The MAF houses a fully updated Cameca IMS 4f ion microprobe. This instrument has been enhanced with additional lensing in the primary column to enable extremely bright, finely focused beams of O- for analyses with high precision and spatial resolution. It has also been equipped with modernized ion detection systems that augment performance of stable isotope analysis.

Spatial Resolution

SIMS can accomplish many types of elemental and isotopic determinations with a lateral spatial resolution of better than 5-10μm, and with sputtered pit depths of less than a few μm. For glassy materials, this represents a total sample consumption of less than 10 ng for a single analysis. Further, most elements can be quantitatively analyzed with detection limits substantially below 1 ppm (often below 10 ppb). A variety of light stable isotope determinations are also practical – with overall reproducibilities commonly better than 0.5 – 1 per mil.

Capabilities and Applications

SIMS shares the advantage with other forms of microbeam analysis ( EPMA, LA –ICP– MS and PIXE) of allowing in situ analysis of low destructivity - permitting determinations directly in intact thin sections of rock. Beyond this, SIMS permits direct analysis of individual melt inclusions, or of fine growth zones within marine biomineralization, where the extremely small size of an individual object severely limits study of their elemental or isotopic composition by any other means. Coupled with the capability to obtain Scanning Ion Images (SII) and other forms of Ion Microscopy, SIMS offers a variety of unique capabilities for geochemical analysis.