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Sec. 1 Fundamentals of agitation and mixing 2

1 Fundamentals of agitation and mixing

1.1 What is mixing? What is agitation? Are they different?

•Mixing refers to the process to randomly distribute two or more
initially separate phases into and through one another.

• Agitation refers to induced motion of a material in a specified way,
usually in a circulating pattern inside some sort of container.

•Often, the purpose of agitation is to keep a mixture (that has
already been mixed) in the proper mixed state.
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1.2 Purposes of agitation and mixing

• Blending two miscible liquid

◦ ethyl alcohol and water

•Dissolving solids in liquids

◦ salt in water

•Dispersing a gas in a liquid as fine bubbles

◦ oxygen from air in a suspension of microorganisms for fermen-
tation

◦ oxygen in sludge in waste treatment using the activated sludge
process

• Suspending fine solid particles in a liquid

◦ solid catalytic particles and hydrogen bubbles dispersion in cat-
alytic hydrogenation of a liquid
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• Increase heat transfer

◦ transfer of heat to fluid in a vessel from a coil or jacket in the
vessel wall
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1.3 Examples of industrial application of agitation

• Paint industry

◦ pigment suspension

◦maintaining suspension

◦ storage

• Sugar industry

◦ starch converter

◦ enzyme conversion

◦ dissolving

•Water treatment

◦ lime slaking tank

◦ converting CaO into Ca(OH)2

◦ reaction
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• Separation

◦ catalytic hydrogenation

◦mass transfer between liquid and solid particles
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1.4 Coverage of agitation in different courses

• Fluid dynamics

◦ flow pattern of fluids

• Heat transfer

◦ effect of liquid motion on heat transfer coefficients

•Mass transfer

◦mass transfer to drops, bubbles and liquid particles

• Unit operations

◦ equipment and operations
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1.5 Our focus in this course

• Choice and sizing of equipment

•Determining power requirement

•Determining optimum operating conditions
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2 Typical design of agitated vessels

Figure 1: Pictorial and schematic of a typical agitated vessel.

• Cylindrical with a vertical axis
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Sec. 2 Typical design of agitated vessels 10

• Usually close at the top; sometimes open to air

• Bottom is rounded, not flat - to eliminate sharp corners or regions
into which fluid currents could not penetrate

• Liquid depth is equal to the diameter of the tank

• An impeller is mounted on an overhung shaft driven by a motor

• Baffles are often used to reduce tangential motion

• Accessories - inlet and outlet lines, coils, jackets, wells for sensors

Agitation vessels differ primarily depending on the type of the im-
peller used.
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3 Impellers

3.1 Purpose of an impeller

• The main purpose of the impeller is to cause the liquid to circulate
through the vessel and eventually return to the impeller.
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3.2 Types of impellers

•Depending on the direction of the induced flow, impellers are of
two types

1. Axial-flow impellers: those that generate current parallel with
the axis

2. Radial-flow impellers: those that generate current in a radial or
tangential direction

•Different types of impellers are needed depending on the liquid
viscosity

◦ For low to moderate viscosity liquids

1. Propellers

2. Turbines

3. High efficiency impellers
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◦ For high viscosity liquids

1. Helical impellers

2. Anchor agitators

Figure 2: Different types of impellers. From top left clockwise (i) three-blade turbine propeller (ii) simple straight-blade turbine (iii) disk turbine (iv) concave-blade
CD-6 impeller (v) pitched-blade turbine
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3.3 Propeller

• axial flow

• high speed - small:1150-1750 rpm, large: 400-800 rpm

• direction of rotation - force the liquid downwards

• traces out a helix in the liquid

• one full revolution move the liquid longitudinally a fixed distance

• pitch = distance liquid moves with 1 revolution
propeller diameter

• Square pitch - pitch =1.

•most common - three blade with square pitch

• rarely exceeds 18 in in diameter

• two or more propellers may be mounted on the same shaft
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Figure 3: Liquid flow patterns in agitated vessels
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3.4 Turbines

• Straight blade

◦ pushes liquid radially and tangentially

◦ almost no vertical motion at the impeller

◦ typical speed is 20-150 r/min

•Disk turbine

◦multiple straight blade mounted on a horizontal disk

◦ useful for dispersing gas in a liquid

◦ blades may have different shape e.g. concave blade disk turbine

• Pitched blade

◦ good when overall circulation is important

◦ some axial flow in addition to radial flow
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3.5 High efficiency impellers

• variations of pitched blade impellers

•more uniform axial flow and better mixing

•modified shapes of blade
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3.6 Hellical ribbon

Figure 4: Impellers for high-viscosity liquids (i) double-flight helical-ribbon (ii) anchor impeller

• Used for highly viscous solution

•Operates at low rpm in the laminar region.

