HEC MONTREAL

Chaire de gestion du secteur de l'énergie **HEC MONTRĒAL**

The Benefits of Integrating Electricity Markets – Why and How Canadian Provinces Should Reform their Electricity Sector

Pierre-Olivier Pineau DEPARTEMENT OF DECISION SCIENCES

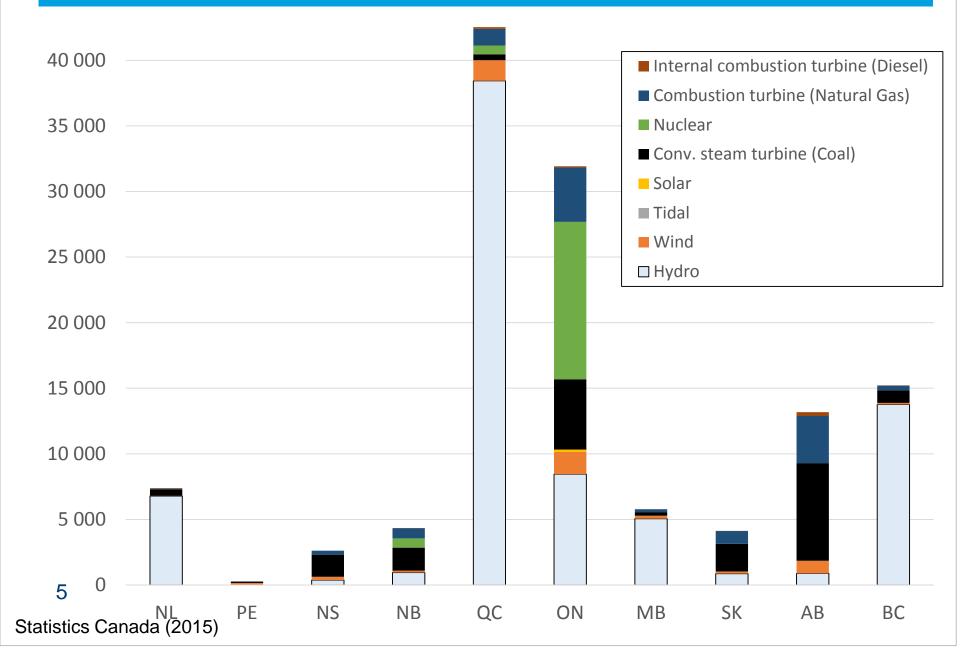
Department of Economics: Visiting Speaker Series November 20th, 2015 – 3 to 4:30pm Room A2065 Arts and Administration Building **Memorial University** St-John's

PRESENTATION BASED ON TWO PAPERS

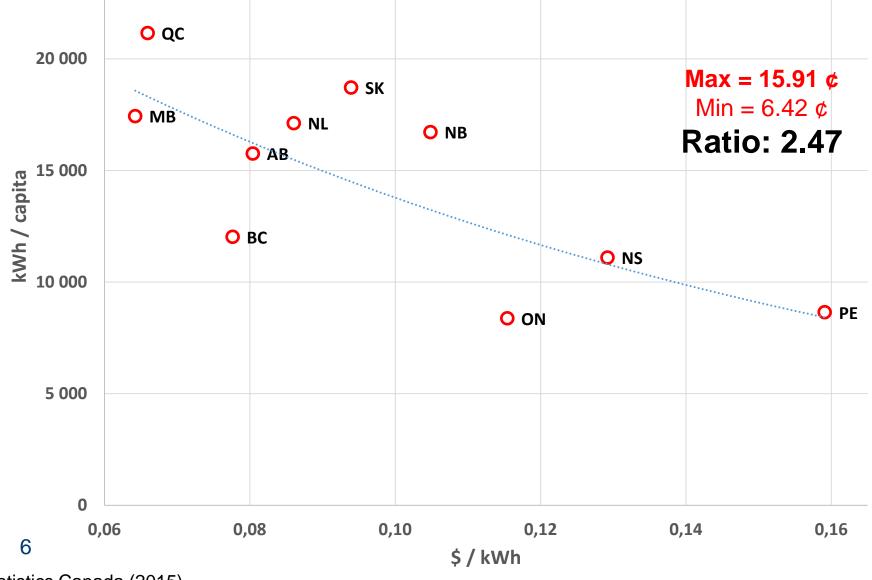
- "Fragmented Markets: Canadian Electricity Sectors' Underperformance" (Chapter 13), in *Evolution of Global Electricity Markets: New paradigms, new challenges, new approaches*, ed. by F.P. Sioshansi, Elsevier, 2013.
- "Integrating Thermal and Hydro Electricity Markets: Economic and Environmental Costs of not Harmonizing Pricing Rules" (open access article), Billette de Villemeur E. and Pineau P-O., The Energy Journal, vol. 37 (1) 77-100, 2016.

