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1 What is Laplace transform

To understand Laplace transform, we will look at trans-
form in general. To understand transform, let’s first look
at integrals and weighted integrals.

1.1 Integral and weighted integral

• Integration of a function results in the area under the
curve.

• Now suppose you have a function M(t) that represents
the mortgage you pay for your home. Its really paying
back the loan the bank already paid on your behalf. If you
plot your mortgage over a certain time, the area under
the curve upto certain time will give you how much of
the total loan is paid.

• Using the integration you can express the paymemnt as
a function of time.

• If you do the regular integration, every payment you
make is considered the same in terms of contribution
to the loan payback. However, the payment you make
today should not be considered the same as the payment
you will make 10 years later.

• In other words, your payment today should be counted
with more weight compared to the payment you will
make 10 years later.
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• Mathematically, that is formulated in terms of weighted
integral.

• Suppose, you consider an exponentially decaying weight
for this case. Mathematically, you use a weighting func-
tion e−βt.

• If you make equal payment M for each installation, the
total payment,P over a time period T, will be given by

P =
∫ T

0
Me−βtdt =

M
β

(
1− e−βT) (1)

• Now you see that P = P(β). That is you have trans-
formed the time domain function into a function of the
decay rate, β.

• Now let’s look at another transform, a famous one, the
Fourier transform.

1.2 The Fourier transform

• The Fourier transform is given by

F( f (t)) =
∫ ∞

−∞
f (t)e−iωtdt (2)

• Now let’s look at the equation from a weighted integral
perspective. The weighting term here is

e−iωt = cos(ωt)− i sin(ωt) (3)

• So we get,

F( f (t)) =
∫ ∞

−∞
f (t) [cos(ωt)− i sin(ωt)] dt (4)
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• Consider the FT of a sinusoid having a single frequency,
i.e. f (t) = cos(αt)

F( f (t)) =
∫ ∞

−∞
cos(αt) cos(ωt)dt− i

∫ ∞

−∞
cos(αt) sin(ωt)dt

(5)

• The integral of a sinusoid without any weighting factor
over the limit −∞ to ∞ is zero as the signal is symmetric
around the y axis. The positive areas get cancelled with
the negative areas.

• Now if a sinusoid is used as a weighting factor, which
is also symmetric around the y axis, the positive and
the negative areas are weighted equally when the en-
tire horizon is considered except when α = ω for the∫ ∞
−∞ cos(αt) cos(ωt)dt term. For the imaginary term∫ ∞
−∞ cos(αt) sin(ωt)dt, all the areas get cancelled in-

cluding the case α = ω.

• Mathematically,

F(cos(αt)) = π [δ(ω− α) + δ(ω + α)] (6)

• where δ is the impulse function or the Dirac delta func-
tion which can be loosely thought of as a function on the
real line which is zero everywhere except at the origin,
where it is infinite, i.e.

δ(x) =
{

+∞ f or x = 0
0 f or x 6= 0 (7)

• Notice that the function F(cos(αt)) is 0 except for ω = α
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and ω = −α. For these two cases, the value of the
function is ∞.

• So what are the implications of this.

1.3 An interpretation of the transformed function

• Notice that the function is now a function of ω for a
given α. So the time domain function has been changed
into a function the weighting frequency. Meaning that a
transformation has taken place from the time domain to
the frequency domain.

• If you plot the function against ω, the frequency, you get
a spike at ω = α and ω = −α. For our case, let’s just
take a simplified view that the negative frequency and
whatever it means just implies that the curve is symmet-
ric around the y axis.

• The plot tells that sinusoid has a frequency α; so the
transform is able to identify the frequency content of a
signal.

• If the signal is summation of two or more frequencies,
there will be a spike at each frequencies on both sides of
the y axis.

• Now the FT of other periodic signals would also reveal
the frequency contents of the signal. This give rise to the
Fourier series which can be stated simply as ’any periodic
signal can be expressed as a summation of sinusoids’.
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1.4 Limitations of the Fourier transform

• The FT works well for sinusoids and other periodic sig-
nals. However, for aperiodic signals, for example, signals
having an exponential component, the FT application
will not result in satisfactory approximation.