• The liquid moves in a tortuous flow path down the centre and up.

• The diameter of the helix is very close to the diameter of the tank.
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3.7 Anchor impellers

• Anchor impeller provides good agitation near the floor and wall of
the tank.

• It creates no vertical motion.

• Less effective as in mixing.

• Provide good heat transfer to and from vessel wall.

• Used for viscous liquids where deposits on walls can occur.

• Used to process starch pastes, paints, adhesives and cosmetics.
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4 Theoretical development

4.1 Nomenclature

Figure 5: Nomenclature of agitated vessel parameters with a turbine impeller.
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4.2 Basic assumption

• A turbine or propeller agitator is a pump impeller operating with-
out a casing

• The governing relations for turbine are similar to those of centrifu-
gal pumps
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4.3 Impeller and fluid velocity

• Considering the diagram of a straight blade turbine

◦ u : velocity of the blade tips

◦ For the liquid leaving the blade tip

• Vu : tangential velocity

• Vr : radial velocity

• V : overall velocity

• Tangential velocity of the liquid is some fraction of the blade tip
velocity

Vu = ku

• Linear velocity of the impeller is related to its angular velocity by

u = πDan (1)
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4.3 Impeller and fluid velocity 23

• This gives
Vu = kπDan
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4.3 Impeller and fluid velocity 24

u
Vu

Vr VrV

β

Figure 6: Velocity vector at the tip of turbine impeller blade
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4.4 Volumetric flow rate through the impeller

Flow rate of fluid through the impeller is given by

q = VrAp (2)

with Ap is the area swept by the impeller.

Ap = πDaW (3)

From the trigonometry of the velocity vectors

Vr = (u− Vu) tan β

= (πDan− kπDan) tan β

= πDan(1− k) tan β
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4.4 Volumetric flow rate through the impeller 26

The volumetric flow of the liquid through the impeller an be obtained
as

q = VrAp
= (πDan(1− k) tan β)(πDaW )

= π2D2
anW (1− k) tan β
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4.5 Velocity profile of the liquid

• flowing radially from the blade

• velocity is maximum in the plane of the middle of the blade and
is much smaller at the edges

• the velocity pattern changes with distance from the impeller tip
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4.6 Effective liquid flow rate at the tip of blade

The radial velocity is not constant over the width of the impeller.
So q is taken as

q = Kπ2D2
anW (1− k) tan β (4)
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4.7 Flow number

With K, k and β approximately constant

q ∝ nD2
aW (5)

For geometrically similar propellers W ∝ Da. So we have

q ∝ nD3
a (6)

So we get
q

nD3
a

= constant (7)

The above ratio which is a constant is known as the flow number
and is denoted by NQ.
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4.8 Flow number of different impellers

The flow number depends on the impeller type and is constant for a
particular type of impeller. Table 1 shows flow number of different
impellers.

Table 1: Flow numbers for different impellers

Type NQ

Marine propeller (square pitch) 0.5

4-blade 45o turbine
(
W
Da

= 1
6

)
0.87

Disk turbine 1.3
HE-3 high efficiency impeller 0.47
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4.9 Effective liquid flow rate due to entrainment

The discharge flow from the tip of the blade is given by

q = NQnD
3
a (8)

• The above equation gives the discharge flow from the tip of the
impeller

• However, the high velocity jet entrains some liquid from the bulk

• This reduces the velocity but increases the flow rate

For flat-blade turbines, the total flow is estimated experimentally

• by average circulation time for particles or

• by dissolved tracers
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4.9 Effective liquid flow rate due to entrainment 32

and was shown to be

q = 0.92nD3
a

(
Dt
Da

)
(9)

This relation is applicable for Dt
Da

between 2 and 4. For a typical

ratio Dt
Da

= 3

q = 2.76nD3
a (10)

which is 2.1 times the flow rate from the tip of the blades.
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4.10 Power number

•When the flow is turbulent, the power requirement can be esti-
mated from

P = flow produced by the impeller

×kinetic energy per unit volume of fluid

P = q × Ek
• The kinetic energy is given by

Ek =
ρV 2

2
(11)

• V is smaller that u and if we take V as a fraction of u i.e.

