatial distribution, and dominance of a species group as a function of biological and physical variables ${ }^{5-7}$. In addition, presence/absence data is commonly encountered in the field of treeline ecology, due to the advance of remote sensing and aerial photogrammetric technology used for monitoring these climatically sensitive areas ${ }^{8}$.

Marine bacteria

Bacteria are highly abundant in oceans, and function as a biological pump in mediating climate-active gases between ocean and atmosphere ${ }^{9,10}$. Studies dealing with aquatic bacterial abundance are essential to evaluate bacterial roles in biogeographic processes. Therefore, plenty of research has been done from lab-scaled experiments to global-scaled surveys of aquatic bacterial abundance. The overall understanding of these processes would be greatly increases with more sophisticated analysis. Most studies in this field use basic statistics, such as t-tests and Chi-square tests, to determine statistically significant effects. Model based statistics were seldom applied in this field. However, the more interesting question is which factors control the bacterial abundance and to which extent. Therefore, model based statistics will be much more useful, because it will report biological interest parameters, in addition to p-values.

The choice of GLM and GzLM to analyze bacterial abundance data cannot be determined without first knowing the distribution of the data. Bacterial pathogens shouldn't present in environment ubiquitously. Therefore, data collected about pathogen present and absent could be binomial distribution, which should be analyzed by GzLM.

Conservation biology involving vegetation

A primary focus in conservation biology, both floral and faunal, aims to determine the number of species in a given area. Whether the species of concern is a plant or whether the species distribution is conditional on a certain vegetation community, the use of GLM and GzLM are often used. It is therefore common that data of this nature is
presence/absence or count data - both of which are most appropriately analyzed with

GzLM with an appropriate error structure. Estimates of survivorship, though underrepresented in the conservation literature, are of particular interest for population viability analyses and are arguably most appropriated analyzed using GzLM.

Marine and freshwater fish populations

Both marine and freshwater fish population studies often attempt to link species presence or abundance with specific environmental variables, such as water depth, temperature, or stream order. However, analyses of such data can often be difficult, due to the nature of sampling or the distribution of the fish population in question.

Marine studies rely heavily on trawl surveys to determine population distributions, which often produce a high number of zeroes in the dataset ${ }^{11,12}$ due to the nature of schooling or aggregated fish ${ }^{13,14}$. Freshwater fish population studies typically use mark/recapture or electrofishing techniques, which can also give biased results. Fish captured in mark/recapture studies often show differing capture probabilities with time since being marked ${ }^{15}$ and electrofishing can produce significantly different counts of fish based on the methods used, such as the number of passes made ${ }^{16}$. These problems make analyzing data using the GLM difficult, as datasets are often highly skewed and nonnormal; by using the GzLM, these issues can typically be resolved ${ }^{17}$. Using binomial distributions, researchers can predict the probability of occurrence of fish in relation to environmental factors through the use of presence/absence response variables ${ }^{12,14,18-35}$. The binomial approach can often be the better way to look at fish distribution, since it gives probability of capture ${ }^{15,36}$. This provides an idea of not just the amount of fish, but the magnitude or proportion of fish. The GzLM can also be used to estimate abundance
from count data by using Poisson ${ }^{37,38}$ or gamma ${ }^{39}$ error distributions, which account for the non-normal structure typical of fish count data. In the incidence of overdispersersion, a negative binomial distribution can be used to explain abundance ${ }^{13,37,40}$. Some studies also use an integrated approach with GzLM's, by modeling probability of presence and abundance if present ${ }^{20,41,42}$.

Field specific literature reviews for GzLM usage

Ecology is a broad field that encompasses many sub-disciplines of research, ranging from the study of microbes to entire ecosystems. In order to investigate the frequency of usage and specific applications of the GzLM in ecological studies, we therefore felt it was necessary to do literature reviews which were limited to several specific fields of ecology (conservational ecology, freshwater and marine fish population dynamics, avian population monitoring, boreal treeline expansion, and aquatic bacterial abundance). This method provided results that demonstrate the flexibility provided by the error structure in the GzLM and its ability to evaluate various types of biological data, along with the increasing frequency of usage of GzLMs in recent years.

All literature searches were carried out in the databases Web of Science and Biological Abstracts, using a pre-determined set of statistical query terms, along with ecological terms specific to each field (Table 1). It was possible that a greater number of references could have been found using further refined queries, but for the purposes of comparability across fields we chose to only use the pre-determined set of search terms.

Search results were reviewed to determine if the GzLM was implemented, and if so, what
type of data was being analyzed and what error structure was used (binomial, negative binomial, Poisson, Gamma). Articles in which the error structure was not stated were recorded as "Other" or on the basis of the extension used (Table 2). The total number of articles found per year was used to evaluate the frequency of GzLM usage over the past two decades (Fig. 1).

Of the six fields searched, the only one which did not produce any results was aquatic bacterial abundance. Within the articles found for conservational ecology, freshwater and marine fish population dynamics, and boreal treeline expansion, the most common error structure used was binomial, as presence/absence response variables were frequently analyzed; within these four fields, there was also some usage of the Poisson error structure, where response variables were count data (Table 2). The literature search within avian population trends, however, did not find any articles using binomial error the majority of results in this field used Poisson (Table 2), as bird population trends are typically determined based on count data. Articles were also found which used negative binomial and Gamma error structures, but these were not as prevalent as binomial and Poisson (Table 2).

The literature reviews showed that GzLM usage has increased over the past two decades in all six fields searched (Fig. 1). The general trend produced when all results were totaled showed that GzLM usage was relatively low in the early 1990's, but increased steadily from the mid 1990's onward (Fig.1,a). Though this literature review only examined six fields of ecology, this trend appeared to occur across the five which produced results (Fig.1,b). If further refined searches were conducted and a larger number of fields surveyed, a more comprehensive picture of GzLM usage in ecology
would be obtained. However, the literature review of conservational ecology was fairly broad and produced a high number of results (131) which included a range of types of studies (Table 2), possibly indicating the trend for GzLM use in ecology in general.

Table 1. Query terms input into Web of Science and Biological Abstracts for GzLM literature searches

Field specific query terms

Conservational ecology of vegetation	Conservation, Ecology, Vegetation
Freshwater fish population dynamics	Stream, Fish, Salmonid, Abundance, Distribution, Population
Marine fish population dynamics	Demersal/Marine Fish Habitat, Abundance, Distribution Avian population monitoring
Sreeline expansion Counts	
Aquatic bacterial abundance	Boreal, Treeline, Expansion
Statistical query terms	Aquatic, Bacteria, Abundance
Generalized and Generalised Linear Model(s), Generalized and Generalised Additive Model(s), Generalized and Generalised Estimating Equation, Logistic Regression, Poisson, Binomial, Gamma	

Table 2. Summary of field-specific usage of the GzLM

Field	Data Type	Error Structure ${ }^{\text {a } / 2}$ Extension	References
Conservational Ecology of Vegetation	Presence/ Absence	Binomial	
	Count	Poisson	31, 43-88,89-119,23, 120-152

Figure 1. Frequency of GzLM usage resulting from literature searches of five ecological fields. (a) Frequency of usage in each field (b) Total incidence of usage, pooled from all searches.

Statistical analysis and summary of ecological data sets

GLMs and GzLMs were computed in the statistical programs SAS (9.1), R (2.6) and Minitab (13).

As seen in Table 3, one data set (B) could not be analyzed using the GLM, therefore this analysis is not included in the comparison of model results. From the remaining data sets, 13 of 21 parameters were significant when the GzLM was applied. Of these 13 parameters, 8 showed a decrease in p value from the GLM -2 of which had not been significant until the application of the GzLM. The remaining 6 significant parameters had p values less than 0.001 and were not evaluated for change. Of the 8 nonsignificant parameters, 5 showed a decrease upon the application of the GzLM.

Table 3. Comparison of GLM and GzLM data analysis results (see Appendices A-K for detailed results)

		GLM		GzLM	
Study (Appendix)	Parameters	F(df)	P	G(df)	p
Auklet Counts (A)	Gull Species Gull*Species	$\begin{aligned} & 36.9(1) \\ & 25.34(1) \\ & 0.24(1) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.00 \mathrm{E}-06 \\ & 3.01 \mathrm{E}-05 \\ & 0.63 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { error: Neg } \\ & 64.35(1) \\ & 32.43(1) \\ & 29.61(1) \\ & \hline \end{aligned}$	binomial $1.63 \mathrm{E}-08$ $1.60 \mathrm{E}-08$ 0.093
Atlantic Salmon Distribution (B)	Wetted Width Depth \% Rifle Width*Depth Width*Rifle Depth*Rifle	n/a n/a n/a n/a n/a n/a		$\begin{aligned} & \hline \text { error: Bino } \\ & 10.21(2) \\ & 10.17(1) \\ & 6.19(1) \\ & 4.33(2) \\ & 2.34(2) \\ & 2.30(1) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.85 \\ & 0.046 \\ & 0.40 \\ & 0.37 \\ & 0.84 \\ & \hline \end{aligned}$
Greenland Cod Counts (C)	Eelgrass	3.37(2)	0.037	error: Neg $7.54(2)$	$\begin{aligned} & \text { e binomial } \\ & 0.023 \\ & \hline \end{aligned}$
Juvenile Fish Distribution (D)	Geology Time	$\begin{aligned} & 42.72(7) \\ & 17.73(1) \end{aligned}$	$\begin{aligned} & <0.0001 \\ & <0.0001 \end{aligned}$	$\begin{aligned} & \hline \text { error: Bino } \\ & 319.43(7) \\ & 17.89(1) \end{aligned}$	$\begin{aligned} & <0.0001 \\ & <0.0001 \end{aligned}$
Seed Removal by Red Ant (E)	Species Mound	$\begin{aligned} & 18.11(4) \\ & 2.17(1) \end{aligned}$	$\begin{aligned} & 9.27 \mathrm{E}-11 \\ & 0.14 \end{aligned}$	$\begin{aligned} & \text { error: Neg } \\ & 53.14(4) \\ & 0.74(1) \end{aligned}$	$\begin{aligned} & \text { e binimial } \\ & 1.77 \mathrm{E}-10 \\ & 0.39 \\ & \hline \end{aligned}$
Red Oak Recruitment (F)	Fire Basal Area Down Woody Debris	$\begin{aligned} & 1.22(1) \\ & 3.19(1) \\ & 0.49(1) \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.093 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { error: Bega } \\ & \text { 201.01(1) } \\ & 136.80(1) \\ & 123.01(1) \end{aligned}$	binomial 0.069 0.0002 0.089
Seedling herbivory (G)	groundcover pesticide	$\begin{aligned} & 126.33 \\ & (2) \\ & 90.75(1) \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.011 \end{aligned}$	error: Bino $14.06(2)$ $5.29(1)$	$\begin{aligned} & 0.0009 \\ & 0.022 \end{aligned}$
Seed predation (H)	groundcover pesticide	$\begin{aligned} & 11.04 \text { (2) } \\ & 2.29 \text { (1) } \\ & \hline \end{aligned}$	$\begin{aligned} & 0.083 \\ & 0.27 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { error: Neg } \\ & 27.80(2) \\ & 1.63(1) \end{aligned}$	$\begin{aligned} & \text { e binomial } \\ & <0.0001 \\ & 0.20 \\ & \hline \end{aligned}$
Common Murre plot counts (I)	Year	23 (326)	$2.00 \mathrm{E}-06$	$\begin{aligned} & \text { error: Negi } \\ & 19.13 \text { (1) } \end{aligned}$	$\begin{array}{r} \hline \text { binomial } \\ 1.22 \mathrm{E}-05 \\ \hline \end{array}$
Thick-billed murre plot counts (I)	Year	$\begin{aligned} & 284.56 \\ & (676) \\ & \hline \end{aligned}$	<2.2e-16	error: Negativ 236.03 (1)	binomial $2.88 \mathrm{E}-53$
Bacterial abundance (J)	water masses pH	$\begin{aligned} & 19.57(1) \\ & 0.11(1) \end{aligned}$	$\begin{aligned} & 4.00 \mathrm{E}-05 \\ & 0.74 \end{aligned}$	$\begin{aligned} & \text { error: Gam } \\ & 13.69(1) \\ & 0.24(1) \end{aligned}$	$\begin{array}{r} 2.09 \mathrm{E}-07 \\ 0.44 \end{array}$
Colony counts (K)	dishes quadratic	$\begin{aligned} & 1.36(1) \\ & 1.55(1) \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.22 \\ & \hline \end{aligned}$	error: Pois $1.21(1)$ $1.37(1)$	$\begin{aligned} & 0.27 \\ & 0.25 \\ & \hline \end{aligned}$