• Exponential, more specifically, exponential decaying is a
common characteristic of dynamic responses.

• Now let’s look at exponential weighting for such func-
tions.

1.5 Exponential weighting for integrals of exponential func-

tions

• Consider the weighted integral of the function e−αt with
the weighting function e−βt. i.e. the function∫ ∞

0
e−αte−βtdt (8)

• Here we consider the limit between 0 and ∞ as for many
application we will consider signals to have zero values
before time zero.

• The above integration, expressed as a function of β, will
have a spike at β = −α when plotted against β. Notice
that we are not considering the cases β < −α as that is
what is considered region of divergence. Here, the point
is as the FT can identify the frequency contents of a pe-
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riodic signal, this transform can identify the exponential
content.

• Many signals in controls, for example, the length of a
spring or closed and open loop behavior of many pro-
cesses have a sinusoidal component and/or an exponen-
tially decaying component.

• In addition, the exponential and the sinusoids have very
interesting properties. Both the integrals and differen-
tial of these two functions remain the same functions.
Meaning that integrals or differentials of sinusoids re-
main sinusoids of the same frequencies, although with
different magnitudes and phases. This allows to obtain
and theoretically analyze dynamic behavior of linear time
invariant systems using sinusoids.

• The nature of dynamic responses require analyzing ex-
ponential along with periodic components. In terms
of weighted integrals, it means use of both exponential
weighting and sinusoidal weighting, meaning a transfor-
mation of the form∫ ∞

0
f (t)e−βte−iωtdt (9)

• This is what is done in the Laplace transform
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1.6 The Laplace transform

• The Laplace transform of a function f (t) is defined as

L [ f (t)] =
∫ ∞

0
f (t)e−stdt (10)

where, s = β + iω.

• This transform the function and expresses it in the Laplace
domain, i.e as a function of s.

• The transformed function reveal characteristics of a sig-
nal. Also it can reveal characteristics of system that
generated the signal due to an excitation.

• For example, for a function f (t) = e−2t sin(3t), its Laplace
transform is

L
[
e−2t sin(3t)

]
=

3
(s + 2)2 + 32 (11)

• The roots of the denominator polynomial of the above
function s = β + jω = −2 + i3.

• As we mentioned, the exponential part, meaning the real
part of s reveals the exponential component and the si-
nusoidal part, i.e the imaginary part of s reveals the si-
nusoidal component of a signal.

• For a function f (t) = sin(5t), its Laplace transform is

L [sin(5t)] =
5

s2 + 52 (12)

• The above reveals that the function has a sinusoidal com-
ponent with frequency 5 (s = −i5). So we see that for
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a periodic signal, it reveals the same information as that
of the Fourier transformation. Thus LT is a generalized
form of FT with the capability to deal with signals having
aperiodic exponential components.

• In addition to analyzing signal contents, Laplace trans-
formation has some interesting properties that make it
useful in analyzing dynamic systems.

1.7 Use of the Laplace transform

•We see that the Laplace transform can be used in the
same way as the Fourier transform to reveal signal con-
tents. We also see that it can reveal the exponential
contents as well as the sinusoidal contents, which FT
cannot do.

• However, a more useful characteristics of LT is that the
LT of the derivative of a signal can be expressed in terms
of the LT of the original signals.

• For zero initial conditions

L

[
dy(t)

dt

]
= sL [y(t)] (13)

• The above allows converting differential equations into
algebraic equations in the s domain. Handling of alge-
braic equation is much more convenient than handling
differential equations.
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• Also Laplace domain expression of a model allow inter-
pretation of the model characteristics. This is useful for
controller design as we can tune controller parameters by
theoretically analyzing the characteristics of the resulting
system.
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2 Solution of model equations

The models obtained using conservation principles finally
result in differential equations. We can simplify those to
ordinary differential equations (ODE) assuming spatial in-
variability. Also by linearizing any nonlinear term, we can
further convert the models into linear ODEs. In this part,
we focus on simplification of model equations, solution of
the resulting linear ODEs, application of Laplace transfor-
mation for solving ODEs and use software tools to simulate
model response.

This part starts with solution of linear ODEs in the time
domain. Laplace transformation is then introduced as a tool
for solving ODEs; essentials about Laplace transformation
will be discussed. The transfer function concept is then
utilized to express model in the Laplace domain.