OUTLINE

- 1. Introduction: Energy in Canada and Regional Power Integration
- 2. Model
- 3. Calibration
- 4. Results
- 5. Discussion

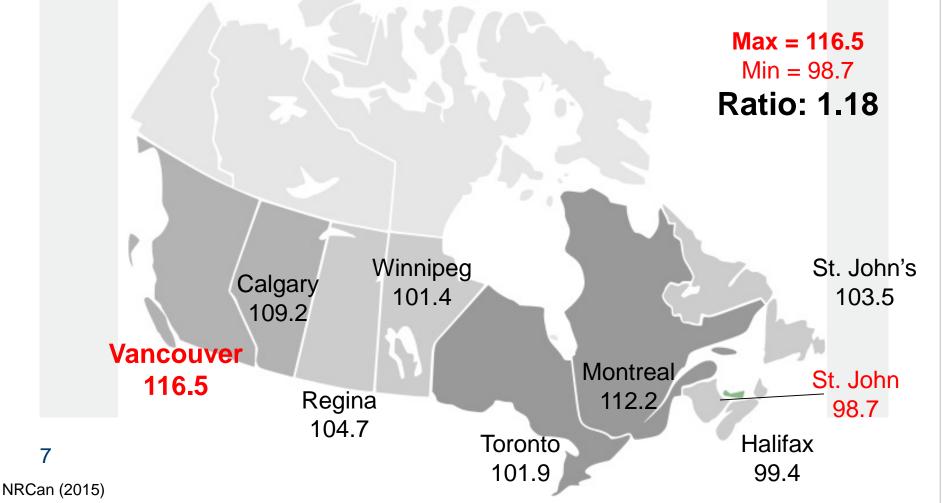

1. INTRODUCTION: CANADA AND ENERGY PRODUCTION

Oil	Natural Gas	Coal	Hydropower
 Saudi Arabia Russia US China Canada 	 US Russia Qatar Iran Canada 	 China US India Indonesia Australia 11. Canada 	 China Brazil Canada US Russia
(2013)	(2011)	(2013)	(2012)


HEC MONTREAL

IEA (2014)

INSTALLED CAPACITY, 2013 (MW)



TOTAL ELECTRICITY SALES PER CAPITA BY AVERAGE ELECTRICITY VALUE (2013)

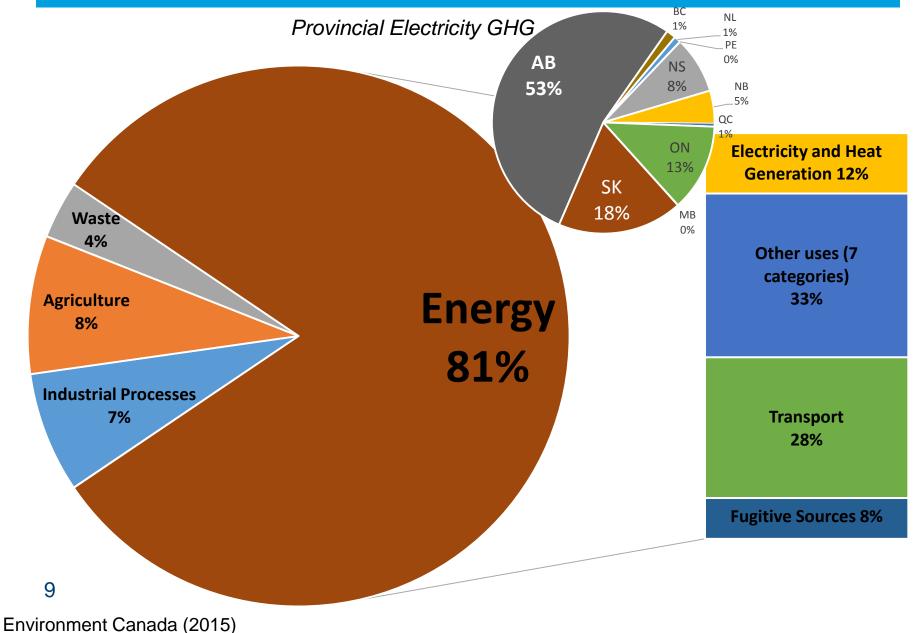
Statistics Canada (2015)