Advantages and disadvantages to applying the GzLM

Over the duration of the Biology 7932 graduate course, we developed our understanding of the generalized linear model and how to apply it to data with a non-normal error distribution. From our analyses, we have discovered some general problems that arise when using the GzLM, some of them particular to our exemplary data sets. Here, we discuss advantages and disadvantages inherent to applying the GzLM to data with Poisson, negative binomial, binomial and gamma distributions. Some were problems directly encountered during the analysis of the exemplary data sets, and some are more general limitations drawn from various ecological studies.

Poisson and negative binomial distributions

The generalized linear model can be applied to data with both the Poisson and negative binomial distribution. The Poisson distribution is usually linked to count data, which commonly appears in ecological literature; count data are generated through studies that gather model information through mark-recapture experiments ${ }^{170}$, site-specific captures such as trawls ${ }^{13}$ and plot counts, a common method of evaluating seabird populations ${ }^{172,}$ 181

Population monitoring of birds almost always relies on surveys of a sample population ${ }^{201}$. This is because it is not feasible to census the entire population of most birds. Consequently, censuses of large colonies are usually based on sub-samples of the population ${ }^{202}$. In this section we review the analysis of long-term count data from census plots at Cape St. Mary's, Newfoundland, 1980-2006 (Appendix I).

The analysis of count data is often complicated due to the subjective nature of trend estimation and high inherent variation. There are many statistical techniques that may be employed to analyze count data, however, there is little consensus regarding the most suitable method ${ }^{201}$. Linear regression is one of the oldest statistical technique, and has been long been used in ecological research to test trends. When a linear regression model was fit to the Cape St. Mary's common murre plot data, we found that it preformed poorly, exhibiting non-normal, non-independent and heterogeneous residuals.

A second option is to run a GzLM with a Poisson distribution (Poisson regression). Poisson regression is a frequently used method for count data. A key feature of Poisson distribution is that it assumes that as the mean increases, the variance increases - which is a frequent characteristic of count data ${ }^{4}$. Nevertheless, it appears that the murre count observations exceeded the amount of variation predicted by Poisson, whereby the estimated overdispersion parameter (φ [Null deviance/df]) was much greater than $1(\varphi=8.9)$. The Poisson distribution may have fit the data poorly since it is designed to be used for counts of events that occur randomly over time or space ${ }^{203}$. The murre plot count data are neither temporally or spatially independent since counts are conducted at the same time for all plots and the same plots are monitored across years.

The negative binomial is a distribution related to Poisson, however it includes an extra parameter (dispersion parameter) which allows the variance to exceed the mean ${ }^{204}$. Counts of populations are often fitted well by the negative binomial distribution ${ }^{205}$. White and Bennetts ${ }^{206}$ suggest that ecological count data likely exhibit a negative binomial distribution more frequently than Poisson or normal distributions. When a

GzLM with a negative binomial distribution was fitted to the murre plot data, the overdispersion parameter was much closer to $1(\varphi=1.1)$.

As apparent from the analysis of the Cape St. Mary's murre plot trend data, one of the main advantages of GzLMs over GLMs is that they do not force data into unnatural scales by allowing for non-consistent variance structures in the data. Linear regression models are limited by the assumptions that the errors are identical, independently, and normally distributed. In the case of the murre count data, the GzLM model allowed for the selection of different distributions such as Poisson or negative binomial, which better suited the data. Within the options available in the GzLM, the negative binomial distribution appeared to best suit the data. The dispersion parameter accounted for the extra variance which exceeded the assumptions in the Poisson regression.

The main disadvantage of the Poisson distribution is that the scope of data that can be analyzed using this distribution is limited by the assumption that the mean increases with the variance. The Poisson distribution do not account for any extra variation in the data, thus in such cases, a negative binomial distribution may be more appropriate. The primary disadvantage of using negative binomial regression is that there are fewer programs that are capable of building a GzLM with a negative binomial distribution. Another disadvantage of the negative binomial distribution is the inclusion of the dispersion parameter. With an increase in parameters, there is a decrease in precision and one may run the risk of overfitting the data, thus less weight should be placed on models with a higher number of parameters ${ }^{136}$. One general disadvantage of the GzLM is the lack of diagnostic plots available to assess the model. One specific problem relating to the count data is in the estimation and assessment of the
overdispersion parameter - there appears to be no standard method of calculation, or a definition of how much the estimate needs to deviate from 1 for the data to be considered overdispersed.

Binomial distributions

Binomial data is common in ecological modelling. It often appears as presence / absence or risk data, which is binary in nature, so unlike other non-normal distributions, it is usually relatively easy to determine when to apply the GzLM with a binomial distribution. When the data are binary and the distribution is accepted as non-Gaussian, the data are usually analysed using logistic regression. Logistic regression is a GzLM analysis that is often used in ecological research; it has been applied for evaluating habitat ${ }^{207}$, assessing risk ${ }^{208}$, and predicting the distribution of species and vegetation groups ${ }^{6,209}$.

The seedling herbivory data collected in the Mealy Mountains during the summer of 2007 (See Appendix G for details) demonstrate a clear example of a binomial response variable (in this case, herbivory occurs or does not occur for each seedling). The purpose of the study was to determine whether the odds of herbivory were influenced by a variety of environmental factors; since the response variable is binary, we assumed a binomial distribution and applied a logistic regression model.

A limitation of the GzLM was encountered when analysing the binomial seedling herbivory data; here, we review the difficulty in performing a prospective power analysis for a logistic regression model. A prospective power analysis is used to help the researcher design their study, ensuring that the effect size, sample size, and level of
precision are all sufficiently large to generate an experiment with sufficient statistical power ${ }^{210}$. A prospective power analysis was performed using the SAS macro UnifyPow on the herbivory logistic regression model in order to determine the increase in sample size needed to maintain the power of the study through a second experimental season; since seedlings were being removed through herbivory, the sample size (and thus the power) was decreasing over time. However, according to the power analysis, the power of the study remained equal regardless of any increases in the initial population size. The problems of prospective power analyses and their application to binomial GzLMs are not well documented in the ecological literature. Power analyses for logistic regression models are generally used in medical studies ${ }^{211}$, but these cannot be easily compared to ecological studies.

In general, there are some limitations to the application of the GzLM for analysing binary data generated by ecological studies. In ecology and conservation biology, logistic regression models are relatively common, and often used for modelling spatial species distributions under different environmental conditions ${ }^{6,199}$. However, these models must assume that the species is in a state of pseudo-equilibrium with the environment; therefore, logistic regression models cannot effectively identify environmental factors responsible for distribution when a species is not in equilibrium, or still expanding its range ${ }^{3}$. Furthermore, GzLMs and GAMs are usually based on empirical data collected from a particular region, thus incorporating the biotic interactions and random effects that are characteristic to the area. This means that predictive GzLMs designed for one region usually cannot be applied on a wider scale; the predictive power over a broad spatial scale is usually low ${ }^{3,212}$. Another general
disadvantage of logistic regression analysis is the tendency of the model to strongly underestimate the probability of rare events ${ }^{213}$.

Gamma distributions

The gamma distribution also occurs in ecological studies, though much less frequently than binomial and Poisson according to our literature search. Thus, there is less information available about its application to ecological data. The gamma distribution is a 2-parameter frequency distribution given by the equation:

$$
f(x)=\frac{1}{\beta^{\gamma} \Gamma(\gamma)} x^{\gamma-1} e^{-x / \beta} ; \beta>0, \gamma>0
$$

Gamma distribution has a zero lower bound and is unlimited on the right. It is positively skewed, with the amount of skew depending inversely on the shape factor γ. The gamma distribution is closely related to the Chi-square distribution, for $\chi^{2} / 2$ is a gamma variate ${ }^{214}$.

In biological ecology, data distributions are highly variable; as we have observed, most data are not normally distributed. The general linear model is usually applied when the distribution is gamma; this occurs partially because basic linear statistics (based on the normal distribution) have been traditionally and widely taught. The major advantage of using the gamma distribution is that it simplifies the interpretation of the model; if you force the model to fit the normal distribution where gamma is applicable, the variables need to be transformed, which complicates the biological interpretation of the parameters. Gamma distribution helps expand the capacity of data analysis without using transformation. The major disadvantage of using the gamma distribution is common to many applications of the generalized linear model; in order to analyse a model using
gamma distribution, you need a powerful statistical software package and also relatively advanced knowledge of statistics.

Conclusions

The GzLM has become increasingly common in ecological studies over the past two decades. This is largely due to the flexibility of the GzLM when compared to the GLM, in that it does not assume normal distributions. The nature of ecological data often produces data which is highly varied, has counts with many zeros, is over dispersed, skewed, or more suited to analysis of presence versus absence. The specification of the error structure in the GzLM allows ecological researchers to create models which can account for the nature of these datasets and provide more meaningful statistical analysis. Despite these advantages of GzLMs, their use has not become widespread until recently. It is likely that as the acceptance and discussion of the GzLM increases, its role as the most appropriate model for ecological data analysis will be recognized in the field.

Acknowledgements

The authors of this paper wish to thank Dr. David Schneider for offering the Biology 7932 graduate course, Applications of the Generalized Linear Model, and for his assistance and support during data analysis and the writing of this paper. Thanks also to Dr. Keith Lewis and Peter Westley for their assistance during data analysis. Additional thanks to Dr. Paul Marino and Dr. Dave Cote for providing extra data sets.

