Information Theoretic Approach: AIC!!

Finding patterns in nocturnal seabird flight-call behaviour

Rachel Buxton – Biology 7932

9 November 2009

Nocturnality in seabirds

- Active around colonies only at night
- Must attract and recognize mates using auditory or olfactory cues
- Loud, well defined night-time vocalizations (context specific and linked to behaviour)
- Nocturnal behaviour is a strategy to avoid avian predators (require ambient light to hunt)

Nocturnal seabirds

Leach's Storm-petrel

Whiskered Auklet

Fork-tailed Storm-petrel

Cassin's Auklet

Ancient Murrelet

Leach's Storm-petrel life history

- Late age at first breeding (3-5 years)
- "Prospectors": non-breeding individuals assessing future nesting habitats
- Social Attraction
- Well defined contexts for different calls:
 - Flight calls chuckle call given in flight in many situations
 - Burrow calls purr call to attract mates to a burrow, heard exclusively at active colonies

Amatignak Island Aleutian Islands, Alaska

- Used as a fox farm from early 20th century until eradication in 1991
- Leach's Storm-petrel populations were presumably extirpated by introduced foxes
- Currently, no known breeding population of Leach's Storm-petrel
- Four passive acoustic recorders were placed on the cardinal points of the island
- Placed in storm-petrel habitat

Acoustic recording device - Song-meter

- Set to record from June 18 to August 4
- Recording Schedule: 15 minutes on/off from 00:30 to 6:30 HST
- Calls recorded by the Songmeters were identified by recognition software

Data organization

- Response variable: # calls/15 minutes per night
- Explanatory variables:
 - Site
 - Moon phase
 - Cloud Cover
 - Wind Speed
 - Wind Direction
 - Precipitation
 - Wave Height
- Explanatory variables were grouped into minimal categories or model will not have enough df!

- Question 1: Does the number of flight calls during each time period differ between nights?
- Model: In SPSS Generalized Linear Model (poisson with log link)

ype of Model	Response	Predictors	Model	Estimation	Statistics	EM Means	Save	Export		
Specify Mo	del Effects —									1
Eactors and	Covariates:			Model:					_	
Date				Date*Tim	e					
11 Time									1	
		Duild	Term(s)-							
									+	
		Туре:								
		Intera	action -							
			*							
+										
-Duild Nos	sted Term—			Number o	of Effects in M	odel: 1				
Duild Nes	Acu renn									

Count of Flight calls = e^{μ} + poisson error $\mu = \beta_0 + \beta_{date^*time}^* date^*time$

* Generalized Linear Models.

GENLIN Count BY Time Date (ORDER=ASCENDING)

/MODEL Time*Date INTERCEPT=YES

DISTRIBUTION=POISSON LINK=LOG

/CRITERIA METHOD=FISHER(1) SCALE=1 COVB=MODEL MAXITERATIONS=100 MAXSTEPHALVING=5 PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-

012 ANALYS

ISTYPE=3(WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FULL

/MISSING CLASSMISSING=EXCLUDE

/PRINT DESCRIPTIVES MODELINFO FIT SUMMARY

/SAVE MEANPRED(MeanPredicted) RESID(Residual).

Goodness of Fit^b

	Value	df	Value/df
Deviance	11714.514	995	11.773
Scaled Deviance	11714.514	995	
Pearson Chi-Square	11355.754	995	11.413
Scaled Pearson Chi- Square	11355.754	995	
Log Likelihood ^a	-7297.999		
Akaike's Information Criterion (AIC)	15707.998		
Finite Sample Corrected AIC (AICC)	16331.121		
Bayesian Information Criterion (BIC)	18680.738		
Consistent AIC (CAIC)	19236.738		

Fit/df = 11,

hence overdispersion

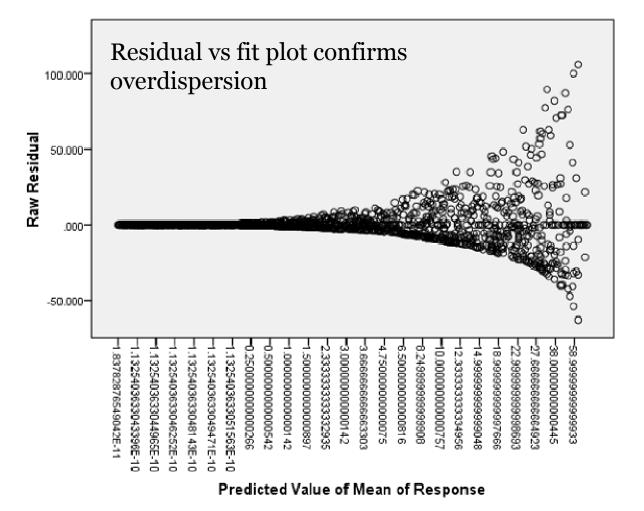
Dependent Variable: Count Model: (Intercept), Time * Date

a. The full log likelihood function is displayed and used in computing information criteria.

b. Information criteria are in small-is-better form.