REGULAR GASOLINE RETAIL FUEL PRICES ON 29-SEP-2014 (¢/LITRE)

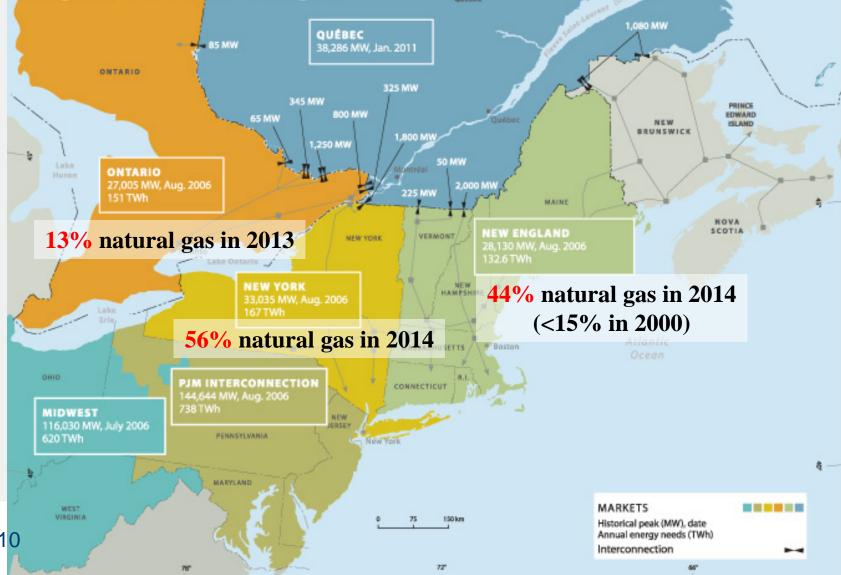
NATIONAL ENERGY PROGRAM (1980-1984)

Main elements of the program:

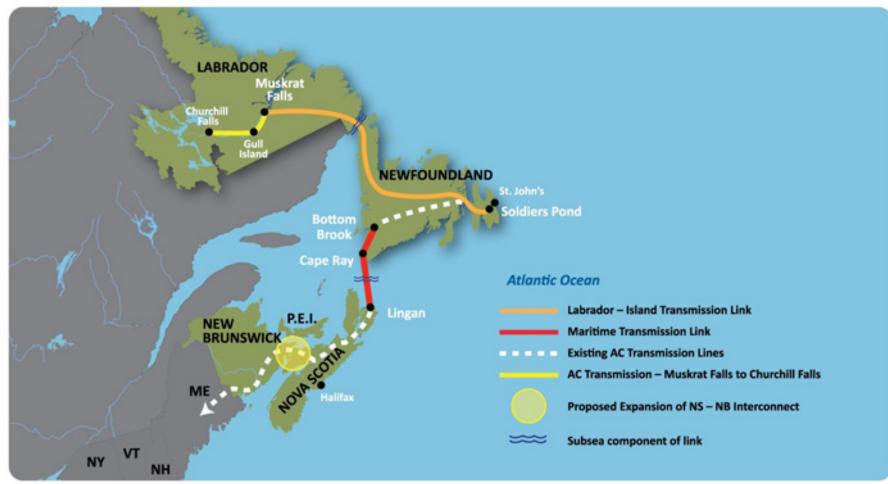
 a blended "made-in-Canada" price of oil consumed in Canada:


\$18.50 versus \$35 (Sept. 1980 world price)

- a petroleum and gas revenue tax of 8% on all production of oil and gas in Canada
- a federal share of petroleum production income rising from 10 to 24%

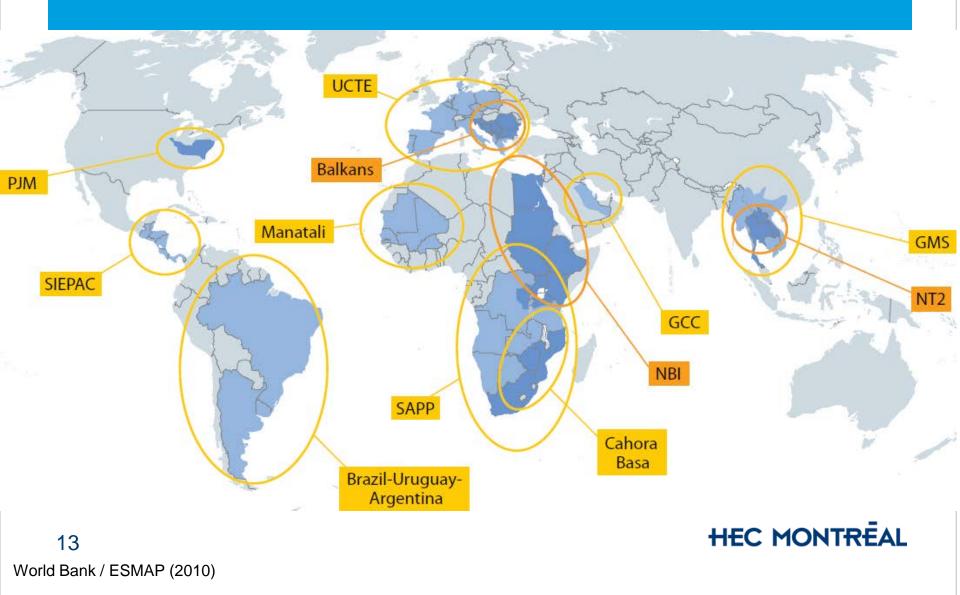

8

GHG EMISSIONS IN CANADA BY SECTOR (2013)



ELECTRICITY MARKETS **F** NORTHEASTERN NORTH AMERICA

WHEN ABSURDITY DEFEATS ECONOMICS



GENERIC BENEFITS OF ELECTRICITY MARKET INTEGRATION

- 1. Improving reliability and pooling reserves
- 2. Reduced investment in generating capacity
- 3. Improving load factors and increasing demand diversity
- 4. Economies of scale in new construction
- 5. Diversity of generation mix and supply security
- 6. Economic exchange
- 7. Environmental dispatch and new plant siting
- 8. Better coordination of maintenance schedules

REGIONAL POWER INTEGRATION

REGULATORY BARRIERS

- Few unified markets or "deep integration"
- Mostly bilateral trade agreements
- Many regulatory challenges:
 - Possibility to trade interconnection capacity day-ahead and intraday
 - Technical features (e.g. technical losses) properly modelled in the allocation process
 - Gate closure time as close to real time as possible
 - Integration of electricity balancing markets

(Teusch et al., 2012)

HEC MONTREAL

LITERATURE REVIEW FINDINGS

"It was notable in carrying out the literature review that many of the papers on regional power are **descriptive rather than analytic**. There are comparatively few academic studies which have real theoretical depth."

Research gap: "theoretical analysis of the way in which benefits are distributed"

ECA (2010) The Potential of Regional Power Sector Integration: Literature Review

Billette de Villemeur and Pineau (2012) "Regulation and electricity market integration: When trade introduces inefficiencies", *Energy Economics*

2. MODEL

Th

H

 e_t^{Th}

 p_t^{Th}

 X_t^{Th}

thermal jurisdiction, marginal cost hydro jurisdiction, average cost hourly production, in MWh at t $C_{Th}(e_t^{Th})$ cost of producing e_t^{Th} in Th at t price in Th at $t (= C'_{Th}(e_t^{Th}))$ export from Th into H at t $\bar{x}_t^{Th}, \bar{x}_t^H$ transmission capacity at t $D_t^{Th}(p_t^{Th})$ demand in Th $D_t^{Th} = e_t^{Th} + x_t^{H} - x_t^{Th}$