References

1. Shenk, T.M., and Franklin, A.B. (2001) Modeling in Natural Resource Management: Development, Interpretation, and Application. Island Press
2. Nelder, J.A., and Wedderburn, R.W.M. (1972) Generalized Linear Models. J. R. Stat. Soc. A. 135, 370-384
3. Guisan, A., et al. (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157, 89-100
4. Agresti, A. (2007) An Introduction to categorical data analysis. WileyInterscience
5. Bolliger, J.F., and al., e. (2000) Risks of global warming on montane and subalpine forests in Switzerland - a modeling study. Remote Sensing of Environment 1, 99-111
6. Calef, M.P., et al. (2005) Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach. J. Biogeography 32, 863-878
7. Leniham, J.M. (1993) Ecological response surfaces for North American boreal tree species and their use in forest classification. J. Veg. Sci. 4, 667-680
8. He, F., et al. (2003) Autologistic regression model for the distribution of vegetation. Journal of Agricultural, Biological, and Environmental Statistics 8, 205-222
9. Kirchman, D.L. (2000) Microbial Ecology of the Oceans. Wiley
10. Karner, M.B., et al. (2001) Archeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409
11. Sousa1, P., et al. (2007) Analysis of horse mackerel, blue whiting, and hake catch data from Portuguese surveys (1989-1999) using an integrated GLM approach. . Aquat. Living Resour. 20, 105-116
12. Maravelias, C.D. (1999) Habitat selection and clustering of pelagic fish: effects of topography and bathymetry on species dynamics. Can. J. Fish. Aquat. Sci. 56, 437-450
13. Jarvela, L.E., and Thorsteinson, L.K. (1999) The epipelagic fish community of Beaufort Sea coastal waters, Alaska Arctic 52, 80-94
14. Byrkjedal, I., and Hoines, A. (2007) Distribution of demersal fish in the southwestern Barents Sea. Polar Research 26, 135-151
15. Dauwalter, D.C., and Fisher, W.L. (2007) Electrofishing capture probability of smallmouth bass in streams. N.A. J. Fish. Man 27, 162-171
16. Lusk, S., and Humpl (2006) Effect of multiple electrofishing on determining the structure of fish communities in small streams. Folia. Zool. 55, 315-322.
17. Venables, W.N., and Dichmont, C.M. (2004) GLMs, GAMs and GLMMs: An overview of theory for applications in fisheries research. Fish. Res. 70, 319-337
18. Crawley, K.R., et al. (2006) Influence of different volumes and types of detached macrophytes on fish community structure in surf zones of sandy beaches. Mar. Ecol. Prog. Ser 307, 233-246
19. Stoner, A., et al. (2003) Spatially explicit analysis of estuarine habitat for juvenile winter flounder: Combining generalized additive models and geographic information systems. Mar. Ecol. Prog. Ser. 213, 252-271
20. Sousa, P., et al. (2007) Analysis of horse mackerel, blue whiting, and hake catch data from Portuguese surveys (1989-1999) using an integrated GLM approach. . Aquat. Living Resour. 20, 105-116
21. Schick, R.S., et al. (2004) Bluefin tuna (Thunnus thynnus) distribution in relation to sea surface temperature fronts in the Gulf of Maine (1994-96). Fish. Ocean. 13, 225238
22. Dunham, J.B., and Rieman, B.E. (1999) Metapopulation structure of bull trout: Influences of physical, biotic and geometrical landscape characteristics. Ecol. App. 9, 642-667
23. Eikaas, H.S., et al. (2005) Spatial modeling and habitat quantification for two diadromous fish in New Zealand streams: GIS-based approach with application for conservation management. Environmental-Management 36, 726-740
24. Flebbe, P.A. (1994) A regional view of the margin: Salmonid abundance and distribution in the southern Appalachian mountains of North Carolina and Virginia. Trans. Amer. Fish. Soc. 123, 657-667
25. Garland, R.D., et al. (2002) Comparison of subyearling fall Chinook salmon's use of riprap revetments and unaltered habitats in Lake Wallula of the Columbia River. N.A. J. Fish. Man. 22, 1283-1289
26. Latterell, J.J., et al. (2003) Physical constraints on trout (Oncorhynchus spp.) distribution in the Cascade Mountains: a comparison of logged and unlogged streams. 27. Porter, M.S., et al. (2000) Predictive models of fish species distribution in the Blackwater Drainage, British Columbia. N.A. J. Fish. Man. 20, 349-359
27. Press, G.R., et al. (2002) Landscape characteristics, land use, and coho salmon (Oncorhynchus kisutch) abundance, Snohomish River, Wash., U.S.A. Can. J. Fish. Aquat. Sci. 59, 613-623
28. Rieman, B.E., and McIntyre, J.D. (1995) Occurrence of bull trout in naturally fragmented habitat patches of varied size. Trans. Amer. Fish. Soc. 124, 285-296
29. Tiffan, K.F., et al. (2006) Variables influencing the presence of subyearling fall Chinook salmon in shoreline habitats of the Hanford Reach, Columbia River. N.A. J. Fish. Man. 26, 351-360
30. Watson, G., and Hillman, T.W. (1997) Factors affecting the distribution and abundance of bull trout: An investigation at hierarchical scales. North-American-Journal-of-Fisheries-Management 17, 237-252
31. Welsh, H.H., et al. (2001) Distribution of juvenile Coho salmon in relation to water temperatures in tributaries of the Mattole River, California. . N.A. J. Fish. Man. 21, 464-470.
32. Mugodo, J. (2006) Evalution and application of methods for biological assessment of streams. Hydrobiologia 572, 59-70
33. Girard, I.L., et al. (2004) Foraging, growth, and loss rate of young-of-the-year Atlantic salmon (Salmo salar) in relation to habitat use in Catamaran Brook, New
Brunswick. Can. J. Fish. Aquat. Sci. 61, 2339-2349
34. Kocovsky, P.M., and Carline, R.F. (2006) Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams. Trans. Amer. Fish. Soc. 135, 76-88
35. Knapp, R.A., and Preisler, H.K. (1999) Is it possible to predict habitat use by spawning salmonids? A test using California golden trout (Oncorhynchus mykiss aguabonita). Can. J. Fish. Aquat. Sci. 56, 1576-1584
36. Francis, M.P., and al., e. (2005) Predictive models of small fish presence and abundance in northern New Zealand harbours. Estuarine, Costal and Shelf Science 62
37. Santoul, F., et al. (2005) Environmental factors influencing the regional distribution and local density of a small benthic fish: The stoneloach (Barbatula barbatula). Hydrobiologia 544 347-355
38. Santoul, F., et al. (2005) Patterns of rare fish and aquatic insects in a southwestern French river catchment in relation to simple physical variables. Ecography 28, 307-314 40. Greenwood, M.F.D., and Hill, A.S. (2003) Temporal, spatial and tidal influences on benthic and demersal fish abundance in the Fourth estuary. Eustarine, Costal and Shelf Sci. 28, 211-225
39. Rosenfeld, J., et al. (2000) Habitat factors affecting the abundance and distribution of juvenile cutthroat trout (Oncorhynchus clarki) and Coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 57, 766-774
40. Ripley, T.e.a., et al. (2005) Bull trout (Salvelinus confluentus) occurrence and abundance influenced by cumulative industrial developments in Canadian boreal forest watershed. Can. J. Fish. Aquat. Sci. 62, 2431-2442
41. Olivera-Gomez, L.D., and Mellink, E. (2005) Distribution of the Antillean manatee (Trichechus manatus manatus) as a function of habitat characteristics, in Bahia de Chetumal, Mexico. Biological-Conservation 121, 127-133
42. Williams, N.S.G., et al. (2005) Plant traits and local extinctions in natural grasslands along an urban-rural gradient. Journal of Ecology 93, 1203-1213
43. Polak, M. (2007) Nest-site selection and nest predation in the Great Bittern Botaurus stellaris population in eastern Poland. Ardea 95, 31-38
44. Millington, J.D.A., et al. (2007) Regression techniques for examining land use/cover change: A case study of a mediterranean landscape. Ecosystems 10, 562-578
45. Hein, S., et al. (2007) Habitat suitability models for the conservation of thermophilic grasshoppers and bush crickets - simple or complex? Journal of Insect Conservation 11, 221-240
46. Gibson, L.A., et al. (2004) Modelling habitat suitability of the swamp antechinus (Antechinus minimus maritimus) in the coastal heathlands of southern Victoria, Australia. Biological Conservation 117, 143-150
47. Garcia-Ripolles, C., et al. (2005) Modelling nesting habitat preferences of Eurasian Griffon Vulture Gyps fulvus in eastern Iberian Peninsula. Ardeola 52, 287-304 50. Zabala, J., et al. (2006) Facteurs affectant l'habitat du vison en Europe sudoccidentale. Mammalia- 70, 193-201
48. Yap, C.A.M., et al. (2002) Roost characteristics of invasive mynas in Singapore. Journal-of-Wildlife-Management 66, 1118-1127
49. Wood, D.R., et al. (2004) Avian community response to pine-grassland restoration. Wildlife-Society-Bulletin 32, 819-828
50. Wiser, S.K., et al. (1998) Prediction of rare-plant occurrence: A southern appalachian example. Ecological-Applications 8, 909-920
51. Wilson, S.M., et al. (2006) Landscape conditions predisposing grizzly bears to conflicts on private agricultural lands in the western USA. Biological-Conservation 130, 47-59
52. Wilson, B.A., and Aberton, J.G. (2006) Effects of landscape, habitat and fire on the distribution of the white-footed dunnart Sminthopsis leucopus (Marsupialia : Dasyuridae) in the Eastern Otways, Victoria. Australian-Mammalogy 28, 27-38
53. Williams, N.S.G., et al. (2005) Factors influencing the loss of an endangered ecosystem in an urbanising landscape: a case study of native grasslands from Melbourne, Australia. Landscape-and-Urban-Planning 71, 35-49
54. Williams, N.S.G. (2007) Environmental, landscape and social predictors of native grassland loss in western Victoria, Australia. Biological-Conservation 137, 308-318
55. White, P.C.L., et al. (2003) Factors affecting the success of an otter (Lutra lutra) reinforcement programme, as identified by post-translocation monitoring. BiologicalConservation 112, 363-371
56. Westphal, M.I., et al. (2003) Effects of landscape pattern on bird species distribution in the Mt. Lofty Ranges, South Australia. Landscape-Ecology 18, 413-426 60. Welch, N.E., and MacMahon, J.A. (2005) Identifying habitat variables important to the rare Columbia spotted frog in utah (USA): An information-theoretic approach. Conservation-Biology 19, 473-481
57. Ward, L., and Mill, P.-J. (2005) Habitat factors influencing the presence of adult Calopteryx splendens (Odonata : Zygoptera). European-Journal-of-Entomology 102, 4751
58. Vanreusel, W., and Van-Dyck, H. (2007) When functional habitat does not match vegetation types: A resource-based approach to map butterfly habitat. BiologicalConservation 135, 202-211
59. vandenBerg, L.J.L., et al. (2001) Territory selection by the Dartford warbler (Sylvia undata) in Dorset, England: The role of vegetation type, habitat fragmentation and population size. Biological-Conservation 101, 217-228
60. Toner, M., and Keddy, P. (1997) River hydrology and riparian wetlands: A predictive model for ecological assembly. Ecological-Applications 7, 236-246
61. Tittler, R., and Hannon, S.J. (2000) Nest predation in and adjacent to cutblocks with variable tree retention. Forest-Ecology-and-Management 136, 147-157
62. Thomson, J.R., et al. (2007) Predicting bird species distributions in reconstructed landscapes. Conservation-Biology 21, 752-766
63. Suarez, F., et al. (2003) The role of extensive cereal crops, dry pasture and shrubsteppe in determining skylark Alauda arvensis densities in the Iberian peninsula.
Agriculture-Ecosystems-and-Environment 95, 551-557
64. Stoleson, S.H., and Finch, D.M. (2003) Microhabitat use by breeding Southwestern Willow Flycatchers on the Gila River, New Mexico. Studies-in-AvianBiology, 91-95
65. Soh, M.C.K., et al. (2006) High sensitivity of montane bird communities to habitat disturbance in Peninsular Malaysia. Biological-Conservation 129, 149-166
66. Singer, F.J., et al. (2000) Correlates to colonizations of new patches by translocated populations of bighorn sheep. Restoration-Ecology 8, 66-74
67. Robbins, C.S., et al. (1989) Habitat Area Requirements of Breeding Forest Birds of the Middle Atlantic States USA. Wildlife-Monographs, 1-34
68. Rivieccio, M., et al. (2003) Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico. Western-North-American-Naturalist 63, 479-488
69. Ritter, M.W., and Savidge, J.A. (1999) A predictive model of wetland habitat use on Guam by endangered Mariana Common Moorhens. Condor- 101, 282-287
70. Reich, R.M., et al. (2004) Predicting the location of northern goshawk nests: modeling the spatial dependency between nest locations and forest structure. EcologicalModelling 176, 109-133
71. Radford, J.Q., and Bennett, A.F. (2004) Thresholds in landscape parameters: occurrence of the white-browed treecreeper Climacteris affinis in Victoria, Australia. Biological-Conservation 117, 375-391
72. Quist, M.C., et al. (2005) Hierarchical faunal filters: an approach to assessing effects of habitat and nonnative species on native fishes. Ecology-of-Freshwater-Fish 14, 24-39
73. Quintana-Ascencio, P.F., and Menges, E.S. (1996) Inferring metapopulation dynamics from patch-level incidence of Florida scrub plants. Conservation-Biology 10, 1210-1219
74. Puglisi, L., et al. (2005) Man-induced habitat changes and sensitive species: a GIS approach to the Eurasian Bittern (Botaurus stellaris) distribution in a Mediterranean wetland. Biodiversity-and-Conservation 14, 1909-1922
75. Pueyo, Y., et al. (2006) Determinants of land degradation and fragmentation in semiarid vegetation at landscape scale. Biodiversity-and-Conservation 15, 939-956
76. Plentovich, S., et al. (1999) Habitat requirements for Henslow's sparrows wintering in silvicultural lands of the Gulf Coastal Plain. Auk-116, 109-115
77. Pleasant, G.D., et al. (2006) Nesting ecology and survival of scaled quail in the Southern High Plains of Texas. Journal-of-Wildlife-Management 70, 632-640
78. Pausas, J.G. (1997) Resprouting of Quercus suber in NE Spain after fire. Journal-of-Vegetation-Science 8, 703-706
79. Partl, E., et al. (2002) Forest restoration and browsing impact by roe deer. Forest-Ecology-and-Management 159, 87-100
80. Parker, J.M., and Anderson, S.H. (2003) Habitat use and movements of repatriated Wyoming toads. Journal-of-Wildlife-Management 67, 439-446
81. Oostermeijer, J.G.B., and Van-Swaay, C.A.M. (1998) The relationship between butterflies and environmental indicator values: A tool for conservation in a changing landscape. Biological-Conservation 86, 271-280
82. Nielsen, S.E., et al. (2004) Modelling the spatial distribution of human-caused grizzly bear mortalities in the Central Rockies ecosystem of Canada. BiologicalConservation 120, 101-113
83. Ng, S., and Corlett, R.T. (2003) The ecology of six Rhododendron species (Ericaceae) with contrasting local abundance and distribution patterns in Hong Kong, China. Plant-Ecology 164, 225-233
84. Nepal, S.K. (2003) Trail impacts in Sagarmatha (Mt. Everest) National Park, Nepal: A logistic regression analysis. Environmental-Management 32, 312-321
85. Naura, M., and Robinson, M. (1998) Principles of using River Habitat Survey to predict the distribution of aquatic species: An example applied to the native white-clawed crayfish Austropotamobius pallipes. Aquatic-Conservation 8, 515-527
86. Munger, J.C., et al. (1998) U.S. national wetland inventory classifications as predictors of the occurrence of Columbia spotted frogs (Rana luteiventris) and Pacific treefrogs (Hyla regilla). Conservation-Biology 12, 320-330
87. Mortberg, U.M., and Wallentinus, H.G. (2000) Red-listed forest bird species in an urban environment: Assessment of green space corridors. Landscape-and-Urban-
Planning 50, 215-226
88. Mortberg, U.M. (2001) Resident bird species in urban forest remnants; landscape and habitat perspectives. Landscape-Ecology 16, 193-203
89. Moran-Lepez, R., et al. (2005) Summer habitat relationships of barbels in southwest Spain. Journal-of-Fish-Biology 67, 66-82
90. Miller, J.R., and Cale, P. (2000) Behavioral mechanisms and habitat use by birds in a fragmented agricultural landscape. Ecological-Applications 10, 1732-1748
91. Meyer, C.B., and Miller, S.L. (2002) Use of fragmented landscapes by marbled murrelets for nesting in southern Oregon. Conservation-Biology 16, 755-766
92. McKee, G., et al. (1998) Predicting greater prairie-chicken test success from vegetation and landscape characteristics. Journal-of-Wildlife-Management 62, 314-321
93. McComb, W.C., et al. (2002) Models for mapping potential habitat at landscape scales: An example using northern spotted owls. Forest-Science 48, 203-216
94. Mazzocchi, A.B., and Forys, E.A. (2005) Nesting habitat selection of the Least