Omnibus Test^a

Likelihood Ratio Chi- Square	df	Sia.
24466.981	555	.000


Dependent Variable: Count Model: (Intercept), Time * Date

a. Compares the fitted model against the intercept-only model.

Tests of Model Effects

	Type III				
Source	Wald Chi- Square	df	Siq.		
(Intercept)	6000.060	1	.000		
Time * Date	10430.637	385	.000		

Dependent Variable: Count Model: (Intercept), Time * Date

- Question 1: Does the number of flight calls during each time period differ between nights?
- Model: In SPSS Generalized Linear Model (negative binomial with log link)
- Count of Flight calls = e^{μ} + negative binomial error
- $\mu = \beta o + \beta_{(date^*time)}^* (date^*time)$

Generalized Linear Mod	els							
ype of Model Response	Predictors	Model	Estimation	Statistics	EM Means	Save	Export	
hoose one of the model types	listed below o	or specify a	a custom com	pination of dis	tribution and lin	k function	1.	
Scale Response			— "	rdinal Respor	nse			
◯ <u>L</u> inear			0	Ordinal logist	ic			
O <u>G</u> amma with log li⊓k			0	Or <u>d</u> inal probi	t			
M Counts			— о в	inary Respon	se or Events/T	rials Data		
◯ Poi <u>s</u> son loglinear			0	Binary logisti	c			
Negative binomial with log	a link		0	Bin <u>a</u> ry probit				
Mixture			_ 0	Interval cens	ored survival			
○ <u>I</u> weedie with log link								
O Tweedie with identity link								
Custom								
○ <u>C</u> ustom								
Distrib <u>ut</u> ion: Normal	v	Linł	(function:	Identity			-	
-Parameter	_							
Specify value			Pow <u>e</u> r:					
Value: 1								
O Esti <u>m</u> ate value	:							
	ок	Paste	Reset	t Canc	el Help			

* Generalized Linear Models.

GENLIN Count BY Time Date (ORDER=ASCENDING)

/MODEL Time*Date INTERCEPT=YES

DISTRIBUTION=NEGBIN(1) LINK=LOG

/CRITERIA METHOD=FISHER(1) SCALE=1 COVB=MODEL MAXITERATIONS=100 MAXSTEPHALVING=5 PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYS

ISTYPE=3 (WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FULL

/MISSING CLASSMISSING=EXCLUDE

/PRINT DESCRIPTIVES MODELINFO FIT SUMMARY

/SAVE PEARSONRESID (PearsonResidual).

Goodness of Fit^b

	Value	df	Value/df]
Deviance	1483.371	995	1.491	
Scaled Deviance	1483.371	995		
Pearson Chi-Square	949.557	995	.954	
Scaled Pearson Chi- Square	949.557	995		
Log Likelihood ^a	-3006.213			
Akaike's Information Criterion (AIC)	7124.426			
Finite Sample Corrected AIC (AICC)	7747.549			
Bayesian Information Criterion (BIC)	10097.166			
Consistent AIC (CAIC)	10653.166			

Fit/df = 1,

hence no overdispersion

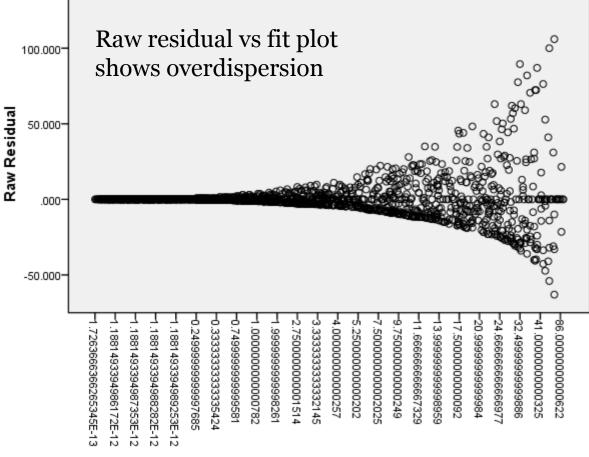
Dependent Variable: Count Model: (Intercept), Time * Date

a. The full log likelihood function is displayed and used in computing information criteria.

b. Information criteria are in small-is-better form.

