

PROC 5071: Process Equipment Design I

Particle Size Measurement

Salim Ahmed

1 Methods for Particle Size Measurement

- Both classical and modern instrumentations, based on a broad spectrum of physical principles are available for measurement of particle size.
- The typical measuring systems may be classified according to their operation mechanisms.
- mechanical

 \circ sieving

- optical and electronic
 - microscopy, laser Doppler phase shift, Fraunhofer diffraction, transmission electron miscroscopy [TEM], and scanning electron microscopy [SEM]
- dynamic

 \circ sedimentation

• physical and chemical

 \circ gas adsorption

- The methods are briefly summarized in Table 1.
- In this course only the sieving method, which is also known as screen analysis, will be discussed.

Table 1: Particle size measurement methods

Method	Size ranges (μm)
Sieving	
Woven wires	37-5660
Electroformed	5-120
Punched plate	50-125,000
Microscopy	
Optical	0.8-150
Electron	0.001-5
Sedimentation	
Gravitational	5-1000
Centrifugal	0.001-1000
Fraunhofer diffraction	0.1-1000
Doppler phase shift	1-10,000

2 Sieving (Screen analysis)

- A bulk of particles is separated on vertically stacked standard screens arranged in order of opening size. Particles either go through or remain on a screen based on their size.
- Simple and widely used technique to measure size and size distribution.
- Based on the size of the particles and independent of other properties e.g. density, roughness or optical properties.

- 2.1 Sieve structure and dimensions
- Sieves are made of woven wire screens.
- The mesh and dimensions of the sieve openings have been standardized.
- Currently two different sets of standard series, the Tyler Standard and the U.S. Series ASTM Standard, are used.
- The openings are square.
- Each screen is identified in meshes per inch.
- Thus, the higher the mesh number the smaller the aperture.
- Typical mesh numbers, aperture sizes, and wire diameters are given for the Tyler sieves and the U.S. ASTM sieves in Table 2.
- Sieve analysis covers the approximate size range of 37 μm to 5,660

 μm using standard woven wire sieves.

- \bullet Electroformed micromesh sieves extend the range down to $5 \mu m$ or less.
- Punched plate sieves extend the upper limit.

- 2.2 Tyler standard screen series
- The Tyler standard screen series is based on the 200-mesh screen.
- 200-mesh screen means 200 openings per inch.
- 1/200 is 0.005. However, the actual clean opening is 0.0029 inch or 0.074 mm because of the wires.
- Diameters of the wires are different for screens with different mesh number.
- For 200-mesh screens wire diameter is 0.0021 in.
- The area of the opening in any one screen is exactly twice that of the opening of the screen below it.
- The ratio of the actual mesh dimension of any screen to that of the next smaller screen is $\sqrt{2} = 1.41$.
- For closer sizing intermediate screens are available, each of which

has a mesh dimension $\sqrt[4]{2} = 1.189$ times that of the next smaller standard screen.

Mesh	Opening (in)	Opening (mm)	Mesh	Opening (in)	Opening (mm)
_	1.050	26.67	16 †	0.0390	0.991
+	0.883	22.43	20	0.0328	0.833
-	0.742	18.85	24 †	0.0276	0.701
+	0.624	15.85	28	0.0232	0.589
-	0.525	13.33	32 †	0.0195	0.495
+	0.441	11.20	35	0.0164	0.417
-	0.371	9.423	42 †	0.0138	0.351
$2\frac{1}{2}$ †	0.312	7.925	48	0.0116	0.295
3	0.263	6.680	60 †	0.0097	0.246
$3\frac{1}{2}^{\dagger}$	0.221	5.613	65	0.0082	0.208
4	0.185	4.699	80 †	0.0069	0.175
5†	0.156	3.962	100	0.0058	0.147
6	0.131	3.327	115 †	0.0049	0.124
7†	0.110	2.794	150	0.0041	0.104
8	0.093	2.362	170 †	0.0035	0.088
9†	0.078	1.981	200	0.0029	0.074
10	0.065	1.651	270	0.0021	0.053
12†	0.055	1.397	325	0.0017	0.044
14	0.046	1.168	400	0.0015	0.037

Table 2: Tyler screen scale (†refers to intermediate screens inserted between standard screens).

- 2.3 **Procedure for screen analysis**
- Choose the screens based on the particle size range you are interested in.
- Weight the empty screens and note the weights.
- Arrange the screens in a stack with the one with the largest opening at the top and with the smallest opening at the bottom. A pan is placed at the bottom of the stack.
- Place the samples on the top screen and shake the stack mechanically for a definite time (~ 20 minutes).
- Remove the screens from the stack and weight the screens with the particles in it.
- Calculate the masses of particles in individual screens and the mass fractions of particles in each screen.