Tern on the Gulf Coast of Florida. Florida-Field-Naturalist 33, 71-80
99. Marsden, S., and Fielding, A. (1999) Habitat associations of parrots on the Wallacean islands of Buru, Seram and Sumba. Journal-of-Biogeography 26, 439-446 100. Manel, S., et al. (2000) Testing large-scale hypotheses using surveys: The effects of land used on the habitats, invertebrates and birds of Himalayan rivers. Journal-of-Applied-Ecology 37, 756-770
101. Mallord, J.W., et al. (2007) Linking recreational disturbance to population size in a ground-nesting passerine. Journal-of-Applied-Ecology 44, 185-195
102. Madden, E.M., et al. (2000) Models for guiding management of prairie bird habitat in northwestern North Dakota. American-Midland-Naturalist 144, 377-392 103. MacFaden, S.W., and Capen, D.E. (2002) Avian habitat relationships at multiple scales in a New England forest. Forest-Science 48, 243-253
104. Lindenmayer, D.B., and McCarthy, M.A. (2001) The spatial distribution of nonnative plant invaders in a pine-eucalypt landscape mosaic in south-eastern Australia. Biological-Conservation 102, 77-87
105. Li, X., et al. (2006) Nest site use by crested ibis: dependence of a multifactor model on spatial scale. Landscape-Ecology 21, 1207-1216
106. Lehtinen, R.M., and Skinner, A.A. (2006) The enigmatic decline of Blanchard's

