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1 Why log mean?

•We get a general expression for heat transfer in
a heat exchanger as

Q = UA∆Tm (1)

• For ∆Tm a logarithmic mean temperature is
used which is commonly known as the Log Mean
Temperature Difference or LMTD.

•Question arises “Why log mean?”

2 Mathematical formulation

• Let’s look at the expression for LMTD

∆Tlm =
∆T1 −∆T2

ln ∆T1
∆T2

(2)

• Here, ∆T1 and ∆T2 are the temperature dif-
ferences between the hot and cold fluid at the
two ends and ∆Tlm is the LMTD.

• Figure 1 shows possible temperature profiles of
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2.1 Basic heat transfer equations 3
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Figure 1: Possible temperature profiles in a parallel flow heat exchanger.

the hot and cold fluids in a heat exchanger.

• Eq. 2 shows that the ∆Tlm depends only on
∆T1 and ∆T2.

• Then, does it matter how the temperatures
of the two fluids change within the heat ex-
changer?

•What are the assumptions in defining the LMTD?

2.1 Basic heat transfer equations

• In a heat exchanger, the driving force is the
temperature difference between the hot and the
cold fluid, ∆T = T − t
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2.1 Basic heat transfer equations 4

• Here, we denote the temperatures of the hot
and cold fluid by T and t, respectively.

• Along the length of the heat exchanger T and
t vary significantly and so does the ∆T

• Consequently, the heat flux also varies along
the length.

• For a differential area dA, the rate of heat flow
dq can be expressed as
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Figure 2: Hot and cold fluid temperature profiles in a heat exchanger.

dq = U(dA)∆T (3)

• Here, U is the local overall heat transfer coef-
ficient.

• For the same differential area the heat transfer
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2.2 The assumptions 5

by the hot and cold fluids are given by

dqh = mhCphdT (4)

dqc = mcCpcdt (5)

• Here m and Cp are the fluid mass flow rate and
specific heat capacity, respectively.

• The subscripts h and c are used for the hot and
the cold fluid.

• dT and dt are the temperature changes in the
hot and cold fluids, respectively, between the
inlet and outlet of the differential area.

• To get an expression for heat transfer over the
entire area using a mean value of ∆T , some
assumptions need to be made.

2.2 The assumptions

Four simplifying assumptions are made

1. The specific heats of the hot and cold fluids are
constant
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2.3 Implications of the assumptions 6

2. Flow of the fluids are steady and are either par-
allel or countercurrent

3. Heat loss is negligible

4. The overall heat transfer coefficient is constant

2.3 Implications of the assumptions

• Assumption (3) implies that

dqh = dqc = dq (6)

• Assumptions (1) and (2) imply that both dT
dqh

and dt
dqc

are constant

• Assumption (4) imply that
d(∆T )
dq is constant

The above imply that T , t and ∆T are linear
functions of q.

2.4 Expression for the LMTD

• If the total heat transfer in a heat exchanger is
given by Q, as ∆T varies linearly with q, we
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Figure 3: Temperature versus heat flow in a parallel flow heat exchanger.

get
d(∆T )

dq
=

∆T2 −∆T1

Q
(7)

• Using Eq. 3 we get

d(∆T )

UdA∆T
=

∆T2 −∆T1

Q
(8)

• A simple rearrangement gives

d(∆T )

∆T
=

U(∆T2 −∆T1)

Q
dA (9)

• Now Q is the heat transferred over the entire
area, A. So integrating over the area between
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2.4 Expression for the LMTD 8

the two ends 1 and 2 gives∫ ∆T2

∆T1

d(∆T )

∆T
=

∫ A

0

U(∆T2 −∆T1)

Q
dA

(10)

• Integration and use of the limits will give

ln
∆T2

∆T1
=

U(∆T2 −∆T1)

Q
A (11)

• So we get

Q = UA
∆T2 −∆T1

ln ∆T2
∆T1

(12)

• Comparing with Eq. 1, we get the expression
for the mean temperature, which is known as
LMTD

∆Tlm =
∆T2 −∆T1

ln ∆T2
∆T1

=
∆T1 −∆T2

ln ∆T1
∆T2

(13)
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2.5 Applicability and limitations

Note that the assumptions mentioned above should
be satisfied for the Eq. 16 to be applicable. The
LMTD measure is not applicable when

•∆T1 and ∆T2 are equal or nearly equal. In such
a case the arithmetic mean can be used.