Omnibus Test^a

Likelihood Ratio Chi- Square	df	Sig.
3815.888	555	.000

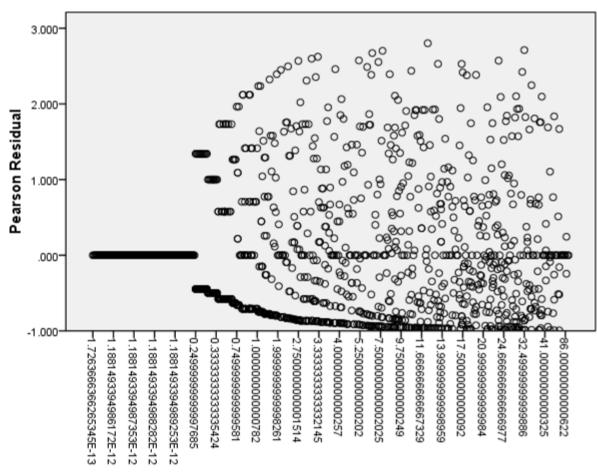

Dependent Variable: Count Model: (Intercept), Time * Date

a. Compares the fitted model against the intercept-only model.

Tests of Model Effects

	Type III				
Source	Wald Chi- Square	df	Siq.		
(Intercept)	1730.913	1	.000		
Time * Date	1316.321	385	.000		

Dependent Variable: Count Model: (Intercept), Time * Date


Predicted Value of Mean of Response

For Generalized linear models, we use scaled residuals.

Such as Pearson residuals (scaled to std)

Scaled residuals do not show strong heterogeneity.

This is consistent with Pearson chisquare/df = 1 (see above)

Predicted Value of Mean of Response

- Question 2: Does the number of flight calls per 15 minutes depend on the following explanatory variables: wind speed, wave height, moon phase, cloud cover, and precipitation?
- Model: In SPSS Generalized Linear Model (poisson with log link)

Type of Model	Response	Predictors	Model	Estimation	Statistics	EM Means	Save	Export	
⊻ariables:				10	Eactors:				
Dime and Date provide the provided of t	č				a CloudCover a Ppt MoonPhase a Site			-	*
					Options Covariates: WinDir Waveheigh				*
				Offset	Off <u>s</u> et Varia	able:			
				O Fi <u>x</u> ed va Val <u>u</u> e:					

- Flight calls per 15 mins = e^{μ} + poisson error
- $\mu = \beta o + \beta_{WiS} * WiS + \beta_{WaH} * WaH + \beta_{MP} * MP + \beta_{CC} * CC + \beta_{Ppt} * Ppt$

* Generalized Linear Models.

GENLIN Count BY Site MoonPhase Ppt CloudCover (ORDER=ASCENDING) WITH WindSpeed Waveheight

/MODEL Site MoonPhase Ppt CloudCover WindSpeed Waveheight INTERCEPT=YES

DISTRIBUTION=POISSON LINK=LOG

/CRITERIA METHOD=FISHER(1) SCALE=1 COVB=MODEL MAXITERATIONS=100 MAXSTEPHALVING=5 PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYS

ISTYPE=3 (WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FULL

/MISSING CLASSMISSING=EXCLUDE

Goodness of Fit^b

	Value	df	Value/df
Deviance	25679.701	1534	16.740
Scaled Deviance	25679.701	1534	
Pearson Chi-Square	38918.196	1534	25.370
Scaled Pearson Chi- Square	38918.196	1534	
Log Likelihood ^a	-14280.593		
Akaike's Information Criterion (AIC)	28593.185		
Finite Sample Corrected AIC (AICC)	28593.540		
Bayesian Information Criterion (BIC)	28678.721		
Consistent AIC (CAIC)	28694.721		

Fit/df = 25,

hence overdispersion

Dependent Variable: Count

Model: (Intercept), Site, MoonPhase, Ppt, CloudCover, WindSpeed, Waveheight

a. The full log likelihood function is displayed and used in computing information criteria.

b. Information criteria are in small-is-better form.

Omnibus Test^a

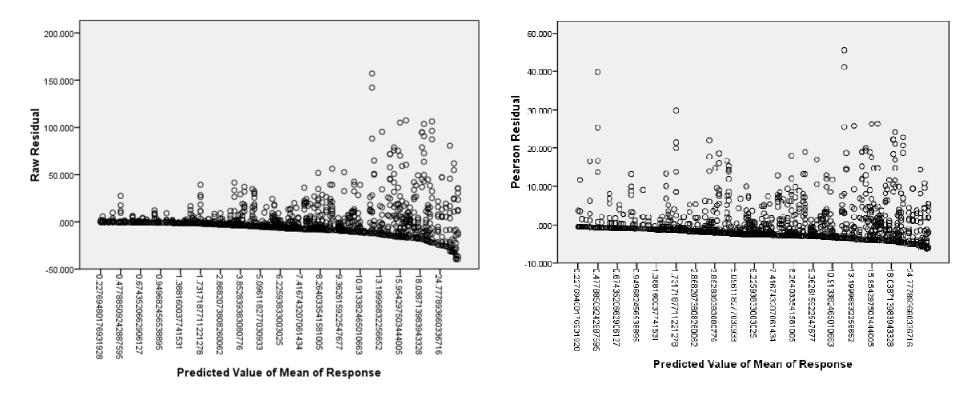
Likelihood Ratio Chi- Square	qt	Sia
	ui (5	oig.
10485.291	15	.000

Dependent Variable: Count

Model: (Intercept), Site, MoonPhase, Ppt, CloudCover, WindSpeed, Waveheight

a. Compares the fitted model against the intercept-only model.