Cricket Frog (Acris crepitans blanchardi): A test of the habitat acidification hypothesis. Copeia-, 159-167
107. Lantin, E., et al. (2003) Preliminary assessment of habitat characteristics of woodland caribou calving areas in the Claybelt region of Quebec and Ontario, Canada. Rangifer-, 247-254
108. Jones, J.C., and Dorr, B. (2004) Habitat associations of gopber tortoise burrows on industrial timberlands. Wildlife-Society-Bulletin 32, 456-464
109. Johnson, B.K., et al. (2000) Resource selection and spatial separation of mule deer and elk during spring. Journal-of-Wildlife-Management 64, 685-697
110. Jimenez, I. (2005) Development of predictive models to explain the distribution of the West Indian manatee Trichechus manatus in tropical watercourses. BiologicalConservation 125, 491-503
111. Jeganathan, P., et al. (2004) Modelling habitat selection and distribution of the critically endangered Jerdon's courser Rhinoptilus bitorquatus in scrub jungle: an application of a new tracking method. Journal-of-Applied-Ecology 41, 224-237
112. Hornung, J.P., and Rice, C.L. (2003) Odonata and wetland quality in southern Alberta, Canada: A preliminary study. Odonatologica- 32, 119-129
113. Hodar, J.A., et al. (2000) Habitat selection of the common chameleon (Chamaeleo chamaeleon) (L.) in an area under development in southern Spain: Implications for conservation. Biological-Conservation 94, 63-68
114. Hill, J.K. (1999) Butterfly spatial distribution and habitat requirements in a tropical forest: Impacts of selective logging. Journal-of-Applied-Ecology 36, 564-572 115. Hazler, K.R., et al. (2006) Factors influencing acadian flycatcher nesting success in an intensively managed forest landscape. Journal-of-Wildlife-Management 70, 532538
116. Hatten, J.R., and Paradzick, C.E. (2003) A multiscaled model of southwestern willow flycatcher breeding habitat. Journal-of-Wildlife-Management 67, 774-788 117. Hancock, M.H., and Wilson, J.D. (2003) Winter habitat associations of seedeating passerines on Scottish farmland. Bird-Study 50, 116-130
118. Guenette, J.S., and Villard, M.A. (2005) Thresholds in forest bird response to habitat alteration as quantitative targets for conservation. Conservation-Biology 19, 11681180
119. Gros, P.M., and Rejmanek, M. (1999) Status and habitat preferences of Uganda cheetahs: An attempt to predict carnivore occurrence based on vegetation structure. Biodiversity-and-Conservation 8, 1561-1583
120. Groenendijk, J.P., et al. (2005) Successional position of dry Andean dwarf forest species as a basis for restoration trials. Plant-Ecology 181, 243-253
121. Green, R.E., and Stowe, T.J. (1993) The decline of the corncrake Crex crex in Britain and Ireland in relation to habitat change. Journal-of-Applied-Ecology 30, 689-695 122. Giroux, W., et al. (2007) Ruffed grouse brood habitat use in mixed softwoodhardwood nordic-temperate forests, Quebec, Canada. Journal-of-Wildlife-Management 71, 87-95
123. Gibson, L.A., et al. (2004) Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach. Journal-of-Applied-Ecology 41, 213-223
124. Franco, A.M.A., et al. (2000) Modelling habitat selection of Common Cranes Grus grus wintering in Portugal using multiple logistic regression. Ibis- 142, 351-358 125. Filipe, A.F., et al. (2002) Spatial modelling of freshwater fish in semi-arid river systems: A tool for conservation. River-Research-and-Applications 18, 123-136
126. Field, S.A., et al. (2005) Improving the efficiency of wildlife monitoring by estimating detectability: a case study of foxes (Vulpes vulpes) on the Eyre Peninsula, South Australia. Wildlife-Research 32, 253-258
127. Fattebert, K., et al. (2003) Model development for capercaillie (Tetrao urogallus) habitat in the Jura mountains (Western Switzerland). Game-and-Wildlife-Science 20, 195-210
128. Etter, A., et al. (2006) Modelling the conversion of Colombian lowland ecosystems since 1940: Drivers, patterns and rates. Journal-of-EnvironmentalManagement 79, 74-87
129. Dirnbock, T., et al. (2003) Predicting future threats to the native vegetation of Robinson Crusoe island, Juan Fernandez Archipelago, Chile. Conservation-Biology 17, 1650-1659
130. Daws, M.I., et al. (2006) Prediction of desiccation sensitivity in seeds of woody species: A probabilistic model based on two seed traits and 104 species. Annals-of-Botany-(London) 97, 667-674
131. Curtis, P.D., and Jensen, P.G. (2004) Habitat features affecting beaver occupancy along roadsides in New York state. Journal-of-Wildlife-Management 68, 278-287
132. Cunningham, S.C., et al. (2003) Black bear habitat use in burned and unburned areas, central Arizona. Wildlife-Society-Bulletin 31, 786-792
133. Chalmers, R.J., and Loftin, C.S. (2006) Wetland and microhabitat use by nesting Four-Toed Salamanders in Maine. Journal-of-Herpetology 40, 478-485
134. Carroll, C., et al. (1999) Using presence-absence data to build and test spatial habitat models for the fisher in the Klamath region, U.S.A. Conservation-Biology 13, 1344-1359
135. Burger, L.D., et al. (1994) Effects of prairie fragmentation on predation on artificial nests. Journal-of-Wildlife-Management 58, 249-254
136. Buchanan, J.B., et al. (1999) Characteristics of young forests used by spotted owls on the western Olympic Peninsula, Washington. Northwest-Science 73, 255-263 137. Bombay, H.L., et al. (2003) Scale perspectives in habitat selection and animal performance for Willow Flycatchers (Empidonax traillii) in the central Sierra Nevada, California. Studies-in-Avian-Biology, 60-72
138. Bisson, I.A., and Stutchbury, B.J.M. (2000) Nesting success and nest-site selection by a neotropical migrant in a fragmented landscape. Canadian-Journal-ofZoology 78, 858-863
139. Bigler, C., et al. (2005) Multiple disturbance interactions and drought influence fire severity in rocky mountain subalpine forests. Ecology-(Washington-D-C) 86, 30183029
140. Benoit, L.K., and Askins, R.A. (2002) Relationship between habitat area and the distribution of tidal marsh birds. Wilson-Bulletin 114, 314-323
141. Beauvais, G.P., and Smith, R. (2003) Model of breeding habitat of the Mountain Plover (Charadrius montanus) in western Wyoming. Western-North-American-Naturalist 63, 88-96
142. Baumann, M., et al. (2005) Native or naturalized? Validating alpine chamois habitat models with archaeozoological data. Ecological-Applications 15, 1096-1110 143. Baldi, A., and Kisbenedek, T. (1998) Factors influencing the occurrence of Great White Egret (Egretta alba), Mallard (Anas platyrhynchos), Marsh Harrier (Circus aeruginosus), and Coot (Fulica atra) in the reed archipelago of Lake Velence, Hungary. Ekologia-(Bratislava) 17, 384-390
144. Austin, G.E., et al. (1996) Predicting the spatial distribution of buzzard Buteo buteo nesting areas using a geographical information system and remote sensing. Journal-of-Applied-Ecology 33, 1541-1550
145. Auble, G.T., et al. (2005) Use of individualistic streamflow-vegetation relations along the Fremont River, Utah, USA to assess impacts of flow alteration on wetland and riparian areas. Wetlands- 25, 143-154
146. Anthes, N., et al. (2003) Combining larval habitat quality and metapopulation structure: The key for successful management of pre-alpine Euphydryas aurinia colonies. Journal-of-Insect-Conservation 7, 175-185
147. Allen, M.S., et al. (1998) Factors related to black crappie occurrence, density, and growth in Florida lakes. North-American-Journal-of-Fisheries-Management 18, 864-871
148. Albani, M., et al. (2005) Boreal mixedwood species composition in relationship to topography and white spruce seed dispersal constraint. Forest-Ecology-and-
Management 209, 167-180
149. Chamberlain, D.E., et al. (1999) Effects of habitat type and management on the abundance of skylarks in the breeding season. Journal-of-Applied-Ecology 36, 856-870 150. Lindenmayer, D.B., et al. (2003) Birds in eucalypt and pine forests: landscape alteration and its implications for research models of faunal habitat use. Biological Conservation 110, 45-53
151. Vesk, P.A., and Westoby, M. (2001) Predicting plant species' responses to grazing. Journal-of-Applied-Ecology 38, 897-909
152. McKenny, H.C., et al. (2006) Effects of structural complexity enhancement on eastern red-backed salamander (Plethodon cinereus) populations in northern hardwood forests. Forest-Ecology-and-Management 230, 186-196
153. Gibson, L.A., et al. (2004) Landscape characteristics associated with species richness and occurrence of small native mammals inhabiting a coastal heathland: a spatial modelling approach. Biological Conservation 120, 75-89
154. Austin, M.P., and Meyers, J.A. (1996) Current approaches to modelling the environmental niche of eucalypts: Implications for management of forest biodiversity.
Forest-Ecology-and-Management 85, 95-106
155. Rayner, M.J., et al. (2007) Predictive habitat modelling for the population census of a burrowing seabird: A study of the endangered Cook's petrel. Biological Conservation 138, 235-247
156. Mac Nally, R., et al. (2003) Modelling butterfly species richness using mesoscale environmental variables: model construction and validation for mountain ranges in the Great Basin of western North America. Biological Conservation 110, 21-31
157. VanDerWinden, J., et al. (1996) Is there a future for the Black Tern Chlidonias niger as a breeding bird in The Netherlands? Limosa- 69, 149-164
158. Tharme, A.P., et al. (2001) The effect of management for red grouse shooting on the population density of breeding birds on heather-dominated moorland. Journal-of-Applied-Ecology 38, 439-457
159. Schwab, F.E., et al. (2006) Bird-vegetation relationships in southeastern British Columbia. Journal-of-Wildlife-Management 70, 189-197
160. Rouquette, J.R., and Thompson, D.J. (2005) Habitat associations of the endangered damselfly, Coenagrion mercuriale, in a water meadow ditch system in southern England. Biological-Conservation 123, 225-235
161. Naidoo, R. (2004) Species richness and community composition of songbirds in a tropical forest-agricultural landscape. Animal-Conservation 7, 93-105
162. Martin, T.G., and McIntye, S. (2007) Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conservation-Biology 21, 504-514
163. Maggini, R., et al. (2002) A stratified approach for modeling the distribution of a threatened ant species in the Swiss National Park. Biodiversity-and-Conservation 11, 2117-2141
164. Laurance, W.F. (1997) A distributional survey and habitat model for the endangered northern Bettong Bettongia tropica in tropical Queensland. BiologicalConservation 82, 47-60
165. Van Niel, K.P., and Austin, M.P. (2007) Predictive vegetation modeling for conservation: Impact of error propagation from digital elevation data. EcologicalApplications 17, 266-280
166. Jimenez-Valverde, A., and Lobo, J.M. (2006) Distribution determinants of endangered Iberian spider Macrothele calpeiana (Araneae, Hexathelidae). Environmental Entomology 35, 1491-1499
167. Guisan, A., and Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-186
168. Schwab, F.E., et al. (2006) Effects of postfire snag removal on breeding birds of western Labrador. Journal-of-Wildlife-Management 70, 1464-1469
169. Hayward, M.W., et al. (2007) Predicting the occurrence of the quokka, Setonix brachyurus (Macropodidae : Marsupialia), in Western Australia's Northern Jarrah forest. Wildlife-Research 34, 194-199
170. Adlerstein, S.A., et al. (2007) Estimating seasonal movements of Chinook salmon in Lake Huron from efficiency analysis of coded wire tag recoveries in recreational fisheries. N.A. J. Fish. Man. 27, .
171. Torgersen, C.E., and Close, D.A. (2004) Influence of habitat heterogeneity on the distribution of larval Pacific lamprey (Lampetra tridentate) at two spatial scales. Fresh. Biol. 49, 614-630
172. Thurow, R.F., et al. (2006) Utility and validation of day and night snorkel counts for estimating bull trout abundance in first- to third-order streams. N.A. J. Fish. Man. 26, 217-232
173. Thorley, J.L., et al. (2007) Seasonal variation in rod recapture rates indicates differential exploitation of Atlantic salmon, Salmo salar, stock components. Fish. Man. Ecol. 14, 191-198
174. Hirzinger, V., et al. (2004) he importance of inshore areas for adult fish distribution along a free-flowing section of the Danube, Austria. River Res. App 20, 137149
175. Guay, J.C., et al. (2000) Development and validation of numerical habitat models for juveniles of Atlantic salmon (Salmo salar). Can. J. Fish. Aq. Sci. 57, 2065-2075
176. Grenouillet, G., et al. (2000) Habitat occupancy pattern of juvenile fishes in a large lowland river: Interactions with macrophytes. Archiv. Fur Hydrobiologie 149, 307326
177. Hedger, R.D., et al. (2005) Habitat selection by juvenile Atlantic salmon: The interaction between physical habitat and abundance. J. Fish Biol. 67, 1054-1071
178. Grenouillet, G., and Pont, D. (2001) Juvenile fishes in macrophyte beds: Influence of habitat structure and body size. .J. Fish Biol. 54, 939-959
179. Lorance, P., et al. (2002) Point, alpha and beta diversity of carnivorous fish along a depth gradient. Aq. Liv. Resource 15, 263-271
180. Sosa-Lopez, A., and Manzo-Monroy, H.G. (2002) Spatial patterns of the yellowfin tuna (Thunnus albacares) in the Eastern Pacific Ocean: An exploration of concentration profiles. Ciencias-Marinas. 28, 331-346
181. Bennetts, R.E., and al., e. (1999) Factors influencing counts in an annual survey of snail kites in Florida. Auk 116, 316-323
182. Freeman, S.N., et al. (2007) Modelling population changes using data from different surveys: the common birds census and the breeding bird surve. Bird Study 54, 61-72
183. Kery, M., et al. (2005) Modeling avian abundance from replicated counts using binomial mixture models. Ecol. Appl 15
184. Link, W.A., and Sauer, J.R. (2002) A hierarchical analysis of population change with application to Cerulean Warblers. Ecology 83, 2832-2840
185. Link, W.A., and Sauer, J.R. (1998) Estimating population change from count data: application to the North American Breeding Bird Survey. Ecol. App. 8
186. McLaren, I.A., et al. (2006) Origins and characteristics of Nearctic land birds in Britain and Ireland in autumn: a statistical analysis. Ibis 148, 707-726
187. Purcell, K.L., et al. (2005) Design considerations for examining trends in avian abundance using point counts: Examples from oak woodlands. Condor 107
188. Pierce, R.J., and Westbrooke, I.M. (2003) Call count responses of North Island brown kiwi to different levels of predator control in Northland. Biol. Conserv. 109, 175180
189. Tubelis, D.P., et al. (2007) The peninsula effect on bird species in native eucalypt forests in a wood production landscape in Australia. Journal of Zoology (London) 271, 11-18
190. Thogmartin, W.E., et al. (2004) A hierarchical spatial model of avian abundance with application to Cerulean Warblers. Ecol. Appl. 14, 1766-1779
191. Robinson, R.A., et al. (2003) Population trends of Swallows (Hirundo rustica) breeing in Britain. Bird Study 50
192. Spear, L.B., et al. (2003) Distribution, abundance and behaviour of Buller's, Chatham Island and Salvin's albatrosses off Chile and Peru. Ibis 253-269, 253-269
193. Fewster, R.M., et al. (2000) Analysis of population trends for farmland birds using generalized additive models. Ecology, 1970-1984
194. Clarke, E.D., et al. (2003) Validating the use of generalized additive models and at-sea surveys to estimate size and temporal trends of seabird populations. J. Appl. Ecol 40, 278-292
195. Rossi, S., et al. (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1-12
196. Næsset, E., and Nelson, R. (2007) Using airborne laser scanning to monitor tree migration in the boreal-alpine transition zone. Remote Sensing of Environment 110, 357369
197. Fangliang, H., and al., e. (2003) Autologistic regression model for the distribution of vegetation. J. Agri. Biol. and Env. Stats. 8, 205-222
198. Dullinger, S. (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invisibility. J. Ecol 92, 241-252
199. Brown, D.G. (1994) Predicting vegetation types at treeline using topography and biophysical disturbance variables. J. Veg. Sci. 5, 641-656
200. Lloyd, A.H., et al. (2002) Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska. J. Geophys. Res. 107, 8161
201. Thomas, L. (1996) Monitoring long-term population change: Why are there so many analysis methods? Ecology 77, 49-58
202. Birkhead, T.R., and Nettleship, D.N. (1980) Census method for Murres, Uria species: aunified approach. Canadian Wildlife Service Occassional Paper \#43, 25
203. Agresti, A. (2002) An Introduction to categorical data analysis. Wiley-