V = αu (12)
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4.10 Power number 34

•With q = NQnD
3
a, the power requirement can be calculated.

P = qEk

= NQnD
3
a
ρV 2

2

= NQnD
3
a
ρ(απnDa)2

2

=
NQn

3D5
aρα

2π2

2

• By rearranging to get the constants on one side

P

n3D5
aρ

=
α2π2

2
NQ (13)

• The ratio which is dimensionless is called the power number and
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is denoted by

Np =
P

n3D5
aρ

(14)
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4.11 Use of power number

The above relation can be used when NQ and α are known. For
example for a six-blade turbine NQ = 1.3 and if α = 0.95, then we
get Np = 5.8. Now from the power number, the power requirement
of an impeller can be calculated for am impeller with a given diam-
eter rotating at a given speed and for a given liquid.
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4.12 Power consumption

Power consumption of an impeller depend on

1. Measurements of the tank and impeller

2. Baffles

• Baffled: number and arrangements of baffles

• Unbaffled

3. Liquid properties

• viscosity

• density

4. Speed of the impeller

5. Gravitational acceleration
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4.13 Shape factors

Measurements are converted into the shape factors which are ob-
tained by dividing the measurements by one of them. Standard
shape factors for turbines are

Da
Dt

=
1

3

H

Dt
= 1

J

Dt
=

1

12
E

Dt
=

1

3

W

Da
=

1

5

L

Da
=

1

4
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4.14 Power correlations

• If the shape factors are ignored, then P is a function

P = Ψ (n,Da, µ, ρ, g) (15)

• By dimensional analysis

P

n3D5
aρ

= Ψ

(
nD2

aρ

µ
,
n2Da
g

)
(16)

• By taking the shape factors into account

P

n3D5
aρ

= Ψ

(
nD2

aρ

µ
,
n2Da
g

, S1, S2, · · · , Si

)
(17)
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• The dimensionless numbers here are as follows

P

n3D5
aρ

= Np : Power number

nD2
aρ

µ
= Re : Reynolds number

n2Da
g

= Fr : Froude number

NP = Ψ (Re, Fr, S1, S2, · · · , Si) (18)
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4.15 Reynolds number

Determines the flow type

•Re < 10 : flow is laminar

•Re > 10000 : flow is turbulent

• 10 < Re < 10000 : transition region
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4.16 Froude number

• appears in fluid dynamic situations where there is significant wave
motion

• important for ship design

• not important when baffles are used or Re < 300

• unbaffled vessels are rarely used at high Re

Froude number is not included in the correlations for power calcula-
tions for mixing equipments.
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4.17 Power number as a function of Re

The relations between Np and Re are expressed graphically and are
available for different impellers. An example of such correlation is
shown here.
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Figure 7: Power number versus Reynold’s number for turbines and high efficiency impellers. Redrawn from MacCabe and Smith (2007)
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Figure 8: Power number versus Reynold’s number for marine propellers (pitch 1.5:1) and helical ribbons. Redrawn from MacCabe and Smith (2007)
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4.18 Np versus Re correlations

Observations from the Np versus Re correlations:

• At high Re the curves level off.

• The pitched turbine with 4-blades set an angle 45o

◦ draws 0% as much power as standard turbine at low Re

◦ draws only about 20% at high Re

•A301 and HE − 3 high efficiency turbines have much lower Np
• For Re > 104, Np remains constant

• For Re < 10, Np varies inversely with Re

For other types of impellers, some observations are as follows:

• Propeller:

◦ At Re ≥ 104, Np is 50% greater in a baffled tank than an
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unbaffled tank.

◦ At low Re there is no difference.

• Helical ribbon:

◦ Baffles are not used

◦Np decreases rapidly with Re

◦ Commonly used at low Re

• Anchor agitator:

◦Np is slightly greater than helical impellers over the entire range
of Re
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5 Calculation of power consumption

• From the definition of power number

Np =
P

n3D5
aρ

(19)

• we get
P = Npn

3D5
aρ (20)

• If we know the power number of an impeller, we can determine
its power requirement. Now Np can be obtained if Re is known.