Tests of Model Effects


	Type III				
Source	Wald Chi- Square	df	Siq.		
(Intercept)	5147.977	1	.000		
Site	3614.896	3	.000		
MoonPhase	1021.415	3	.000		
Ppt	469.622	3	.000		
CloudCover	369.470	4	.000		
WindSpeed	959.379	1	.000		
Waveheight	112.265	1	.000		

Dependent Variable: Count

Model: (Intercept), Site, MoonPhase, Ppt, CloudCover, WindSpeed, Waveheight

Raw residuals show strong heterogeneity

Pearson residuals do not show such strong heterogeneity

- Question 2: Does the number of flight calls per 15 minutes depend on the following explanatory variables: wind speed, wave height, moon phase, cloud cover, and precipitation?
- Model: In SPSS Generalized Linear Model (negative binomial with log link)

Type of Model Response Predictors	Model	Estimation	Statistics	EM Means	Save	Export	
⊻ariables:		Ŀ	<u>ul</u> <u>F</u> actors:				
💑 Time		•	💑 CloudCover				
🚑 Date			a Ppt				
I WindSpeed			💦 MoonPhase				•
			🔓 Site				÷
			Outions	ן			
			Options	J			
		1.	🗸 <u>C</u> ovariates:				
			WinDir				
		<	Waveheight				
							+
		\					
							€
		_Offset					
		Image: State S	he				
			Off <u>s</u> et Varia	ble:			
		O Fixed v	aula				
		Val <u>u</u> e:					

• Flight calls per 15 mins = e^{μ} + negative binomial error $\mu = \beta o + \beta_{WiS} * WiS + \beta_{WaH} * WaH + \beta_{MP} * MP + \beta_{CC} * CC + \beta_{Ppt} * Ppt$

* Generalized Linear Models.

GENLIN Count BY CloudCover Ppt MoonPhase Site (ORDER=ASCENDING) WITH Waveheight WindSpeed

/MODEL CloudCover Ppt MoonPhase Site Waveheight WindSpeed INTERCEPT=YES

DISTRIBUTION=NEGBIN(1) LINK=LOG

/CRITERIA METHOD=FISHER(1) SCALE=1 COVB=MODEL MAXITERATIONS=100 MAXSTEPHALVING=5 PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYS

ISTYPE=3 (WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FULL

/MISSING CLASSMISSING=EXCLUDE

/PRINT DESCRIPTIVES MODELINFO FIT SUMMARY

/SAVE MEANPRED (MeanPredicted) RESID (Residual) PEARSONRESID (PearsonResidual).

	Value	df	Value/df	
Deviance	3811.847	1534	2.485	
Scaled Deviance	3811.847	1534		
Pearson Chi-Square	5428.509	1534	3.539	
Scaled Pearson Chi- Square	5428.509	1534		
Log Likelihood ^a	-4225.235			
Akaike's Information Criterion (AIC)	8482.471			
Finite Sample Corrected AIC (AICC)	8482.826			
Bayesian Information Criterion (BIC)	8568.007			
Consistent AIC (CAIC)	8584.007			

Goodness of Fit^b

Overdispersion corrected: Deviance/df reduce to ratio of 3.5

Dependent Variable: Count

Model: (Intercept), CloudCover, Ppt, MoonPhase, Site, Waveheight, WindSpeed

a. The full log likelihood function is displayed and used in computing information criteria.

b. Information criteria are in small-is-better form.

Omnibus Test^a

ikelihood			
Ratin Chi-			
Square	df	Siq.	

1373.394	15	.000

Dependent Variable: Count

Model: (Intercept), CloudCover, Ppt, MoonPhase, Site, Waveheight, WindSpeed

a. Compares the fitted model against the intercept-only model.