Interscience
204. Hinz, P., and Gurland, J. (1968) A method of analysing untransformed data from the negative binomial and other contagious distributions. Biometrika 55, 163-170
205. Bliss, C.I., and Fischer, R.A. (1953) Fitting the negative binomial distribution to biological data. Biometrics 9, 176-200
206. White, G.C., and Bennetts, R.E. (1996) Analysis of frequency count data using the negative binomial distribution. Ecology 77, 2549-2557
207. Pearce, J., and Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225-245
208. Jalkanen, A., and Matilla, U. (2000) Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. Forest Ecol. Man. 135, 315-330
209. Hilbert, D.W., and Ostendorf, B. (2001) Utility of artificial neural networks for modeling the distribution of vegetation in past, present, and future climates. Ecol. Model. 146, 311-327
210. Lewis, K.P. (2006) Statistical power, sample sizes, and the software to calculate them easily. Biosceince 56, 607-612
211. O'Brien, R.G., and Chieh, G. (1998) A simpler method to compute power for likihood ratio tests in generalized linear models. In Joint Statistical Meetings
212. Manel, S., et al. (1999) Comparing discriminate analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird. Ecol. Model. 20, 337-347
213. King, G., and Zeng, L. (2001) Logistical regression in rare events data. Political Analysis 9, 137-163
214. Thom, H.C.S. (1958) Note on gamma distribution. Monthly Weather Review 86, 117-122
215. Gaston, A.J. (2002) Studies of high-latitude seabirds. Canadian Wildlife Service Occassional Paper \#106, 52

Appendix A

Auklet Count Data
 Christina Bourne

Research Question: Do least auklets (Aethia pusilla) and crested auklet (Aethia cristatella) surface counts increase with time since predator disturbance?

Data: Surface counts of auklets on a 10x10m plot, Buldir Island, Alaska. 4 hours of observations per day with counts made every 15 minutes, time of all predator disturbances recorded. Total of 25 days used in analysis; 375 counts per species.
All data collected on Buldir Island, Alaska during the summer of 2004 by Christina Bourne.

Model 1: General Linear Model; log transformed mean surface counts
Formal Model: $\mathrm{C}=\beta_{0}+\beta_{\mathrm{G}} * \mathrm{G}+\beta_{\mathrm{S}} * \mathrm{~S}+\beta_{\mathrm{G} * \mathrm{~S}} * \mathrm{G}^{*} \mathrm{~S}+$ res

Table A1: ANOVA

	Df	Sum Sq Mean Sq	F value	$\operatorname{Pr}(>F)$	
Gull	1	4.2747	4.2747	36.9793	$\mathbf{1 . 9 9 8 e - 0 6}$
Sp	1	2.9289	2.9289	25.3375	$\mathbf{3 . 0 7 5 e - 0 5}$
Gull:Sp	1	0.0278	0.0278	0.2409	0.6277
Residuals	26	3.0055	0.1156		

Model 2: Generalized Linear Model; error = Negative Binomial

Table A2: GzLM summary

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|\mathrm{z}\|)$
(Intercept)	3.92610	0.82073	4.784	$1.72 \mathrm{e}-06$
Gull	0.02816	0.08261	0.341	0.733176
Sp	-2.23221	0.60250	-3.705	0.000211
Gull:Sp	0.10009	0.05835	1.716	0.086249.

Table A3: GzLM Chi-square test

NULL	Df	Deviance	Resid. 29	Df Resid. 96.240	Dev P(>\|Chil)
Gull	1	31.887	28	64.352	$1.634 \mathrm{e}-08$
Sp	1	31.927	27	32.425	$1.600 \mathrm{e}-08$
Gull:Sp	1	2.816	26	29.609	0.093

Advantages of GzLM:

- does not assume that model mean and variance are equal (for over dispersed count data they are not); uses additional parameter to adjust the variance independently of the mean (Hinz and Gurland, 1968).
- can use actual count data (as opposed to transformed - done to stabilize the error variance) which potentially increases interpretive value of results
- provides lower p values for the same data set than general linear model, indicating greater statistical power

Disadvantages of GzLM

- can be a more difficult model to implement in some statistical programs
- has an extra parameter

Appendix B

Salmon Habitat Distribution
 Christina Bourne

Research Question: Is there a relationship between stream characteristics (width, depth, rifle) and Atlantic salmon (Salmo salar) distribution?

Data: 53 salmon counts from electrofishing of 12 streams in Terra Nova National Park, NL, in the summers of 2005 and 2006. Average wetted width, average depth and estimated percent rifle for each site was recorded.

* Data provided by Dr. Dave Cote, aquatic ecologist, Terra Nova National Park

Model 1: General Linear Model
Formal Model: $\mathrm{C}=\beta_{0}+\beta_{\mathrm{w}} * \mathrm{~W}+\beta_{\mathrm{D}} * \mathrm{D}+\beta_{\mathrm{R}} * \mathrm{R}+\beta_{\mathrm{W} * \mathrm{D}} * \mathrm{~W} * \mathrm{D}+\beta_{\mathrm{W} * \mathrm{R}} * \mathrm{~W} * \mathrm{R}+\beta_{\mathrm{D} * \mathrm{R}} * \mathrm{D} * \mathrm{R}$ + res

This model did not meet the assumptions for the general linear model when counts, mean counts and log transformed counts (Fig. B1) were used as response variables.

Fig B1. Residuals vs fits plot and qq plot for log transformed salmon counts
$\underline{\text { Model 2: Generalized Linear Model; error }=\text { binomial }}$

Formal Model: $\mathrm{C}=\beta_{0}+\beta_{\mathrm{w}} * \mathrm{~W}+\beta_{\mathrm{D}} * \mathrm{D}+\beta_{\mathrm{R}} * \mathrm{R}+\beta_{\mathrm{W} * \mathrm{D}} * \mathrm{~W} * \mathrm{D}+\beta_{\mathrm{W} * \mathrm{R}} * \mathrm{~W} * \mathrm{R}+\beta_{\mathrm{D}} * \mathrm{R} * \mathrm{D} * \mathrm{R}$ + res

Table B2: GzLM summary

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	-0.63011	1.12128	-0.562	0.574
Width4m	-0.02326	1.46152	-0.016	0.987
Width6m	.23668	1.42126	0.870	0.384
Depth20cm	-0.12742	1.45440	-0.088	0.930
Rifle100\%	0.54515	1.51172	0.361	0.718
Width4m:Depth20cm	-1.36015	1.90017	-0.716	0.474
Width6m:Depth20cm	1.06101	1.70333	0.623	0.533
Width4m:Rifle100\%	2.07279	1.95559	1.060	0.289
Width6m:Rifle100\%	-0.27718	1.70744	-0.162	0.871
Depth20cm:Rifle100\%	0.29735	1.47303	0.202	0.840

Table B3: GzLM Chi-square test

	Df	Deviance	Resid. Df 11	Resid. Dev 20.5339	$\mathrm{P}(>\mid$ Chil $)$
NULL			9	10.2087	$\mathbf{0 . 0 0 5 7}$
Width	2	10.3252	8	10.1748	0.8540
Depth	1	0.0338	7	6.1876	$\mathbf{0 . 0 4 5 8}$
Rifle	1	3.9872	5	4.3299	0.3950
Width:Depth	2	1.8577	3	2.3374	0.3693
Width:Rifle	2	1.9925	2	2.2968	0.8404
Depth:Rifle	1	0.0406			

Advantages of GzLM:

- Not necessary to have a linear relationship, normality or equal variance among groups
- Can model binomial data, good for this data sets because counts vary greatly and are not likely representative of the population (presence/absence more informative)
- Provides probabilities of incidence which can be used to infer distribution

Disadvantages of GzLM

- Does not reflect the actual numbers of fish obtained by sampling
- Cannot easily evaluate model with residual plots, as with GLM - diagnostic investigations have to rely on other methods (Venables and Dichmont, 2004).

Appendix C

Age 1 Greenland Cod Counts Suzanne Thompson

Research Question: Does the number of Greenland Cod (Gadus ogac) depend on amount of eelgrass at the site of sampling?

Data: Counts of Age 1 Greenland Cod from beach seine tows at several sites conducted at Newman Sound, Terra Nova National Park. Seine tows were taken bi-weekly during from 2006 field season from May till November. Data was collected by the MUN Cod research group, and was retrieved from Bob Gregory at Department of Fisheries and Oceans.