◦ For Re < 10

•Np versus Re curve is a straight line with slope −1

Np =
KL

Re
=
KLµ

nD2
aρ

(21)
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Sec. 5 Calculation of power consumption 49

• This gives

P =
KL

Re
n3D5

aρ

= KLn
2D3

aµ

• Viscosity is a factor, density is not

• Relation is the same for baffled and unbaffled

◦ For Re > 104

•Np is a constant Np 6= f (Re)

Np = KT

P = KTn
3D5

aρ

• Viscosity is not a factor, density is
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Table 2: KL and KT for different impellers

Type KL KT

Propeller, 3 blades
Pitch 1.0 41 0.32
Pitch 1.5 48 0.87

Turbine
6-blade disk (S3 = 0.25, S4 = 0.2) 65 5.75
6-pitched blade (45o, S4 = 0.2) - 1.63
4-pitched blade (45o, S4 = 0.2) 44.5 1.27

Flat paddle, 2-blades (S4 = 0.2) 36.5 1.70
HE-3 impeller 43 0.28
Helical ribbon 52 -
Anchor 300 0.35
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6 Blending and mixing

•mixing is much more difficult operation to study than agitation

• velocity pattern of fluid in an agitated vessel is complex but rea-
sonably definite and reproducible

• power consumption for agitation is readily measured

• the results of mixing studies ate seldom highly reproducible

• criteria for good mixing

◦ visual - color change, uniformity

◦ rate of decay concentration, temperature gradient
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6.1 Blending in small process vessels

•Miscible liquids are blended in small process vessels by

• propellers, turbines or high efficiency impellers

• the impellers are usually centrally mounted

• well agitated and rapid mixing
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6.2 Blending in large storage tanks

• side entering propellers or jet mixers are used

• idle most of the time

• on during filling
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6.3 Flow model for mixing in process vessels

• impeller produces a high velocity stream

• close to the impeller liquid is well mixed

• liquid moves along the wall

◦ some radial mixing

◦ little mixing in the direction of flow

• the fluid completes a circulation loop and returns to the eye of
the impeller

• complete mixing is achieved if the content of the tank is circulated
around 5 times

•mixing time can be predicted from the flow correlation
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7 Mixing time

For a six-blade turbine

qT = 0.92nD3
a
Dt
Da

(22)

Now

tT = 5× V

qT

= 5×
πD2

tH

4

1

0.92nD2
aDt
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So we get

ntT

(
Da
Dt

)2(Dt
H

)
=

5π

4× 0.92
= 4.3 = constant

• for a given tank and impeller or geometrically similar systems, the
mixing time is inversely proportional to the stirrer speed provided
Re is large.

•mixing time is constant at high Re

•mixing time is appreciable greater when Re : 10− 1000
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100 101 102 103 104 105
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102
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Turbine (baffled)

Turbine Do/Dt=1/3

HE-3 Do/Dt=0.45 (baffled)

Propeller Do/Dt=1/3

Propeller Do/Dt=1/3

Figure 9: Mixing time for agitated vessels. Redrawn from MacCabe and Smith (2007)

Salim Ahmed PROC 5071: Process Equipment Design I



Sec. 8 Workbook: Power requirement for agitation 58

8 Workbook: Power requirement for agitation

A disk turbine with six flat blades is installed centrally in a vertical
baffled tank 2 m in diameter. The turbine is 0.67 m in diameter
and is positioned 0.67 m above the bottom of the tank. The turbine
blades are 134 mm wide. The tank is filled to a depth of 2 m
with an aqueous solution of 50 percent NaOH at 65oC, which has
a viscosity of 12 cP and a density of 1500 kg/m3. The turbine
impeller turns at 90 r/min. What power will be required?

Solution:

• You will have to calculate the power required for the process. Now
required power is given by

P = Npn
3D5

aρ (23)
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•Where the power number Np is a function of Re. Depending
on Re, for laminar flow and turbulent flow we get the following
relations

Laminar flow : P = KLn
2D3

aµ (24)

Turbulent flow : P = KTn
3D5

aρ (25)

• So the strategy will be as follows: Find Re and depending on Re,
choose the appropriate equation.