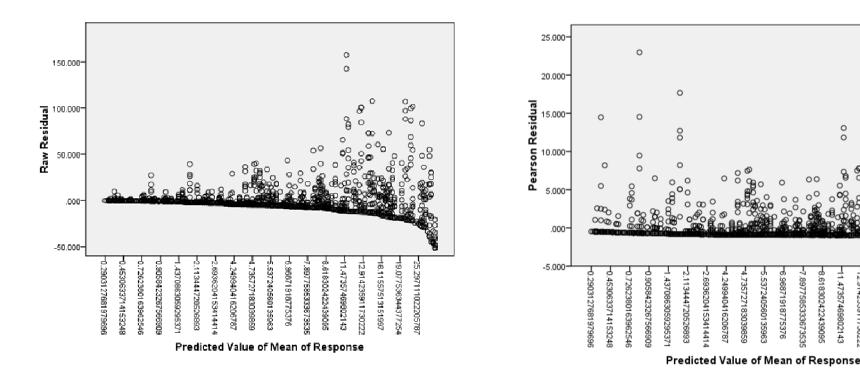
Tests of Model Effects

	Type III							
Source	Wald Chi- Square	df	Siq.					
(Intercept)	487.883	1	.000					
CloudCover	25.025	4	.000					
Ppt	77.680	3	.000					
MoonPhase	91.175	3	.000					
Site	810.399	3	.000					
Waveheight	21.426	1	.000					
WindSpeed	92.833	1	.000					

Dependent Variable: Count

Model: (Intercept), CloudCover, Ppt, MoonPhase, Site, Waveheight, WindSpeed

Raw residuals show strong heterogeneity


Pearson residuals do not show such strong heterogeneity

00

19.077536344377254 25.29711102220578

16.11557513151997

12.914235911730222

- Traditional methods (hypothesis testing) estimate model parameters and their precision
- This assumes that the model structure is known and correct (i.e. true model) and that only parameters in that model are to be estimated

Information Theoretic Approach

With data model structure is not known. So....

Traditional methods (hypothesis testing) estimate model parameters and their precision
This assumes that the model structure is known and correct (i.e. true model) and that only parameters in that model are to be estimated

Information Theoretic Approach

- Burnham and Anderson (1998)
- No simple "true model", modeling is an approximation of explainable information in the empirical data
- Methods allow data-based selection of a "best" model and ranking of remaining models in a predefined set
- Traditional statistical inference can then be based on this selected best model
- Recommended for analysis of data from observational studies
- AIC Selection of most parsimonious model as a basis for statistical inference

AIC - Aikaike's Information Criterion (1973)

- Represents an estimate of the relative distance between the FITTED model and the unknown TRUE mechanism that actually generated the observed data
- AIC = $-2 \log(L(\Theta|y)) + 2K$
- log(L(Θly) = numerical value of the loglikelihood at its maximum point (max likelihood estimates)
- Y = x,g or $\log(L(\Theta|x,g))$
- Likelihood = probability model with parameters Θ
- X = empirical data, g = approximate model
- "the likelihood of a numerical value of the unknown parameter Θ given the data x and a particular model g"
- K = number of estimable parameters in the model
- Compute AIC for each candidate model and select the model with the smallest AIC

AIC - Aikaike's Information Criterion (1973)

- Based on a set of a priori (well founded) candidate models
- "global model" includes ALL potentially relevant effects and causal mechanisms based on the biology of the situation
- Model with best AIC is "closest" to the known reality that generated the data
- If ALL models are poor, AIC will select the one estimated to be the best, but even that relatively best model might be poor in an absolute sense
- It is not the absolute size of the AIC value, it is the relative values (Δ AIC) that are important
- The larger the ΔAIC , the less plausible that the model is best given the data

ΔΑΙC	Level of model support
0-2	Substantial
4-7	Considerably less
>10	None

AICc - penalty for small sample size

- AIC may perform poorly if there are too many parameters (K) in relation to size of the sample (n)
- AICc introduces a bias correction term
- AIC = $-2 \log(L(\Theta|y) + 2K(n/n-k-1))$
- Unless the sample size is large with respect to number of estimated parameters, use of AICc is recommended
- If n/K is small (<40) AICc must be used

QAIC - modification for overdispersed data

- Overdispersion: violations of assumptions such as residual independence and homogeneity
- Sampling variance exceeds the theoretical (model-based) variance

	Good	dness of Fi	t ^b	
	Value	df	Value/df	
Deviance	3811.847	1534	2.485	
Scaled Deviance	3811.847	1534		
Pearson Chi-Square	5428.509	1534	3.539	 Informal rule
Scaled Pearson Chi- Square	5428.509	1534		Overdispers
Log Likelihood ^a	-4225.235			ratio exceed
Akaike's Information Criterion (AIC)	8482.471			
Finite Sample Corrected AIC (AICC)	8482.826			
Bayesian Information Criterion (BIC)	8568.007			
Consistent AIC (CAIC)	8584.007			