THREE REGIMES

Regime 1: No transmission, competitive market in *Th* and regulated in *H*

- **Regime 2**: Transmission and trade, competitive market in *Th* and regulated in *H*
- Regime 3: Transmission, competitive market in both Th and H

REGIME 2 PRICES

• When *Th* exports,
$$p_t^{Th} = \lambda - c^{\tau} - \mu_t$$

and is at most $\overline{p^{Th}} = \lambda - c^{\tau}$

With p_R^H at average cost

• When *Th* imports, $p_t^{Th} = \lambda + c^{\tau} + \mu_t$ and is no less than $p^{Th} = \lambda + c^{\tau}$

• When
$$x_t^{Th} = x_t^H = 0$$
,
 $\overline{p^{Th}} < p_t^{Th} = C'_t \ (e_t^{Th}) < \underline{p^{Th}}$

PROBLEM FORMULATION FOR R3

REGIME 3 PRICES

• When *Th* exports,
$$p_t^{Th} = p_e^H - c^\tau - \mu_t$$

and is at most $\overline{p^{Th}} = p_e^H - c^\tau$

With $p_e^H = \lambda$

• When *Th* imports, $p_t^{Th} = p_e^H + c^{\tau} + \mu_t$ and is no less than $p^{Th} = p_e^H + c^{\tau}$

• When
$$x_t^{Th} = x_t^{H} = 0$$
,
 $\overline{p^{Th}} < p_t^{Th} = C'_t \ (e_t^{Th}) < \underline{p^{Th}}$

3. CALIBRATION

- We calibrated the *Th* and *H* jurisdictions unsing 2007 hourly data from Ontario and Quebec
- Linear demand curve with a -0.15 elasticity (at the observed pricequantity pair)
- Marginal cost is linear, from observed price-quantity pairs

3. CALIBRATION

- H has 184.705 TWh of hydropower (but also imported from Th to meet its demand)
- *Th* exports were limited to 720 MW and *H* exports to 1,295 MW. These capacities have been adjusted to reflect actual trade
- Transaction cost of \$2/MWh

4. PRICE RESULTS

Average price \$/MWh	2007 Data*	R1	R2	R3
p^{Th}	47.81	47.96	48.52	46.79
p^H	27.90	29.02	27.90	30.91
Export from Th	37.15	_	38.84	22.80
Export from H	67.20	_	71.00	53.88
Min p^{Th}	-0.4^{**}	4.60	4.60	4.60
$\operatorname{Max} p^{Th}$	436.53	167.66	165.39	165.39

4. QUANTITY RESULTS

\mathbf{TWh}	2007 Data	$\mathbf{R1}$	R2	$\mathbf{R3}$
$\sum D_t^{Th}$	162.25	162.39	161.94	162.85
$\sum D_t^H$	185.82	184.70	185.82	182.823
Total Demand	348.083	347.09	347.77	345.67
$\sum e_t^{Th}$	n.a.	162.39	163.06	160.96
$\sum e_t^H$	n.a.	184.70	184.70	184.70
Share of Trade*	n.a.	0%	0.79%	0.83%
*C C	1 • /		11 1	1

*Sum of exports and imports over overall demand.

4. WELFARE IMPACTS

Million \$	2007 Data	R1	R2	$\mathbf{R}3$
Change of Consumer Surplus Th	n.a.	+61	_	+275
Change of Consumer Surplus H	n.a.	-208	_	-554
Change of Profit Th	n.a.	-63	_	-275
Change of Profit H	n.a.	+198	_	+601
Transaction cost		—	5.47	5.76
Export Revenues Th	n.a.	—	74.3	11.2
Export Revenues H	n.a.	—	56.5	126.0
Coal Emissions (million t)		28.74	29.29	28.60
NG Emissions (million t)		8.86	8.90	8.31
Total Emissions (million t)	34	37.60	38.19	36.92