• U changes significantly

•∆T is not a linear function of q

2.6 Special case with variable U

•When U is not constant, if it changes linearly
with ∆T over the entire range of the heat ex-
changer, a log mean of the entire term U∆T
can be used

• In that case, one can write

Q = A(U∆T )lm (14)
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• with

(U∆T )lm =
U2∆T1 − U1∆T2

ln U2∆T1
U1∆T2

(15)

• Note that in this equation the multiplication
term contains U of one end with ∆T of the
other end

• The derivation is shown in the Appendix sec-
tion.

3 Workbook: LMTD calculation for par-

allel and countercurrent flow

3.1 The problem

Methanol condensate is to be subcooled from 95oC
to 50oC. Water will be used as the coolant,
with a temperature rise from 25oC to 40oC. If a
double pipe heat exchanger is used, calculate the
LMTD for both parallel flow and countercurrent
flow arrangement.
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3.2 Notes and analysis 11

3.2 Notes and analysis

• The expression for LMTD is given by

∆Tlm =
∆T1 −∆T2

ln ∆T1
∆T2

(16)

• Note that in this expression 1 and 2 denote the
two ends of the heat exchanger.

• So for parallel and countercurrent flow the def-
initions of ∆T1 and ∆T2 will be different.

•We will denote the inlet end of the hot stream
as end 1. Also we will use T for the hot stream
and t for the cold stream.

3.3 Parallel flow

Step 1 : Identify the temperatures.
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3.3 Parallel flow 12

Using the above notations, for the parallel flow

T1 = 95oC

T2 = 50oC

t1 = 25oC

t2 = 40oC

Step 2 : Calculate ∆T1 and ∆T2.

∆T1 = T1 − t1
= 95oC − 25oC

= 70oC

∆T2 = T2 − t2
= 50oC − 40oC

= 10oC

Step 3 : Calculate ∆Tlm.

∆Tlm =
(70− 10)oC

ln 70oC
10oC

= 30.8oC
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3.4 Countercurrent flow 13

3.4 Countercurrent flow

• Note that only Step 1 in this approach is dif-
ferent for parallel and countercurrent flow.

•With end 1 being the inlet for the hot stream,
it’s the outlet for the cold stream in the coun-
tercurrent setting.

•Once T1, T2 and t1, t2 are defined, Step 2 and
3 remain the same.

Step 1 : Identify the temperatures.

Using the notations described earlier, for the coun-
tercurrent flow

T1 = 95oC

T2 = 50oC

t1 = 40oC

t2 = 25oC

Step 2 : Calculate ∆T1 and ∆T2.
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3.5 Comment 14

∆T1 = T1 − t1
= 95oC − 40oC

= 55oC

∆T2 = T2 − t2
= 50oC − 25oC

= 25oC

Step 3 : Calculate ∆Tlm.

∆Tlm =
(55− 25)oC

ln 55oC
25oC

= 38oC

3.5 Comment

• Note that the LMTD is significantly higher for
the countercurrent flow than that for the par-
allel flow.

• For a given set of temperatures, that is always
the case.
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4 LMTD calculation for multi-pass shell

and tube heat exchangers
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Figure 4: Temperature profiles in a 1-2 shell and tube heat exchanger.

• For multipass heat exchangers, the temperature
profiles become complex.

• The concept of inlet end and outlet end become
invalid.

• For multipass heat exchangers, an approximate
method is used to calculate the mean temper-
ature difference.
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4.1 Calculation steps

Step 1 : LMTD (∆lm) is calculated assuming a
single pass countercurrent flow.

Step 2 : A correction factor, FT , is calculated
base on the temperatures of the hot and cold
stream and the type of heat exchanger.

Step 3 : The corrected mean temperatures is
calculated as.

∆Tm = FT ×∆lm (17)

5 Workbook: LMTD calculation for a 1-

2 shell and tube heat exchanger

5.1 The problem

Methanol condensate is to be subcooled from 95oC
to 50oC. Water will be used as the coolant, with
a temperature rise from 25oC to 40oC. If a 1-2
shell and tube heat exchanger is used, calculate
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the corrected mean temperature.