Dependent Variable: Count

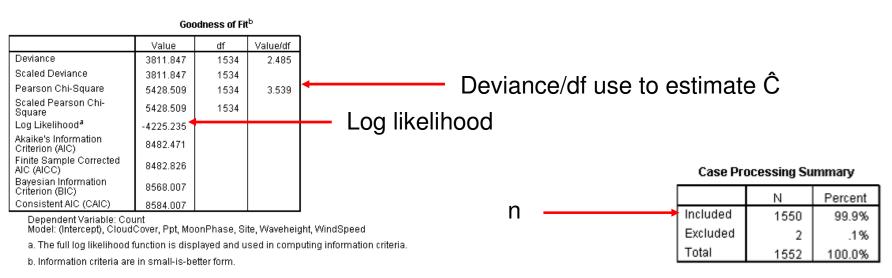
Model: (Intercept), CloudCover, Ppt, MoonPhase, Site, Waveheight, WindSpeed

a. The full log likelihood function is displayed and used in computing information criteria.

b. Information criteria are in small-is-better form.

QAICc - modification for overdispersed data

- Quasi-likelihood allows the use of AICc with overdispersed data
- $QAICc = -2 \log(L(\Theta | \hat{C}) + 2K (n/n-k-1))$
- Use variance inflation factor estimated from the global model
- $\hat{C} = \chi^2/df$
- The number of parameters (K) must include one for the estimation of \hat{C}
- \hat{C} should be > 1, but should not exceed about 4
- Larger values (6-10) are caused by a model structure that is inadequate
- Quasi-likelihood methods of variance inflation are only appropriate after a reasonable structural adequacy of the model is achieved
- Ĉ should be calculated only for the global model, do not make separate estimates for each candidate model


Data organization

- Response variable: # calls/15 minutes per night
- Explanatory variables:
 - Site
 - Moon phase
 - Cloud Cover
 - Wind Speed
 - Wind Direction
 - Precipitation
 - Wave Height
- Explanatory variables must be organized into minimal categories or model will not have enough df!

•	Ca	andidate models:	
		Global Model: Flight calls = $S + S$	- WiS + WaH + MP + CC + Ppt
		Flight calls = S + MP + CC	Possible models from global model
		Flight calls = $MP + CC$	will be large. Candidate models are
		Flight calls = MP	based on biologically plausible
		Flight calls = $S + MP$	interactive effects.
		Flight calls = $S + WaH + Ppt$	
		Flight calls = WaH + Ppt	
		Flight calls = $MP + CC + Ppt -$	+ WaH
		Flight calls = $S + MP + CC + H$	Ppt + WaH
		Flight calls = $WiS + WaH + P_2$	pt
		Flight calls = $S + WiS + WaH$	+ Ppt
		Flight calls = S	
		Flight calls = $S + WaH + MP +$	- CC
		Flight calls = $WaH + MP + CC$	
		Flight calls = $S + WiS + WaH -$	+ MP + CC

- Flight calls = S + WiS + WaH + MP + CC + Ppt
- Run GzLM with negative binomial error (to minimize overdispersion)
- Obtain numbers for calculating AIC

Omnibus Test^a

Likelihood Ratio Chi- Square	df	Sig.
1373.394	15	.000

K (estimable parameters)

Dependent Variable: Count

Model: (Intercept), CloudCover, Ppt, MoonPhase, Site, Waveheight, WindSpeed

a. Compares the fitted model against the intercept-only model.

Here are the basic calculations.

- AIC = $-2 \log(L(\Theta|y) + 2K)$
- AIC = -2(-4225.235) + 2(15)
- AIC = 8480.470
- QAICc = $-2 \log(L(\Theta | \hat{C}) + 2K (n/n-k-1))$
- QAICc = (-2(-4225.235))/3.539 + (2*15)(1550/(1550-15-1))
- QAICc = 2469.898
- $\Delta QAICc = QAICc min (QAICc)$

To identify the most parsimonious model, I used a spreadsheet to do the calculations (next slide).

	Logitkenno					2QAIC	ex	
Model (S)+(MP)+(CC)+(Ppt)+(WiS)+(WaH	od	Ķ	AIC 8480.47	AICc	QALCC12	c	Р,	wi.9
)	-4225.235	5	8499.62	8480.783	2407.06	0.000	00	0.0
(S)+(WiS)+(MP)+(CC)+(Ppt)	-4235.814	41	8571.27	8499.902	2427.30	4.940	08	0.0
(S)+ (MP)+(CC)+(WaH)+(Ppt)	-4271.637	4	8648.14	8571.548	2446.24	25.185	00	0.8
(S)+ (WiS)+(WaH)+(Ppt)	-4316.072	8	8681.42	8648.237	2457.02	44.118	00	0.8
(S)+(WaH)+(MP)+(CC)	-4329.711	1	8750.26	8681.594	2476.01	54.903	00	0.0
(S) + (MP) + (CC)	-4365.131	Ô	8756.76	8750.405	2476.47	73.892	00	0.8
(S)+(WaH)+(Ppt)	-4371.380	7	8766.99	8756.833	2478.91	74.354	00	0.8
(S)+(MP)	-4377.497	6	4 8930.08	8767.048	2523.65	76.793 121.53	00	0.0
(S)	-4462.043	3	9351.12	8930.102	2645.33	243.21	00	0.8
(S)+(WiS)+(WaH)+(MP)+(CC)	-4666.563	9	9411.96	9351.243	2663.45	261.33		0.8
(MP)+(CC)+(WaH)+(Ppt)	-4694.983	1	9494.55	9412.138	2685.40	283.28	00	0.0
(WaH)+(MP)+(CC)	-4739.278	8	9512.84	9494.649	2689.21	287.05	00	0.8
(WiS)+(WaH)+(Ppt)	-4751.422	5	9596.12	9512.883	2713.65	311.53	00	0.8
(MP)+(CC)	-4791.064	7	9640.90	9596.201	2724.95	322.83	00	0.8
(WaH)+(Ppt)	-4816.452	4	9647.98	9640.930	2726.50	324.38	00	0.8
(MP)	-4820.992	3	4	9648.000	9	7	00	0

