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Evolvability and Acceleration in Evolutionary Computation

Ting Hu Wolfgang Banzhaf

Abstract

Biological and artificial evolutionary systems can possess varying degrees of evolv-

ability and different rates of evolution. Such quantities can be affected by various

factors. Here, we review some evolutionary mechanisms and discuss new developments

in biology that may improve evolvability or accelerate evolution in artificial systems.

Biological notions are discussed to the degree they correspond to notions in evolutionary

computation. We hope the findings put forward here can be used to design computa-

tional models of evolution that exhibit significant gains in evolvability and evolutionary

speed.

1 Introduction

The field of Evolutionary Computation (EC) has seen substantial progress since it was

founded in the Sixties and Seventies of the 20th century [68, 51, 128, 138, 43, 42, 84, 16],

inspired by the evolution process in nature.

In EC, candidate solutions to optimization or learning problems are represented by

structures similar to gene sequences and their phenotypic expressions. The ensemble of

such solutions is referred to as a population. Evolutionary operators, such as mutation,

recombination, and selection are applied to this population. Solutions gradually improve

by repeating a variation-selection cycle in the evolution process through numerous itera-

tions. Essentially a search method, EC often produces well-performing solutions to complex
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optimization and learning problems arising from various areas [1].

The fundamental idea of EC was gleaned from biology, and more specifically, from

Darwin’s theory of evolution by natural selection [32] as embodied in the neo-darwinian

synthesis [104, 56]. However, knowledge of natural evolution has improved profoundly in

biology in the past decades. This progress has, to a large degree, not been incorporated yet

in computational models of evolution, and therefore cannot be harvested in applications.

We have argued that adopting new developments from areas such as molecular genetics,

cell biology, developmental biology and evolutionary biology would substantially benefit

evolutionary computation [14, 152].

The question then arises what are the most important and revolutionary discoveries in

biology in recent times, and how can they be sufficiently abstracted to provide material for

computational models. As the number of scientists working in the areas mentioned above

is now higher than at any other time before, and can be estimated to be well over a million,

it becomes non-trivial to select those aspects of evolution that will have most impact in

computational models. A number of books have appeared in recent years that provide

some guidance in this quest (see, e.g., [82, 45, 156, 121, 26, 70]), and here we are mainly

interested in the concepts of evolvability and the acceleration of evolution.

1.1 Evolvability

In the process of evolution, genetic variation explores new evolutionary material, the cor-

responding phenotypic variation provides adaptive characteristics, and stabilization oper-

ators including recombination and selection preserve improvements over previous genera-

tions. The cooperation of these operations is what allows evolution to work. Thus, the

core mechanism of evolution is to assemble the forces of these operations yielding adaptive

improvements that imply the evolvability of an evolutionary system. A growing number

of efforts have been dedicated to the understanding [94, 126] and evolution [33, 159] of
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evolvability.

While the concept of evolvability is still very much under discussion, we want to venture

to propose a definition that is equally applicable to natural and artificial systems:

Definition 1: Evolvability. The capability of a system to generate adaptive phenotypic

variation and to transmit it via an evolutionary process.

Altenberg [6] describes evolvability from a viewpoint of EC as the ability of a genetic

operator or representation scheme to produce offspring fitter than their parents. In biology,

Kirschner and Gerhart [81] suggest that evolvability should be understood as an organism’s

capacity to generate heritable and selectable phenotypic variation. An explicit comparison

between evolvability of biological and computational systems has been performed by Wagner

and Altenberg [159]. In their view, evolvability should be considered as the ability of random

variants to produce occasional improvements, which depends critically on the plasticity

of the genotype-phenotype mapping. The authors emphasize “variability” determined by

the genotype-phenotype mapping as the propensity to vary, rather than variation itself.

Marrow [99] suggests that evolvability means the capability to evolve, and this characteristic

should be relevant to both natural and artificial evolutionary systems. He discusses a

number of important contributions on this topic in both biology and EC, and raises some

open questions for further research. Recently, a growing number of evolutionary biologists

and computer scientists have shown interest in this topic. In an evolutionary system, many

properties of a population are considered related to evolvability, including facilitation of

extra-dimensional bypass and robustness against genetic variability [31, 157], redundancy

and flexibility during developmental processes [81], and mutation rate adaptation [21].

