

The application of single crystal X-ray diffraction

— beyond simple structure characterization

X-ray Crystallography and Materials Characterization

Jian-Bin (JB) Lin

Research Laboratory Coordinator II, Crystallographer C-CART / CREAIT Network /Memorial University

Electromagnetic Spectrum

X-Rays (0.071 & 0.154 nm)

UV-Vis-NIR (175 to 1800 nm)

FT-NIR (1000 to 2500 nm)

FT-IR (2500 to 25000 nm)

https://www.mun.ca/creait/CCART/

Facility

Materials Characterization

TA Instruments Q500 TGA Thermogravimetric analysis

- Temperature range: ambient to 1000°C
- Gases: Air or Nitrogen

Mettler-Toledo DSC1 Differential Scanning Calorimeter

- Temperature range: -90°C to 600°C
- Gases: Air or Nitrogen

Facility

X-ray Crystallography

Rigaku XtaLAB Synergy-S X-ray diffractometer

- 4-circle Kappa goniometer
- Dual PhotonJet sources (Cu and Mo)
- HyPix-6000HE Hybrid Photon Counting (HPC) detector
- Oxford Cryosystems 800 Series Cryostream.

Facility

X-ray Crystallography

Rigaku XtaLAB Synergy-S X-ray diffractometer

- Collection temperature from 80 to 400 K.
- Single crystal diffraction (crystal size as small as 20 µm)
- Transmission-mode (in capillaries or Kapton loops) **powder** diffraction

Crystalline or Amorphous

Single-crystal vs. Polycrystals

continuous and unbroken

aggregate of crystals

Credit to Carole Smile and Scott McCulloch on Unsplash

Single-crystal X-ray diffraction (XRD)

Single-crystal XRD vs. Polycrystals XRD

Single-crystal vs. polycrystals XRD

PXRD collected from single-crystal diffractometer

No prefered orientation Micro-gram sample

Single-crystal faces index

0.1-0.3 mm

In-situ loading of molecule

C = compound m = molecule

Lin, J.-B. et al. J. Am. Chem. Soc. 2010, 6654.

In-situ loading of CO₂ in a single crystal

~ 0.1 mm

characterize a catalysis mechanism

The difference electron density map

The environment of CO₂

Lin, J.-B. et al. Chem. Commun. 2011, 926-928.

RESEARCH WEEK2020

Questions?

MEMORIAL UNIVERSITY