From the calculations, the globalmodel (6 explanatory variables) could not be reduced to a simpler model (next slide).

Model	Loglikelihood	К	AIC	AICc	QAICc	Δ QAIC c	ехр	wi
(S)+(MP)+(CC)+(Ppt)+(WiS)+(WaH)	-4225.235	15	8480.470	8480.783	2402.123	0.000	1.00	0.92
(S)+(WiS)+(MP)+(CC)+(Ppt)	-4235.814	14	8499.628	8499.902	2407.062	4.940	0.08	0.08
(S)+ (MP)+(CC)+(WaH)+(Ppt)	-4271.637	14	8571.274	8571.548	2427.307	25.185	0.00	0.00
(S)+ (WiS)+(WaH)+(Ppt)	-4316.072	8	8648.144	8648.237	2446.241	44.118	0.00	0.00
(S)+(WaH)+(MP)+(CC)	-4329.711	11	8681.422	8681.594	2457.026	54.903	0.00	0.00
(S) + (MP) + (CC)	-4365.131	10	8750.262	8750.405	2476.014	73.892	0.00	0.00
(S)+(WaH)+(Ppt)	-4371.380	7	8756.760	8756.833	2476.476	74.354	0.00	0.00
(S)+(MP)	-4377.497	6	8766.994	8767.048	2478.915	76.793	0.00	0.00
(S)	-4462.043	3	8930.086	8930.102	2523.656	121.533	0.00	0.00
(S)+(WiS)+(WaH)+(MP)+(CC)	-4666.563	9	9351.126	9351.243	2645.337	243.215	0.00	0.00
(MP)+(CC)+(WaH)+(Ppt)	-4694.983	11	9411.966	9412.138	2663.453	261.330	0.00	0.00
(WaH)+(MP)+(CC)	-4739.278	8	9494.556	9494.649	2685.408	283.285	0.00	0.00
(WiS)+(WaH)+(Ppt)	-4751.422	5	9512.844	9512.883	2689.216	287.094	0.00	0.00
(MP)+(CC)	-4791.064	7	9596.128	9596.201	2713.653	311.530	0.00	0.00
(WaH)+(Ppt)	-4816.452	4	9640.904	9640.930	2724.954	322.831	0.00	0.00
(MP)	-4820.992	3	9647.984	9648.000	2726.509	324.387	0.00	0.00

c-hat 3.539 **n** 1550

Aikaike Weights Wi = exp(-0.5 Δ QAICc)/sumofall(exp(-0.5 Δ QAICc))

Conclusion: Petrels respond to multiple factors

Next: Given response to multiple factors, what about interactive effects of these factors?

Here is new global model, now with interactive factors that are plausible biologically.

New Global Model

Count = e^{μ} + negative binomial error

 $\mu = (S)+(MP)+(CC)+(Ppt)+(WiS)+(WaH)+(WiDir)+ \\ (MP*CC)+(WiS*WiDir)+(Ppt*WaH)+(WiDir*WiS*WaH)$

To identify the most parsimonious model, I again used a spreadsheet to do the calculations.