Model 1: General Linear Model
Formal Model: $\mathrm{N}=\beta_{0}+\beta_{\mathrm{E}} * \mathrm{E}+$ res
Table C1: ANOVA

	Sum Sq	Df	F value	$\operatorname{Pr}(>\mathrm{F})$
E	336.2	2	3.3667	$\mathbf{0 . 0 3 7 2 4}$
Residuals	7189.0	144		

$\underline{\text { Model 2: Generalized Linear Model; error }=\text { Negative Binomial }}$
Table C2: LR statistics for Type 1 Analysis

Source	DF	F-Value	Chi-Square	Pr>Chi-sq
E	2	2.75	5.50	0.0640

Table C3: LR statistics for Type 2 Analysis

Source	DF	F-Value	Chi-Square	Pr $>$ Chi-Sq
E	2	0.00	7.54	$\mathbf{0 . 0 2 3 1}$

Advantages of GzLM:

- Negative Binomial distribution can deal with very over-dispersed abundance data, such is the case here, by adding an extra parameter.
- Shows slightly more sensitive test by giving a lower p-value for Type 2 analysis.

Disadvantages of GzLM:

- Extra parameter (dispersion) makes it difficult to interpret diagnostic tests (not shown) such as normal probability tests, and homogeneity.

Appendix D

Juvenile Fish Counts Suzanne Thompson

Research Question: Does the number of juvenile fish depend on geology configuration of sea bed and time of day?

Data: Counts of juvenile fish (mostly Haddock) from two 5 km transect lines on Western Bank of the Eastern Scotian Shelf. This data was collected by Tow Cam, a video camera which is towed from the back of a ship. Side scan sonar data was also collected of the sea bed configuration, classified in several categories, and matched up with camera data. Data was collected by Department of Fisheries and Oceans, and was retrieved from Bob Gregory.

Model 1: General Linear Model

Formal Model: $\mathrm{N}=\beta_{0}+\beta_{\text {Geol }} *$ Geol $+\beta_{\text {Time }} *$ Time + res
Table D1: ANOVA

Source	DF	Type III SS	Mean Square	F Value	Pr>F
Geol	7	48.4773	6.9253	42.72	$\mathbf{< 0 . 0 0 0 1}$
Time	1	2.8739	2.8739	17.73	$\mathbf{0 0 . 0 0 0 1}$

$\underline{\text { Model 2: Generalized Linear Model; error = Binomial }}$
Table D2: LR statistics for Type 1 Analysis

Source	Deviance	DF	Chi-Square	Pr $>$ ChiSq
Intercept	6180.1816			
Geol	5860.7547	7	319.43	$<\mathbf{0 . 0 0 0 1}$
Time	5842.8680	1	17.89	$<\mathbf{0 . 0 0 0 1}$

Table D3: LR statistics for Type 2 Analysis

Source	DF	Chi-Square	Pr $>$ Chi-Square
Geol	7	308.19	$<\mathbf{0 . 0 0 0 1}$
Time	1	17.89	$<\mathbf{0 . 0 0 0 1}$

Advantages of GzLM:

- Because the data has many zeros, analysis can focus less on the abundance, and more on the probability of occurrence.
- Gives a good idea of the magnitude of the differences, because it is based on odds ratios and not on abundance data.

Appendix E

Seed Removal Data
 Andrew Trant

Research Question: Does seed removal by introduced red fire ant (Solenopsis invicta Burren) differ within or between plant species?

Data: These data were collected in South Carolina, 1998. The study area was an abandoned field which had natural populations of the red fire ant. Cages were set up to exclude all known seed predators other than the red fire ant. At each ant mount, six cages were established with seeds placed within cages on platforms. The number of seeds removed was recorded every week for a total of six weeks. The following analysis uses the sums of seed removed over this entire period. These data were published by Seaman and Marino (2003).

Model 1: General Linear Model; \log transformed mean counts of seeds removed
Formal Model: $\mathrm{C}=\beta_{0}+\beta_{S} * S+\beta_{M} * M+$ res

Table E1: ANOVA

	Df	Sum Sq	Mean Sq	F-value	$\operatorname{Pr}(>F)$
Species	4	32343	8086	18.111	9.273e-11
Mound	1	971	971	2.1746	0.1440
Residuals	84	37501	446		

Table E2: General Linear Model

	Estimate	Std. Error	t-value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	1.182	0.336	3.522	$\mathbf{0 . 0 0 0 6 9 6}$
SpeciesAmbrosia	0.649	0.372	1.746	0.084425.
SpeciesChenopod	-0.289	0.372	-0.778	0.438469
SpeciesPoa	-1.145	0.372	-3.081	$\mathbf{0 . 0 0 2 7 8 8}$
SpeciesSolidago	0.403	0.372	1.084	0.281360
Mound	-0.007	0.022	-0.318	0.751622

$\underline{\text { Model 2: Generalized Linear Model; error }=\text { Negative Binomial }}$
Table E3: GzLM summary

	Estimate	Std. Error	t -value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	2.796	0.227	12.317	$<\mathbf{2 e - 1 6}$
SpeciesAmbrosia	1.277	0.248	5.154	$\mathbf{1 . 6 6 e - 0 6}$
SpeciesChenopod	0.287	0.251	1.145	0.255
SpeciesPoa	-0.271	0.254	-1.064	0.290
SpeciesSolidago	0.727	0.249	2.921	$\mathbf{0 . 0 0 4}$
Mound	0.012	0.014	0.835	0.406

Table E4: GzLM Chi-square test

	Df	Deviance	Resid.Df	ResidDev NULL	
	59	192.926	$\mathrm{P}(>\mid$ Chil $)$		
Species	4	53.141	85	139.786	$\mathbf{1 . 7 7 4 e - 1 0}$
Mound	1	0.763	84	139.023	0.390

Advantages of GzLM:

- do not need to transform response variable to fit assumptions of normality
- unlike Poisson models that require and mean to variance ratio of 1 , negative binomials models do not
- greater sensitive to p-values compared to similar analysis with general linear model

Disadvantages of GzLM

- not ideal for small sample sizes
- requires estimate of additional parameter (theta)

Appendix F

Oak Recruitment Data Andrew Trant

Research Question: Does the occurrence of fire and other measures of forest structure influence of the distribution of Red Oak (Quercus rubra)?

Data: These data were collected November 2007 by Andrew Trant, Ian Morrison and Krista Chin in Kejimkujik National Park, NS as part of a study looking at the role of fire in regeneration and maintenance of Red Oak (Quercus rubra) stands. 20 plots were established within the boundary of Kejimkujik National Park in areas that with a known fire history. In each plot, demography and structural data were collected. These data are unpublished.

Model 1: General Linear Model; log transformed mean seedling counts

Formal Model: $\mathrm{C}=\beta_{0}+\beta_{\mathrm{F}} * \mathrm{~F}+\beta_{\mathrm{BA}} * \mathrm{BA}+\beta_{\mathrm{DWD}} * \mathrm{DWD}+$ res
Table F1: ANOVA

	Df	Sum Sq	Mean Sq	F-value	$\operatorname{Pr}(>F)$
fire	1	4.025	4.025	1.2219	0.2853
basal.area	1	10.512	10.512	3.1911	0.0930.
dwdall	1	1.606	1.606	0.4876	0.4950
Residuals	16	52.709	3.294		

$\underline{\text { Model 2: Generalized Linear Model; } \text { error }=\text { Negative Binomial }}$

Table F2: GzLM summary

	Estimate	Std. Error	t-value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	-7.287	3.140	-2.320	$\mathbf{0 . 0 3 4}$

fire	3.789	1.058	3.581	$\mathbf{0 . 0 0 2}$
basal.area	0.270	0.081	3.313	$\mathbf{0 . 0 0 4}$
dwdall	-0.037	0.018	-2.085	0.053

Table F3: GzLM Chi-square test

	Df	Deviance Resid.	Df	Resid Dev	$\mathrm{P}(>\mid$ Chil $)$
NULL			19	216.835	
fire	1	15.823	18	201.011	0.069
basal.area	1	64.206	17	136.805	$\mathbf{0 . 0 0 0 2 4 7 6}$
dwdall	1	13.803	16	123.002	0.089

Advantages of GzLM:

- do not need to transform response variable to fit assumptions of normality
- unlike Poisson models that require and mean to variance ratio of 1 , negative binomials models do not
- greater sensitive to p-values compared to similar analysis with general linear model

Disadvantages of GzLM

- not ideal for small sample sizes
- requires estimate of additional parameter (theta)

Appendix G

Seedling Herbivory
 Julia Wheeler

Research question: Does black spruce seedling herbivory differ on different groundcovers and with different levels of slug protection?

Data: Record of herbivory-induced mortality for black spruce seedlings planted on Cladina, Pleurozium and simulated bear digs that were either protected from slug herbivory (pesticides) or unprotected. Data are grouped by treatment type (groundcover + level of slug protection) The data collected show the number of herbivory events out of 300 seedlings planted above the treeline of the Mealy Mountains, central Labrador; all data were collected by in the summer of 2007 by Julia Wheeler.

Model 1: General linear model, percent herbivory per plot type
Formal model: $H_{\text {seedling }}=\beta_{0}+\beta_{g} * X_{g}+\beta_{s} * X_{s}+$ residual

Table G1: ANOVA

Source	DF	Seq SS	Adj SS	Adj MS	F	P
ground	2	0.050533	0.050533	0.025267	126.33	$\mathbf{0 . 0 0 8}$
slug	1	0.018150	0.018150	0.018150	90.75	$\mathbf{0 . 0 1 1}$
Error	2	0.000400	0.000400	0.000200		
Total	5	0.069083				

Model 2: Generalized linear model; error = binomial
Formal model: Odds $\left(H_{\text {seedling }}\right)=e^{(B r e f)} e^{(B g)} e^{(B s)}+$ error

Table G2: GzLM summary

Parameter	DF	Estimate	Standard Error		95\% Confidence Limits	Chi- Square	$\mathrm{P}>$ ChiSq
Intercept	1	-0.8350	0.2413	-1.3080	-0.3621	11.97	0.0005
Groundcover L	1	-0.7580	0.3193	-1.3838	-0.1323	5.64	0.0176
Groundcover M	1	-1.2063	0.3501	-1.8926	-0.5200	11.87	0.0006
Slug O	1	0.6239	0.2740	0.0868	1.1610	5.18	0.0228
Scale	0	1.0000	0.0000	1.0000	1.0000		

Table G3: GzLM Chi-square test

Source	Deviance	DF	Square	Pr $>$ ChiSq
Intercept	19.5553			
Groundcover	5.4940	2	14.06	$\mathbf{0 . 0 0 0 9}$
Slug	0.2048	1	5.29	$\mathbf{0 . 0 2 1 5}$

Advantages of GzLM:

- GzLM can consider interactive effects of groundcover and slug controls, while the GLM has insufficient degrees of freedom (analysis performed, but not shown; models above shows outputs when interactive effects are removed from both models)
- Magnitude of the effect can be calculated using odds ratios derived from the GzLM; GLM can only demonstrate a significant difference between herbivory across treatments
- Provides lower p-value for groundcover, the variable of highest interest, indicating a greater ability to detect an effect

Disadvantages of GzLM:

- Less sensitive than ANOVA for detecting effect for the second variable (level of slug control)

Appendix H

Seed predation data Julia Wheeler

Research question: Is conifer seed predation affected by substrate types and presence of slug pesticides?