• Then for the impeller under consideration, find the constant. The
rest is simple calculation.
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9 Workbook: Mixing time requirement

An agitated vessel 6 ft(1.83 m) in diameter contains a six blade
straight blade turbine 2 ft(0.61 m) in diameter, set one impeller
diameter above the vessel floor, and rotating at 80 r/min. It is
proposed to use this vessel for neutralizing a dilute aqueous solution
of NaOH at 70oF with a stoichiometrically equivalent quantity of
concentrated nitric acid (HNO3). The final depth of liquid in the
vessel is to be 6 ft(1.83 m). Assuming that all the acid is added to
the vessel at one time, how long will it take for the neutralization to
be complete? Solution:

• Graphical data are available as ntT as a function of Re.

• If you can find the Re and know the type of impeller, calculate
Re to find ntT which will directly give you tT for a known n
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• So do it!
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10 Agitator scale-up

10.1 Need for scale-up

• Experimental data are often available for a laboratory scale or pilot
plant system.

• The main design objective is to design a industry scale system.

• To achieve this, scale-up in design calculations are required.
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10.2 Scale-up methods

Scale-up process can be approached with diverse requirements:

• Geometric similarity is important and simple to achieve.

• Kinematic similarity defined in terms of ratios of velocities or
times, may be required.

•Dynamic similarity requires fixed ratios of viscous, inertial or grav-
itational forces.

Even if geometric similarity is achieved, dynamic and kinematic sim-
ilarity cannot be obtained at the same time.
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10.3 Scale-up requirements

The objective of a scale-up operation can be different

• Equal liquid motion: the liquid motion i.e. corresponding veloci-
ties may be required to keep approximately the same. For example,
in blending it may be required to maintain the same motion.

• Equal suspension of solids: the level of suspension may be needed
to keep the same.

• Equal rate of mass transfer: where mass transfer takes place be-
tween phases it may be required to keep the rate to be the same.
This require equal power per unit volume.
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10.4 Scale-up procedure

• Step 1: Calculate the scale-up ratio, R.

◦R is defined as the cube root the volume ratio for the final and
initial conditions.

◦With Da1, Dt1 and so on denoting the initial values and Da2,
Dt2 and so on denoting the final or scaled-up values and assum-
ing that the original vessel is a standard cylinder with properly
maintained ratios, the volume V1 is

V1 =

(
πD2

t1

4

)
H1 =

πD3
t1

4
(26)
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◦ Then the ratio of the volumes is

V2

V1
=
πD3

t2
/4

πD3
t1
/4

=
D3
t2

D3
t1

=
D3
a2

D3
a1

(27)

◦R is then defined as

R =

(
V2

V1

)1/3

=
Da2

Da1

(28)

• Step 2: Using R, apply it to all the dimensions to calculate the
new values e.g.

Dt2 = RDt1, H2 = RH1 (29)

• Step 3: The scale-up rule is then applied to determine the agitator
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speed for the duplicate system with

n2

n1
=

(
1

R

)η
(30)

where

η = 1 : for equal liquid motion

η =
3

4
: for equal suspension of solids

η =
2

3
: for equal rate of mass transfer

• Step 4: Knowing n2, the required power P2 can be calculated.
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10.5 Scale-up case for turbulent flow with constant n

• If the given conditions require constant speed, for turbulent flow,
we get

P = KTn
3D5

aρ (31)

• with V ∝ D3
a, we get

P

V
= cn3D2

aρ (32)

• This gives

P2/V2

P1/V1
=
n3

2D
2
a2

n3
1D

2
a1

=

(
n2

n1

)3(Da2

Da1

)2

(33)

• If n2 = n1, the ratio of power requirement per unit volume be-
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comes
P2/V2

P1/V1
=

(
Da2

Da1

)2

(34)

•On the other hand, if the power requirement per unit volume has
to remain the same, we get

n2

n1
=

(
Da1

Da2

)2/3

(35)

• Also from the relation n2tT2
= n1tT1

, we get

tT2

tT1

=

(
Da2

Da1

)2/3

(36)
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11 Workbook: Scale-up in mixing equipment design

A pilot-plant vessel 0.3m in diameter is agitated by a six blade tur-
bine impeller 0.1m in diameter. When the impeller Reynolds number
is 104, the blending time of two miscible liquids is found to be 15s.
The power required is 0.4kW/m3 of liquid. (a) What power input
will be required to give the same blending time in a vessel 1.8m in
diameter? (b) What would be the blending time in the 1.8m vessel
if the power input per unit volume were the same as in the pilot
plant vessel?

Solution:

• For part (a), the blending time remains the same which implies
the same speed of the impeller.

• For part (b), power input per unit volume remains the same.
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• You got direct relations for both of the cases.
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