Model (S)+(MP)+(CC)+(Ppt)+(WiS)+(WaH	od	Ķ	AIC AZ	AICc	QAICC	c and and	P,	wi
)	-4225.235	5	8499.69	8480.783	2407.08	0.000	φ.	0.6
(S)+(WiS)+(MP)+(CC)+(Ppt)	-4235.814	4	8571.27	8499.902	2427.30	4.940	08	0.8
(S)+ (MP)+(CC)+(WaH)+(Ppt)	-4271.637	4	8648.14	8571.548	2446 24	25.185	99	0.8
(S)+ (WiS)+(WaH)+(Ppt)	-4316.072	8	8681.43	8648.237	2457.02	44.118	00	0.8
(S)+(WaH)+(MP)+(CC)	-4329.711	1	8750.26	8681.594	2476.01	54.903	00	0.8
(S) + (MP) + (CC)	-4365.131	ō	8756.76	8750.405	2476.4	73.892	00	0.8
(S)+(WaH)+(Ppt)	-4371.380	7	8766.98	8756.833	2478.9	74.354	99	0.8
(S)+(MP)	-4377.497	6	8930.08	8767.048	2523.65	76,793	00	. 8
(S)	-4462.043	3	9351 19	8930.102	2645.39	243.23	90	0.8
(S)+(WiS)+(WaH)+(MP)+(CC)	-4666.563	9	9411.98	9351.243	2663.45	261.33	90	0.8
(MP)+(CC)+(WaH)+(Ppt)	-4694.983	1	9494.5	9412.138	2685.40	282.28	00	0.8
(WaH)+(MP)+(CC)	-4739.278	8	9512.89	9494.649	2689.28	287.0	99	0.8
(WiS)+(WaH)+(Ppt)	-4751.422	5	9596 13	9512.883	2713.6	311.53	00	0.8
(MP)+(CC)	-4791.064	7	9640.98	9596.201	2724.95	322.83	00	0.8
(WaH)+(Ppt)	-4816.452	4	9647.98	9640.930	2726.58	324 34	00	. 8
(MP)	-4820.992	3	4	9648.000	9	7	00	0

From the calculations, the global model (6 single factor explanatory variables and 4 interactive effects) could not be reduced to a simpler model (next slide).

Model	LogLikelihood	к	AIC	AICc	QAICc	∆Q AIC c	ехр	wi
(S)+(MP)+(CC)+(Ppt)+(WiS)+(WaH)+(WiDir)+(MP*CC))+(WiS*WiDir)+(Ppt*WaH)+(WiDir*WiS*WaH)	-3791.81	45	7673.6 2	7676 .37	3258.7 1	0.00	1.00 0	0.867
(S)+(MP)+(CC)+(WiS)+(WaH)+(WiDir)+(MP*CC)+(Wi S*WiDir)+(Ppt*WaH)+(WiDir*WiS*WaH)	-3800.187	42	7684.3 7	7686 .77	3262.4 6	3.76	0.15 3	0.133
(S)+(MP)+(CC)+(WiS)+(WaH)+(WiDir)+(MP*CC)+(Wi S*WiDir)+(WiDir*WiS*WaH)	-3951.382	39	7980.7 6	7982 .83	3387.2 2	128. 52	0.00 0	0.000
(S)+(MP)+(CC)+(Ppt)+(WiS)+(WaH)	-4225.235	15	8480.4 7	8480 .78	3593.5 0	334. 79	0.00 0	0.000
(S)+(WiS)+(MP)+(CC)+(Ppt)	-4235.814	14	8499.6 3	8499 .90	3601.4 2	342. 72	0.00 0	0.000
(S)+ (MP)+(CC)+(WaH)+(Ppt)	-4271.637	14	8571.2 7	8571 .55	3631.7 7	373. 06	0.00 0	0.000
(MP)+(CC)+(Ppt)+(WiS)+(WaH)+(WiDir)+(MP*CC)+(WiS*WiDir)+(Ppt*WaH)+(WiDir*WiS*WaH)	-4239.237	42	8562.4 7	8564 .87	3634.3 8	375. 67	0.00 0	0.000

New Global Model (S)+(MP)+(CC)+(Ppt)+(WiS)+(WaH)+(WiDir)+(MP*CC)+(WiS*WiDir)+(Ppt*WaH)+ (WiDir*WiS*WaH)

AIC

WAS IT REALLY WORTH IT?!

AIC - Pros

- Makes you think A PRIORI about the biology of your data (rather than putting in a whole bunch of variables blindly to test for significance)
- Works well in situations where many variables could be affecting your data (MP+CC+WS+WD...) but many of these variables may not be appropriate in a model explaining the data observed
 - Example: Atmospheric pressure and number of shooting stars are also "significantly affecting number of storm-petrel flight calls" when run in a GzLM (this larger number of parameters results in a better fit)
 - However, △AIC of a model including these variables is very large because it has been penalized for the increasing number of parameters
- AIC will identify a model that excludes these superfluous variables

AIC - Cons

- The model with the largest Aikaike weight is only the best model of the candidates selected A PRIORI....
- This may not be a good model in any absolute sense (the model could be terrible, but compared to the others you have chosen it looks pretty good)
- This all depends on your selection of a good global model (my global model on slide 34 looked like the most parsimonious, but when the global model was revised on slide 35 this model has no support)
- Not good for data with lots of higher level complex interactions among variables