5.2 Notes and analysis

•We will use the notations T and t for the hot
and cold fluid temperature, respectively.

• For the ends, 1 is used for the inlet of the hot
stream.

• For countercurrent, end 2 is the inlet for the
cold fluid.

5.3 Calculation steps

Step 1 : Calculate LMTD (∆lm) assuming a sin-
gle pass countercurrent flow.

1.1 : Identify the temperatures.

Using the above mentioned notations, for the coun-
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5.3 Calculation steps 18

tercurrent flow

T1 = 95oC

T2 = 50oC

t1 = 40oC

t2 = 25oC

1.2 : Calculate ∆T1 and ∆T2.

∆T1 = T1 − t1
= 95oC − 40oC

= 55oC

∆T2 = T2 − t2
= 50oC − 25oC

= 25oC

1.3 : Calculate ∆Tlm.

∆Tlm =
(55− 25)oC

ln 55oC
25oC

= 38oC
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5.3 Calculation steps 19

Step 2 : Calculate the correction factor, FT .

2.1 : Calculate the constants R and S

R is defined as the ratio of temperature decrease
of the hot fluid to the temperature increase of the
cold fluid

R =
T1 − T2

t2 − t1

=
(95− 50)oC

(40− 25)oC
= 3.0

S is defined as the ratio of the temperature in-
crease of the cold fluid to the difference in the
inlet temperature of the two fluids

S =
t2 − t1
T1 − t2

=
(40− 25)oC

(95− 25)oC
= 0.21

2.2 : From the graph find the value of the cor-
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5.3 Calculation steps 20

rection factor.

Figure 5: Temperature correction factor for 1-2 shell and tube heat exchangers.

Alternatively, the following equation can be used
to calculate FT .

FT =

√
R2 + 1 ln

[
1−S

1−RS

]
(R− 1) ln

[
2−S

(
R+1−

√
R2+1

)
2−S

(
R+1+

√
R2+1

)]
Step 3 : Calculate the corrected mean tempera-

ture.
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∆Tm = FT ×∆Tlm
= 0.94× 38oC

= 35.7oC

6 Use of FT for selecting heat exchanger

configuration

• The configuration of the heat exchanger (num-
ber of shell and tube passes) is selected to get
a desired FT .

• It is desirable to have FT > 0.85.

• FT < 0.75 is generally unacceptable.

• For a given number of shell pass, the value of
FT is not affected significantly on the number
of tube passes.

• The more shell passes, the higher is the value
of FT .
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Appendix

• This section provides the derivation of the heat
transfer equation when U is not constant and
changes linearly with ∆T

•WE start with Eq. 8

d(∆T )

UdA∆T
=

∆T2 −∆T1

Q
(18)

•We rearrange the equation considering that U
is a function of ∆T

d(∆T )

U∆T
=

∆T2 −∆T1

Q
dA (19)

• As U changes linearly with ∆T , we can express
U as

U = a + b∆T (20)

• As U1 = a + b∆T1 and U2 = a + b∆T2

a =
U2∆T1 − U1∆T2

∆T2 −∆T1

b =
U2 − U1

∆T2 −∆T1
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• Integrating the equation between the limits at
the two ends∫ ∆T1

∆T1

d(∆T )

(a + b∆T )∆T
=

∫ A

0

U(∆T2 −∆T1)

Q
dA

(21)

•We will use the following formula∫
dx

(a + bx)x
=

1

a
ln

x

a + bx
(22)

• Upon integration, we get left hand side (LHS)
of the equation as

LHS =
1

a
ln

∆T

a + b∆T

∣∣∣∣∆T1

∆T1

=
1

a

[
ln

∆T2

a + b∆T2
− ln

∆T1

a + b∆T1

]
=

∆T2 −∆T1

U2∆T1 − U1∆T2
ln
U1∆T2

U2∆T1
(23)
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• So we have

∆T2 −∆T1

U2∆T1 − U1∆T2
ln
U1∆T2

U2∆T1
=

∆T2 −∆T1

Q
A

(24)

• Upon rearrangement, one get

Q = A
U2∆T1 − U1∆T2

ln U2∆T1
U1∆T2

(25)

• Comparing Eq. 25 with Eq. 14, we get the ex-
pression of (U∆)lm as in Eq. 16.
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