Figure 1: Sieve analysis.

2.4 Results of screen analysis

- Tabulate the mass fraction of each screen increment as a function of the mesh size range of increment.
- Particles on each screen is characterized by two screens. One on which the particles are in and the one just above that screen.
- Thus 14/20 size means particles through 14-mesh and on 20-mesh.
- The average particle diameter is taken as the mean of the openings of the two screens.
- The results are often presented as a histogram with mass fractions of each increment against particle size. An approximate continuous curve is also drawn to show the distribution.
- A cumulative analysis is often presented to plot cumulative mass fractions smaller than a particle sizes against those sizes.

• The mass fraction information along with the particle sizes are used to calculate other particle properties, e.g. surface area of particles, number of particles and average particle diameter.

Figure 2: Particle size distribution- differential analysis

Figure 3: Particle size distribution- cumulative analysis

2.5 Workbook: Screen Analysis

The screen analysis data for a sample of crushed particles are presented in Table 3. For the materials between 4-mesh and 28-mesh, calculate the followings:

- 1. Specific surface area.
- 2. Arithmetic mean diameter.
- 3. Volume mean diameter.
- 4. Number of particles per gram.

The density of the particles is $2.5 \times 10^3 kg/m^3$. The shape factor and the sphericity of particles are 0.79 and 0.58, respectively.

Solution

- Given information
 - \circ Mesh # particle size
 - \circ Mass fractions
 - $vert\circ$ Density, $ho_p=0.0025g/mm^3$
 - \circ Shape factor, a=0.79
 - \circ Sphericity, $\Phi_s = 0.58$
- Here only the particles between 4-mesh and 28-mesh are being considered. As all of the screens are not considered $\sum_{i=1}^{n} x_i \neq 1$ and we will have to use the proper equations for this case.

1. Specific surface area, A_w is given by

$$A_w = \frac{6}{\Phi_s \rho_p} \frac{\sum_{i=1}^n \frac{x_i}{\overline{D}_{p_i}}}{\sum_{i=1}^n x_i}$$
(1)

• To evaluate A_w we need to calculate $\frac{x_i}{\overline{D}_{p_i}}$ for the corresponding mesh numbers. From the table for particles between 4- and 28-mesh we get

$$\sum_{i=1}^{n} \frac{x_i}{\overline{D}_{p_i}} =$$

• So we have

 $A_w =$

2. Arithmetic mean diameter can be calculated by

$$\overline{D}_N = \frac{\sum_{i=1}^n N_i \overline{D}_{p_i}}{\sum_{i=1}^n N_i}$$

• Using the values calculated in Table 3

$$D_N =$$

(2)

3. Volume mean diameter is given by

$$D_{v} = \left[\frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} \frac{x_{i}}{\overline{D}_{p_{i}}^{3}}}\right]^{\frac{1}{3}}$$

4. Number of particles per gram can be obtained using

$$N_w = \frac{1}{0.79\rho_p} \sum_{i=1}^n \frac{x_i}{\overline{D}_{p_i}^3}$$

Table 2.	W/orking	data	for	CCKOOD	202	Vaia
Table 5.	vvorking	uala	IO	screen	alla	iysis.

Mesh	Opening	x_i	\overline{D}_{p_i}	$cum x_i$	$\frac{x_i}{\overline{D}_{p_i}}$	$\frac{x_i}{\overline{D}_{p_i}^3}$	$x_i \overline{D}_{p_i}$	N_i	$N_i D_{p_i}$
#	(mm)		(mm)	$< D_{p_i}$		- 0			
4	4.699	0		1					
8		0.25	3.531	0.75					
14		0.5			0.2833				
28		0.1					0.0879		66
48	0.295	0.1						586	
Pan		0.05		0		15.581	0.0074		1164

References

- 1. W. L. McCabe, J. C. Smith, P. Harriott. (2005). Unit Operations of Chemical Engineering, 7th Edition, McGraw Hill, New York, USA. ISBN-13: 978-0-07-284823-6
- 2. D. Green and R.H. Perry. 2007. Perry's Chemical Engineers' Handbook, 8th Edition, McGraw-Hill. ISBN-13: 9780071422949
- 3. J. F. Richardson, J. H. Harker, J. R. Backhurts (2002) Coulson and Richardson's Chemical Engineering - Particle Technology and Separation Processes, Vol. 2, Fifth Ed., Butterworth-Heinemann, Oxford, UK. ISBN 0 7506 4445 1
- 4. C. J. Geankoplis. (2003). Transport Processes and Separation Process Principles, Fourth Ed., Prentice Hall, NJ, USA. ISBN 0-13-101367-X