BIOLOGY 4605	77220 Quantitative	e Methods in Biology	FALL 2009 Version: 3 Sept	
Lectures: Labs:	Mon Wed Fri 12 PM Tue 3-5 or 7-9 PM	SN 2036 SN3116 or CP 2003		
Instructor: Demonstrators:	David Schneider a84dcs@Mun.Ca TBA	Office (4 Clark Pl) Tel 737-8841 after class or by appointment		

Course Summary. The goal of this course is for you to learn how to apply quantitative methods to the solution of problems in biology. You won't learn all the answers to specific questions but you should develop the skill to find the solution yourself! Skill and confidence come with practice, so assignments and quizzes will be short and frequent rather than lengthy and infrequent. Lecture material will emphasize principles of good quantitative analysis, illustrated by complete examples. Laboratories will cover the computational aspects of problem solving.

	Evaluation	<u>4605</u>	7220
Goals	Problem sets	15 %	10 %
1. Principles of good analysis.	Lab assignments	15 %	10 %
2. Skill in application.	Ouizzes	20 %	15 %
3. Capacity for self-instruction.	First exam	15 %	10 %
4. Confer with statistician.	Second exam	15 %	10 %
5. Develop critical capacity.	Final exam	20 %	15 %
6. Evaluate quantitative presentations.	Written report		30 %

Exams and quizzes are open book, emphasizing ability to use tools, rather than to memorize formulas. Weekly quizzes are based on all material covered since the previous quiz. Material from both labs and lectures are fair game.

Graduate students registered for Biology 7220 will be required to prepare a written report on the analysis of a set of data of interest to the student. The topic will be decided during a conference early during the semester, then discussed during tutorial sessions. This report will constitute 30% of the final mark

Course material is on the <u>Web</u> at	WWW.C	osc.mun.ca/schneider/b4605
or	WWW.	mun.ca/biology/schneider/b4605
Required material from v	veb:	Lecture Notes in Quantitative Biology
		Laboratories in Quantitative Biology
Additional material from	web:	Review Questions in Quantitative Biology

A hand-held calculator is required for quizzes, all exams, and Lab 2. The calculator does not require statistical functions.

Policy on late work (labs and problem sets). Work received late stresses the grad students who do the marking because they have to return to a previous marking scheme. Work handed in late takes a day to reach grad students at Logy Bay. The penalty for late work will be 5% off per day late.

Labs 1 is a group project that requires attendance for successful completion. Labs 2, 3, and 9 are group projects for which attendance is recommended. **About labs**. Group participation is encouraged in all labs. Lab groups are also encouraged to work together in preparing lab report and assignments. However, each person is responsible for turning in their own written report.

Personal Computer lab.	Location	Time	Terminals
	CP2003	Tue 3-5, 7-10 PM	40
	CP2004	Open access	70
	CS1009	If not locked up	32

You can use CP2004 anytime. You can use CP2003 and CS1009 if they are not in use. Minitab, SPSS, and Excel are available in CP2003, CP2004, and CS1009.

About statistical packages. Labs 3, 5, and 6 can be completed in a spreadsheet, using functions and data analysis tools. The GLM labs (5, 6, 7, 8, 9) can be completed in any statistical package with a general linear model routine. Lab 10 can be completed in any package with a logistic regression routine, or with a generalized linear model routine.

Minitab. Available in CP2003, CP2004, and CS1009.

A student version of Minitab can be downloaded from the web for free for a limited time.

SPSS. Pulldown menu version in CP2003, CP2004, and CS1009.

SAS. In October 2004 MUN C&C ceased licensing a UNIX version of SAS.

MUN has arranged windows versions to be licensed to individual computers.

- SPlus. A student copy of SPlus can be downloaded from the web, for a one year period.
- R Freeware version of SPlus.

Please do not print the sometimes verbose files produced by statistical packages. Instead, cut and paste the appropriate sections of output into your lab report or assignment. Note that you will have to use a <u>non-scalable</u> font (such as courier) to print or display numerical output (ANOVA tables, *etc.*) without distortion.

Assignments

A1. Units

In the library, find a journal reporting research results in biology. Open the journal to an article, and list the first defined physical or biological quantity you encounter (if you must move to the next article, then so be it). State the Journal name, volume, and page number. For this quantity, provide complete details for each of the 5 components of the quantity: name, symbol, typical value, units, and procedural statement.

For each of the **next 3** quantities in the journal, complete the following checklist:

Journal name, volume, and page nu	ımber		
name of quantity in words.		Present ?	
symbol		Present in article ?	
number of values	N =	or cannot be determined	
procedural statement		Present ?	
Reproducible by another inv	vestigator? _		
type of measurement scale (nomina	ıl, ordinal, int	erval, ratio)	
if ratio scale: units =		(4 due in a	all)

Assignments

<u>A2. Data Equations.</u> In the published literature find a graph where a regression equation has been displayed. Write the equation, write the name of each symbol, and give its units. Immediately below the equation display a data equation for each of 3 different values of the explanatory (X) variable. If you don't find an example in the first journal you choose, try a journal in physiology, biochemistry, or medecine.

<u>A3. Hypothesis testing.</u> Find, in the published literature, two mean values with associated standard deviations and sample size.

1. Report the 6 values with full citation of source of the published data.

2. Compute the t-statistic using the appropriate formula from Ch7.3. State which formula you used and why. Use the generic recipe for decision making with statistics (Ch7.3, Table 7.1a) to declare a decision about the two means.

3. Use the generic recipe for hypothesis testing to declare a decision about whether the two variances differ significantly (see Ch7.3 for example)..