The detection and investigation of evolvability are non-trivial and intriguing problems.

Phenotypic fitness is directly observable and serves as a selection criterion. However, as a

potential to generate better fitness and a capability for adaptive evolution, evolvability is

difficult to observe and to quantify. Although a formal methodology on measuring evolv-
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ability has not yet been agreed upon in the literature, some empirical methods have been

proposed. Nehaniv [108] proposes the perspective of using evolutionary system complexity

to describe and measure evolvability. He specifies the exhibited evolvability as an observable

outcome generated by evolvability, and measures evolvability by the rate of the increasing

complexity of evolutionary entities in an evolutionary system. Wagner proposes to sim-

ply measure the amount of non-neutral 1-step mutation variation in a biological system of

particular relevance to evolution (RNA) in order to quantify evolvability [158].

Earl and Deem [36] suggest that evolvability can be selected for by varying the environ-

ment. By observing genetic changes in protein evolution, they find that rapid or dramatic

environmental change generates strong selection pressure for evolvability. Thus, high evolv-

ability can be detected and favored by such selection pressure. Reisinger et al. [129, 130]

propose an indirect encoding representation to improve the evolvability by its capacity to

facilitate effective search. A gradually changing fitness function is designed to measure

evolvability of such a representation and to evolve a population that is adaptive under dif-

ferent environments. Furthermore, as the pace of change of the fitness function increases,

stronger selection pressure for evolvability is imposed.

1.2 Evolution Acceleration

Related to the theme of evolvability is the rate of evolution. Evolvability defines how likely

a system can generate adaptive phenotypic variation and the rate of evolution describes how

fast this evolutionary process can proceed. As an fascinating topic in evolutionary biology,

the rate of evolution has caused debates already since Darwin’s time. Darwin himself

held the view of phyletic gradualism, hypothesizing that most evolution occurs uniformly,

gradually molded by selective conditions. Other were of different opinion, and Eldredge and

Gould [39] proposed the theory of punctuated equilibria. According to this idea, evolution

occurs through bursts of innovation followed by long periods of stasis, a major challenge to
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Darwin’s orthodoxy.

In biology, the rate of evolution has different definitions and measures depending on

the underlying objects examined, for instance, gene sequences, proteins, organisms, etc. In

molecular biology, the rate of evolution usually describes the rate of mutants being preserved

as advantageous, i.e. those that can generate phenotypic improvements. Biologists use the

ka/ks ratio to measure the rate of gene sequences evolution [93, 107, 112, 169]. It is

known that some changes to a gene sequence may lead to differences in the amino acid

sequence of an encoded protein while others will not, due to the degenerate code employed

for translation. Therefore, such a measure can be used to compare two homologous protein-

coding gene sequences of related species. The ka/ks ratio resulting from a measurement of

the number of nonsynonymous (amino acid) substitutions per nonsynonymous site (ka) to

the number of synonymous substitutions per synonymous site (ks) characterizes the rate

of evolution between these two sequences. Since ks measures neutral evolution (without

considering functional improvements under selection pressure), the ka/ks ratio reflects the

rate of adaptive evolution against the background rate of variation. In case ka/ks > 1,

fixation of nonsynonymous substitutions is faster than that of synonymous substitutions,

which means that positive selection fixes amino acid changes faster than silent changes.

Mostly, however, one finds ka/ks < 1, the case where deleterious substitutions are eliminated

by purifying selection (negative selection), and the rate of fixation of amino acid changes is

smaller than the background rate of variation. If ka = ks, the fixation of these two types

of changes is at the same rate. To summarize, measuring a large ka/ks ratio suggests that

adaptation has been generated and fixed at a high rate. This measurement has been widely

applied in the analysis of adaptive molecular evolution, and is accepted as a general method

for measuring the rate of gene sequence evolution in biology.

Other than at the molecular level, Worden has defined the concept of genetic information

in the phenotype (GIP) in his work on the speed limit for evolution [164], GIP is meant to
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be a measure of the amount of genetic information expressed in observable phenotype, and

he uses the rate of increasing GIP to describe the rate of evolution. He proposes that GIP

measurements can be applied in both biology and EC.