2.1 The integrating factor approach to solution of ODEs

An approach to solve linear ODEs using the integrating
factor concept is summarized below.

Step 0 : Express the linear ODE in the following standard
form.

τ
dy(t)

dt
+ y(t) = Ku(t) (14)
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Step 1 : Define the integrating factor

P(t) = e
∫ 1

τ dt = et/τ (15)

Step 2.1 : Multiply the ODE with the integrating factor
and integrate the equation∫

τ
dy(t)

dt
et/τdt +

∫
y(t)et/τdt =

∫
Ku(t)et/τdt (16)

Step 2.2 : Expand the integral of the 2nd term in left by
using the idea of integration by parts∫

y(t)et/τdt = τy(t)et/τ + c1−
∫

τ
dy(t)

dt
et/τdt (17)

Step 2.3 : Rearrange the equation to get

τy(t)et/τ =
∫

Ku(t)et/τdt− c1 (18)

leading to

y(t) =
1

τet/τ

[∫
et/τKu(t)dt + c

]
(19)

Step 3 : The general solution

y(t) =
1

τP(t)

[∫
P(t)Ku(t)dt + c

]
(20)

Step 4 : Find the value of the constants of integration
using the initial/boundary conditions
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2.2 Solution using the Laplace transformation

The previous section shows an approach to solve ODEs.
We will use a second approach for the same purpose. Using
the Laplace transformation, first we will obtain the transfer
function corresponding to an ODE and then take the inverse
Laplace transformation to get the expression for output for a
given input. The key feature for this approach is that using
Laplace transformation, a differential equation is converted
into an algebraic equation. The transfer function notation is
standard in the field of control. Also transfer functions offer
advantages in block diagram analysis, frequency analysis
and control design.

Linear ODE

τ
dy(t)

dt + y(t) = Ku(t) Integrate

Solution

y(t) =
K
τ e−t/τ

[∫
et/τu(t)dt + c

]
Laplace

Transform L L−1

Inverse

LT

τsY(s) + Y(s) = KU(s)

Laplace domain eqn.

Manipulate Y(s) = KU(s)
τs+1

Transfer Function

Figure 1: Basic idea of the use of Laplace Transformation.
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3 Laplace transformation examples

3.1 The definitions

For a function f (t), The Laplace Transform is defined as

F(s) = L { f (t)} =
∫ ∞

0
f (t)e−stdt (21)

where F(s) is the representation of the function f (t) in the
laplace domain and L is the Laplace operator. On the
other hand L −1 is used for the inverse Laplace transfor-
mation. If we know a function in the Laplace domain, we
get the corresponding time domain function as:

f (t) = L −1 {F(s)} =
1

2π j

∫ α+j∞

α−j∞
F(s)estds (22)

3.2 Laplace Transformation of common functions

• Constant function: Let f (t) = c where c is a constant.
Then from the definition of Laplace transformation

L {c} =
∫ ∞

0
ce−stdt = c

−1
s

e−st
∣∣∣∣∞
0

=
c
s

(23)

• Exponential function: Let f (t) = e−bt where b > 0 is a
constant. Then

L
{

e−bt
}

=
∫ ∞

0
e−bte−stdt =

−1
s + b

e−(s+b)t
∣∣∣∣∞
0

=
1

s + b
(24)
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• Ramp function: Let f (t) = t , then

L {t} =
∫ ∞

0
te−stdt = t

−1
s

e−st− 1
s2e−st

∣∣∣∣∞
0

=
1
s2

(25)

3.3 The step function and its Laplace Transformation

The unit step function can be defined as

S(t) =
{

0 for t < 0
1 for t ≥ 0 (26)

So the step function has a constant value for t > 0 and we
have

L {S(t)} =
1
s

(27)

For a step input of size h i.e.

u(t) =
{

0 for t < 0
h for t ≥ 0 (28)

we can write u(t) = hS(t) and we have

L {u(t)} = L {hS(t)} =
h
s

(29)
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Table 1: Table of Laplace transformations

f (t) F(s)

Unit impulse, δ(t) 1

Unit step 1
s

Ramp, at a
s2

sin(ωt) ω
s2+ω2

cos(ωt) s
s2+ω2

tn−1 (n−1)!
sn

e−bt 1
s+b

1
τ e−t/τ 1

τs+1

1− e−t/τ 1
s(τs+1)

3.4 Laplace Transformation of derivatives

The LT of derivatives is an important transformation as we
need those to convert ODEs into algebraic equations.