<u>A4. Confidence intervals</u>. For the same data used in A3, compute the confidence limits for each mean. Report all 6 values (means, sd, n), the source of the numbers, and both confidence limits. Use the generic recipe for confidence limits (Ch7.5, Table 7.5a).

Hint: Use Minitab MTB>Invcdf command to obtain critical t-values.

<u>A5. Correlation</u>. Find, in the published literature, a data set appropriate for correlation. Enter the data into a spreadsheet or statistical package. Compute the mean and variance for each variable. Compute the correlation coefficient. State the source of the data (with full citation), why correlation is appropriate, then display the data (label each column), each mean and variance, and the correlation coefficient. Use the generic recipe for decision making with statistics (Ch 7.2, Table 7.1a) to declare a decision about the correlation coefficient, relative to the null model (show all steps).

Day	Date	On Web	Topic	Location		Marked
Wad	00 600		Intro to Course	of Lab	(A = Assignment)	by
vveu Eri	11 Sop	Ch2 1 2 2	Ouantition		Qui z 1	
Mon	14 Sep	Ch2.1,2.2				
	14-Sep	U12.5,2.0	Units Dim Informatical Cordo	CN0116	ATQuantities	
Tues	10-Sep	Labi		5113110	0:-0	
vved	16-Sep		Rescaling		Quiz2	
Fri	18-Sep	Cn4	Equations		Labi	
IVION	21-Sep	Cn5	Data Eq	010440	Quiz3	
Tues	22-Sep	Lab2a	Equations	SN3116		
Wed	23-Sep	Ch6.1	Freq Dist I		A2 Data Equations	
Fri	25-Sep	Ch6.2,6.3	Freq Dist II		Lab2	
Mon	28-Sep	Ch7.1,7.2	Hypoth Test I		Quiz4	
Tues	29-Sep	Lab3	Freq Dist	CP2003		
Wed	30-Sep	Ch7.3,7.4	Hypoth Test II		A3 Hypoth Testing	
Fri	02-Oct	Ch7.5	Conf Limits		Lab3	
Mon	05-Oct		Exam I			All
Tue	06-Oct	Lab4	Computing p-values	CP2003		
Wed	07-Oct	Ch8, 9.1	GLM Intro	SN2036	A4 Conf.Limits	
Fri	09-Oct	Ch9.2	Regression		Lab4	
Mon	12-Oct	Holiday				
Tue	13-Oct	Holiday				
Wed	14-Oct	Ch9.5	Power Laws		Quiz5	
Fri	16-Oct	Ch10.1.10.2	t-test			
Mon	19-Oct	Ch10.3, 10.4	1-way ANOVA		Quiz6	
Tue	20-Oct	Lab5	GLM - regression	CP2003	QUILO	
Wed	21-Oct	Ch11	Bev: 1 Expl Var	0. 2000	Lab5a	
Fri	23-Oct	Ch12	Mult Rear		Lab5b	
Mon	26-0ct	Ch14 1 (14 22)	ANCOVA		Ομίζ7	
Тир	27-0ct			CP2003	QUIZI	
Wed	28-Oct	Ch13 1 13 2	$2 - way \Delta NOVA$	01 2000	l ah6a	
Fri	20 001 30-Oct	Ch13.3	Paired t-test		Labba	
Mon		Ch12.4	Pand Blook			
Tuo	02-110V	Lab7	2 factor ANOVA	CB2002	Quizo	
Wod	04 Nov	Ch12 G	2 Ideitor ANOVA	0F2003		
vveu Eri	04-INOV	Ch15	CLM Paviow		Loh7	
Man		GIII5			Laur	A 11
	10 Nev	 Lah0				All
Tue		Laba	ANGOVA	GP2003		
vvea	11-INOV	Holiday	Duddau aat	010440		
I nurs	12-INOV	Labya	Problem set-up	5113116	Tues Schedule	
Fri	13-Nov	Ch20.1	Correlation		Labe	
Mon	16-Nov	Ch19.1	EDAT		A5 correlation	
lues	17-Nov	Lab9b	Problem execution	CP2003		
Wed	18-Nov	Ch20.4	EDA II		Quiz9	
Fri	20-Nov	Ch16.1,16.2	Goodness of Fit		Lab9ab	
Mon	23-Nov	Ch18.1	Logistic Regression		Quiz10	
Tue	24-Nov	Lab10	Logistic Regression			
Wed	25-Nov	Ch18.2	Prospective Analysis			
Fri	27-Nov	Ch18.2	Retropsective Analys	sis	Lab10	
Mon	30-Nov	Ch17.4	Poisson counts		Quiz11	
Tue	01-Dec	-	-			
Wed	02-Dec	Ch22.1	Numerical Methods			
Fri	04-Dec	Ch22.2,22.3	Last Lec, Review			

Quantitative Background	Fall 2009
Biology 4605/7220	No names! Please!
Which course are you taking? Circle one. B4605 B7220	
Grad students: list department or program	
Honors students: list program and topic	
Do you own a pocket calculator ?	
If so, does it have statistical functions?	
How long have you used a computer ?	
How do you prepare written reports ? by hand UNIX system personal computer	_
Have you ever used Minitab ? SPSS? SAS?	
List any other statistical packages you have used.	
Have you ever used one of the functions in a spreadsheet ?	
How long has it been since you used logarithms ?	
The variable Y has three values, $Y = [9 \ 6 \ 3]$ What is the mean value of Y?	
List courses you have taken in mathematics and statisticsand over	er ⊑∕
List courses where you have collected data	
List courses where you have analyzed data	

On the reverse side, list non-classroom experience with quantitative techniques, including any data sets you have collected.