4. WELFARE IMPACTS (2)

Change in Million \$	$\mathbf{R1}$	$\mathbf{R}2$	R3
$Th \ \mathrm{CS} + \mathrm{Profit}$	-2.41	—	+0.30
$H \operatorname{CS} + \operatorname{Profit}$	-10.28	—	+47.12
Total CS+Profit	-12.70	—	+47.42
Marginal Damage $Th \ (@20\$/t)$	-11.80	—	-25.52
Marginal Damage H (@20\$/t)	-11.80	—	-25.52
Total Damage $(@40\$/t)$	-23.61	—	-51.05
Total Welfare (CS+Profit-Damage)	+10.91	_	+98.47

4. DOUBLING TRANSMISSION / PRICE

Average price \$/MWh	R2	R3	R2 x2	R3 x2
p^{Th}	48.52	46.79	48.41	45.80
p^H	27.90	30.91	27.90	32.48
Export from Th	38.84	22.80	37.60	24.97
Export from H	71.00	53.88	65.24	52.91
Min p^{Th}	4.60	4.60	4.60	4.60
Max p^{Th}	165.39	165.39	163.12	163.12

HEC MONTREAL

4. DOUBLING TRANSMISSION / QUANTITY

\mathbf{TWh}	R2	R3	R2 x2	R3 x2	
$\sum D_t^{Th}$	161.94	162.85	161.81	163.20	
$\sum D_t^H$	185.82	182.823	185.82	181.25	
Total Demand	347.77	345.67	347.64	344.46	
$\sum e_t^{Th}$	163.06	160.96	162.93	159.75	
$\sum e_t^H$	184.70	184.70	184.70	184.70	
Share of Trade [*]	0.79%	0.83%	1.53%	1.62%	
*Sum of exports and imports over overall demand.					

4. DOUBLING TRANSMISSION / WELFARE IMPACTS

Million \$	R2	R3	R2 x2	R3 x2
Change of Consumer Surplus Th	_	+275	+54	+466
Change of Consumer Surplus H	—	-554	0	-840
Change of Profit Th	—	-275	-84	-458
Change of Profit H	—	601	32	931
Transaction cost	\$5.47	\$5.76	\$10.62	\$11.17
Export Revenues Th	\$74.3	\$11.2	\$118.6	\$26.0
Export Revenues H	\$56.5	\$126.0	\$135.4	\$235.4
Coal Emissions (million t)	29.29	28.60	29.67	28.53
NG Emissions (million t)	8.90	8.31	8.62	7.82
Total Emissions (million t)	38.19	36.92	38.34	36.36

4. DOUBLING TRANSMISSION / WELFARE IMPACTS

Change in Million \$	R2	$\mathbf{R}3$	R2 x2	R3 x2
$Th \ CS + Profit$	_	+0.30	-29.39	+8.02
$H \operatorname{CS} + \operatorname{Profit}$	—	+47.12	+32.00	+90.94
Total CS+Profit	—	+47.42	+2.61	+98.96
Marginal Damage Th (@20\$/t,	_	-25.52	+3.00	-36.75
Marginal Damage H (@20\$/t,	—	-25.52	+3.00	-36.75
Total Damage $(40\$/t,$	—	-51.05	+6.00	-73.5
Total Welfare (CS+Profit-Damage)	—	+98.47	-3.38	+172.45

CONCLUSION

- Model to study regime change and trade between two jurisdictions our main contribution.
- Welfare gains + environmental gains
- Shortcomings:
 - Only 2 jurisdictions are included
 - Perfect knowledge is assumed (e.g. hourly demand)

5. DISCUSSION: RECOGNIZING OBSTACLES

- 1. Structure of political and electoral incentives in the provinces and the federal government
- 2. Redistribution of the gains from a partial or complete integration
- **3.** Lack of recognition of the environmental benefits resulting from integration

5. DISCUSSION WORKING TOWARDS INTEGRATION

- Awareness and information
- Redistribution and compensation
- Inspiration from the Canada Health Act
- Expand the concept of the "Atlantic Energy Gateway"
- Bi-lateral agreements (as QC and ON are currently exploring)
- Agreement on Internal Trade
- A credible Federal approach on GHG