L

{
d f (t)

dt

}
=
∫ ∞

0

d f (t)
dt

e−stdt

= e−st f (t)
∣∣∞
0 + s

∫ ∞

0
f (t)e−stdt

= sF(s)− f (0) (30)
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The LT of higher order derivatives can be evaluated using
this result

L

{
d2 f (t)

dt2

}
= L

{
dφ(t)

dt

}
where φ(t) =

d f (t)
dt

= sφ(s)− φ(0)
= s [sF(s)− f (0)]− φ(0)
= s2F(s)− s f (0)− f ′(0) (31)

3.5 Transformation of n-th order derivatives

Using the LT of first order derivative, the transformation of
n-th order derivative can be obtained as

L

{
dn f (t)

dtn

}
= snF(s)− sn−1 f (0)− sn−2 f (1)(0)

− · · · − s f (n−2)(0)− f (n−1)(0) (32)

where, n is an arbitrary positive number and f (k)(0) =
dk f
dtk |t=0. For a special case where all the initial conditions
are zero i.e.

f (0) = f (1)(0) = · · · = f (n)(0) = 0 (33)

we have

L

{
dn f (t)

dtn

}
= snF(s) (34)

Later we will see that we use the deviation of a variable
from its initial steady state value which make the initial
conditions to be zero.
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3.6 Important Properties of Laplace Transformation

Both L and L −1 are linear operators

L {a f1(t) + b f2(t)} = L {a f1(t)} + L {b f2(t)}
= aL { f1(t)} + bL { f2(t)}
= aF1(s) + bF2(s) (35)

Similarly we have

L −1 {aF1(s) + bF2(s)} = a f1(t) + b f2(t) (36)

On the other hand

L
{

y2(t)
}
6= Y2(s) (37)

L { f1(t) f2(t)} 6= F1(s)F2(s) (38)

Initial value theorem

lim
t→ 0 f (t) = lim

s→ ∞ sF(s) (39)

(40)

Final value theorem

lim
t→ ∞ f (t) = lim

s→ 0 sF(s) (41)

Salim Ahmed Process Dynamics and Control



19

τ
dy(t)

dt + y(t) = Ku(t)
First principles,
linearization,
linear ODE

LT tables and
properties L

τsY(s) + Y(s) = KU(s)
e.g. U(s) = h/s

PF
Rearrange, partial
fraction expansion

Y(s) = Kh
s −

Khτ
τs+1

L−1

y(t) = K(1 − e−t/τ) Solution

Figure 2: Approach to solve ODEs using the Laplace Transform.

4 Solution of ODE using Laplace Trans-
formation

4.1 Procedure to solve ODE using LT

1. From first principles you get the dynamic equation in the
form of an ODE

(i) If the ODE contains nonlinear elements, linearize those
terms to get a linear ODE

(ii) Take L to get the equation in the s domain

2. The s domain equation may not be suitable for taking
L −1 directly

(i) Rearrange the equation to express the output (e.g.
Y(s)) as a function of input and parameters.

(ii) Apply partial fraction expansion (PFE) to make the
equation suitable for taking L −1

3. Take L −1 to get the solution.
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4.2 An exercise

1. Suppose, from first principles you get the dynamic equa-
tion

5
dy(t)

dt
+ 4y(t) = u(t) with u(t) = 2 y(0) = 0 (42)

(i) There is no nonlinear term.

(ii) Taking L

5 [sY(s)− y(0)] + 4Y(s) =
2
s

(43)

2. Taking L −1 will result in the above equation

(i) Rearranging the equation

Y(s) =
2

s(5s + 4)
(44)

(ii) Applying partial fraction expansion (PFE)

Y(s) =
0.5
s
− 0.5

s + 0.8
(45)

3. Taking L −1

y(t) = 0.5− 0.5e−0.8t (46)
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