Data: Record of seed predation for black/white spruce seeds from 93 seed cards distributed across Cladina, Pleurozium and simulated bear digs plots that were either treated or untreated with slug pesticide. Data are grouped by treatment type. The cards were collected and seed predation was determined by proportion of seeds removed (out of 10 per card). Seed cards were distributed above the treeline of the Mealy Mountains in central Labrador; all data were collected by in the summer of 2007 by Julia Wheeler.

Model 1: General linear model, percent seed predation per treatment type

Formal model: $H_{\text {seed }}=\beta_{0}+\beta_{\text {groundcover }} * X_{\text {groundcover }}+\beta_{\text {slug }} * X_{\text {slug }}+$ residual

Table H1: ANOVA

Source	DF	Seq SS	Adj SS	Adj MS	F	P
ground	2	0.041200	0.041200	0.020600	11.04	0.083
slug	1	0.004267	0.004267	0.004267	2.29	0.270
Error	2	0.003733	0.003733	0.001867		
Total	5	0.049200				

$\underline{\text { Model 2: Generalized linear model; error = binomial }}$
Formal model: Odds $\left(H_{\text {seed }}\right)=e^{(\text {Bref })} e^{(\text {Bgroundcover })} e^{(\text {Bslug })}+$ error

Table H2: GzLM summary

Parameter	DF	Estimate	Standard Error	Wald 95\% Confidence Limits		Chi- Square	Pr $>$ ChiSq
Intercept	1	0.5379	0.1162	0.3102	0.7656	21.43	<. 0001
Groundcover	L 1	-0.5437	0.1622	-0.8616	-0.2257	11.23	0.0008
Groundcover	M 1	-0.8252	0.1650	-1.1486	-0.5017	25.00	<. 0001
Slug	O 1	0.1719	0.1347	-0.0921	0.4360	1.63	0.2018
Scale	0	1.0000	0.0000	1.0000	1.0000		

Table H3: GzLM Chi-square test

		Chi-		
Source	Deviance	DF	Square	Pr $>$ ChiSq
Intercept	31.6419			
Groundcover	3.8410	2	27.80	$<.0001$
Slug	2.2092	1	1.63	0.2015

Advantages of GzLM:

- Again, GzLM can consider interactive effects of groundcover and slug controls, while the GLM has insufficient degrees of freedom
- Detects an effect from the groundcover parameter, where p-value is nonsignificant using ANOVA

Disadvantages of GzLM:

- Residual plots are difficult to interpret for overdispersion

Appendix I

Avian Population Monitoring Paul Regular

Research question: Do murre populations exhibit any long-term trends?
Data: The following long-term count data was collected from census plots of common murres (Uria aalge) at Cape St. Mary's, Newfoundland, 1980-2006 (Regular unpublished data) and thick-billed murres (Uria lomvia) at Coats Island, Nunavut, 1985-2000 ${ }^{215}$. Murres were monitored using similar methods to the Type II approach described by Birkhead and Nettleship ${ }^{202}$. This technique has been adopted and routinely used to monitor common and thick-billed murre populations throughout the northern hemisphere.
For the purposes of statistical analyses of these data, one may construct a GLM (linear regression) with the following formula:
$C=\beta o+\beta_{t}{ }^{*} t+$ Normal error
Where C is the total number of murres attending plots on a particular day of the year when counts were conducted (response variable), and t represents the explanatory variable year.

Model 1: General linear model: Murre plot count data

Table I1: ANOVA for Cape St. Mary's plot counts

Summary results					
		Estimate	Standard error	t -value	P
(Intercept)	-4271.8617	949.2923	-4.500	$9.47 \mathrm{e}-06$	
T	2.2902	0.4776	4.796	$2.47 \mathrm{e}-06$	
ANOVA table					
	df	Sum of Squares	Mean Sum of Squares	F value	P
T	1	51711	51711	22.997	$\mathbf{2 . 5 e - 0 6}$
Residuals	326	733031	2249		

Table I2: ANOVA for Coats Island plot counts

Summary results					
		Estimate	Standard error	t -value	P
(Intercept)	-72557.564	4398.959	-16.49	$<2 \mathrm{e}-16$	
T		37.229	2.207	16.87	$<2 \mathrm{e}-16$
ANOVA table					
	df	Sum of Squares	Mean Sum of Squares	F value	P
T	1	14319562	14319562	284.56	$<\mathbf{2 . 2 e - 1 6}$
Residuals	676	34017114	50321		

$\underline{\text { Model 2: }}$ Generalized linear model; error = Poisson, negative binomial

Table I3: GzLM summary and Chi-square test for Cape St. Mary's plot counts (error = Poisson)

Summary results					
		Estimate	Standard error	z-value	P
(Intercept)	$-1.024 \mathrm{e}+01$	$1.169 \mathrm{e}+00$	-8.756	$<2 \mathrm{e}-16$	
T	$7.987 \mathrm{e}-03$	$5.883 \mathrm{e}-04$	13.577	$<2 \mathrm{e}-16$	
Chi-square table					
	df	Deviance	Residual df	Residual deviance	P
NULL		327	2921.83		
T	1	181.65	326	2740.18	$\mathbf{2 . 1 1 6 e - 4 1}$

Table I4: GzLM summary and Chi-square test Parameter for Coats Island plot counts (error = Poisson)

Summary results				
		Estimate	Standard error	z-value

Table I5: GzLM summary and Chi-square test for Cape St. Mary's plot counts (error = negative binomial)

Summary results					
		Estimate	Standard error	z-value	P
(Intercept)	-9.378271	3.551322	-2.641	0.00827	
T		0.007553	0.001787	4.228	$2.36 \mathrm{e}-05$
Chi-square table					
	df	Deviance	Residual df	Residual deviance	P
NULL		327	353.04		
T	1	19.13	326	333.91	$\mathbf{1 . 2 2 2 e - 0 5}$

Table I6: GzLM summary and Chi-square test for Coats Island plot counts (error = negative binomial)

Summary results					
		Estimate	Standard error	Z-value	P
(Intercept)	-36.124955	2.885362	-12.52	$<2 \mathrm{e}-16$	
T	0.021838	0.001448	15.09	$<2 \mathrm{e}-16$	
Chi-square table					
	df	Deviance	Residual df	Residual deviance	P
NULL		677	918.76		
T	1	236.03	676	682.73	$\mathbf{2 . 8 8 4 e - 5 3}$

Table I7: GzLM summary and Chi-square test for Cape St. Mary's plot counts (GAM)

Summary results					
	df	n	Deviance explained	Chi-square	P
$\mathrm{s}(t)$	3	328	16.9%	512	$\mathbf{< 2 e - 1 6}$

Table I8: GzLM summary and Chi-square test Parameter for Coats Island plot counts (GAM)

Summary results					
	df	n	Deviance explained	Chi-square	P
$\mathrm{s}(t)$	3	678	35.6%	11091	$<\mathbf{2 e - 1 6}$

Advantages of GzLM:

- GzLM model does not assume a normal distribution and allows for non-linearity and non-constant variance structures in the data
- P-values generated by GzLM are lower, indicating stronger statistical power

Disadvantages of GzLM

- GzLMs and GAMs include extra parameters to facilitate model fitting; data may be overfitted

Appendix J

Bacterial abundance in ballast water and port water samples Bei Sun

Research Question: If bacterial abundance depends on the two different water masses and pH ?

Data: Sample were collected from both ship ballast tanks and receiving ports in three locations: Great Lakes, East Coast and West Coast of Canada. 10 ships from Great Lakes and 30 ships from west coast and east coast of Canada each were sampled from April to November, 2007. Several port samples were also collected in each location through the sampling season. Epi-fluorescent microscope direct count was used to investigate prokaryotical abundance. Physical parameters of those samples were recorded, named temperature, salinity and pH . The preliminary analysis indicated temperature and salinity were correlated, so samples were divided into two water masses by salinity 15%.

Model 1: General Linear Model

Formal model: $A=\beta_{0}+\beta_{W} \bullet W+\beta_{p H} \bullet p H+\beta_{W} \beta_{p H} p H \bullet W+\varepsilon$

Table J1: ANOVA

GLM	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
Water masses	1	$2.3286 \mathrm{e}+19$	$2.3286 \mathrm{e}+19$	19.568	$\mathbf{3 . 9 9 6 e - 0 5}$
pH	1	$1.3086 \mathrm{e}+17$	$1.3086 \mathrm{e}+17$	0.110	0.7413
Interaction	62	$7.3779 \mathrm{e}+19$	$1.1900 \mathrm{e}+18$		

$\underline{\text { Model 2: Generalized Linear Model; error = Gamma }}$
Table J2: GzLM Chi-square test

GzLM	Df	Deviance	Resid. Df	Resid. Dev	F	$\operatorname{Pr}(>\mathrm{F})$
NULL			64	36.261		
Water masses	1	13.693	63	22.568	34.0854	$\mathbf{2 . 0 8 5 e - 0 7}$
pH	1	0.242	62	22.326	0.6012	0.4411
Interaction	0	0	62	22.326		

Advantages of GzLM:

Histogram of completedata\$cell.L

Fig J1: Histogram of bacterial abundance

Advantages of GzLM:

- Gamma can be applied to data with skewed distributions
- Application of the GzLM satisfies the assumption that the fits vs. residuals must be homogenous, and the assumption that the error points must be distributed along a normal line

Disadvantages of GzLM:

- Requires strong knowledge about advanced statistics

Appendix K

Bacterial colonies formed on different quadratic regions of different Petri dishes Bei Sun

Research Question: Is the number of bacterial colonies different on different quadratic regions of a series of Petri dishes?

Data: We counted the number of bacteria colonies in 16 small quadratic regions of the same area in the central part of 5 different Petri dishes.

Model 1: General Linear Model

Formal Model: Two-way ANOVA
$C=\beta_{0}+\beta_{P} \bullet P+\beta_{r} \bullet R+\varepsilon$
Table K1: ANOVA

GLM	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
Dishes	1	3.025	3.025	1.3580	0.2475
Quadratic	1	3.442	3.442	1.5454	0.2176
Residuals	77	171.520	2.228		

Model 2: Generalized Linear Model; error = Poisson
Table K2: GzLM Chi-square test

GzLM	Df	Deviance	Resid. Df	Resid. Dev	F	$\operatorname{Pr}(>\mathrm{F})$
NULL	79	76.092				
Dishes	1	1.205	78	74.887	1.2048	0.2724
Quadratic	1	1.371	77	73.516	1.3711	0.2416

Advantages of GzLM:

- GzLM generates more accurate p-values since it represents the true distribution of the data
Disadvantages of GzLM:
- Requires strong knowledge about advanced statistics

Data set 2 from P395-396 Exercise 8.6
Chapter 8 The Poisson distribution. In Statistics with Applications in Biology and Geology. Preben Blasild, Jorgen Granfeldt (2003) Chapman \& hall/CRC