In EC systems, the goal of evolution is much more specific than in nature. That is,

to find the solutions to a given problem. Therefore, the rate of evolution in EC usually

refers to the speed of solving a specific problem, e.g., to the speed of fitness improvements.

The ability to define explicit phenotypic fitness is one of the most distinguishing features

that differentiate EC from natural evolution. In order to investigate the performance of a

computation model, the rate of evolution is thus mostly measured by the speed of fitness

function improvements. Other ad hoc methods are also utilized in EC, like the efficiency of

algorithms and CPU time. There are, however, some methods at a deeper level than simple

fitness function improvement, that can be found in the literature. Bedau and Packard [20],

for instance, propose a method for visualizing evolutionary adaptation. This method is

useful to identify and measure the capability of creating adaptation during evolutionary

processes. It is based on calculating evolutionary activity statistics of components in an

evolutionary system. During a decade of extensive development, the notion of evolutionary

activity has been applied to various scales of genetic components, including alleles, allele

tokens, phenotypic equivalence classes of alleles and whole genotypes, in both artificial

evolutionary systems and the biosphere. In their later work, two aspects for evolutionary

adaptation were emphasized: the extent and the intensity of evolutionary activity [19, 127].

The extent of evolutionary activity concentrates on how much of an adaptive structure is

present in an evolutionary system, while the intensity concerns the capability in generating

new adaptive structures. The measures of cumulative evolutionary activity and mean cumu-

lative evolutionary activity characterize the extent of a system’s evolutionary adaptation.

In addition, new activity is a measure of the intensity of a system’s evolutionary adaptation.

Evolutionary activity can be quantified and visualized during evolutionary adaptation. Its
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derivative is the concentration of a component’s current presence, and its second derivative

can be argued to reflect the rate of evolution at a particular time. Evolutionary activity is

also claimed to be a straightforward method for studying evolvability [19]. The argument is

that, since a system with high evolvability can create highly adaptive variation, the quan-

tification of evolvability can be determined from different levels of extent and intensity of

evolutionary activity.

A number of observations on the factors that can accelerate evolution have been made

over the past few years. Simon [143] brings up the “nearly completely decomposable” prop-

erty in multicellular organisms, and proposes that this is an important property that can

lead to faster fitness increases. In research on yeast genes, Gu et al. [60] report rapid evolu-

tion of gene expression and regulatory divergence after gene duplication. Gene duplication

in biology contributes substantially to genomic and organismal evolution, and it provides

abundant material for mutation and selection events to generate new gene functions in a

modular way. By studying the recent nucleotide substitutions in human evolution, Hawks

et al. [65] find that, as a population becomes more adaptive to its current environment, the

rate of adaptive evolution will slow down. However, growing population size can provide

the potential for rapid adaptive innovation. Thus, enlarging the population size and chang-

ing environmental conditions can both promote the rate of adaptive evolution. Kashtan et

al. [76] confirm in a recent report that a varying environment can speed up evolution in

an artificial evolutionary system. Other properties and techniques on the acceleration of

evolution have been also investigated in biology and computing.

This review discusses evolvability and methods for accelerating artificial evolution by

drawing ideas from complex natural systems. Notions from biology are introduced and

their potential in designing new models in EC is discussed. Section 2 starts with the

characteristics of populations. Exploratory and stabilization operations are investigated

in Sections 3 and Section 4, respectively. Quality differentiation is discussed in Section 5,
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followed by concluding remarks in Section 6.

2 Population

The general idea of EC is to adopt mechanisms of evolution from nature. In Darwin’s

theory of evolution both, the notion of variation and of natural selection are based on

natural populations. However, populations simulated in a computer are simplified from

their natural counterparts. For example, a major difference between these two systems

is that no identical individuals exist in a natural population, whereas this is allowed and

often the case in a simulated population. Slight variance is considered an essential aspect of

natural populations as it leads to the enormous diversity in natural evolution. Hence, more

details should be taken into account also in a computational population. An essential step

in EC is to determine features of the simulated population since selecting a representation

for individuals in the population and a size of this population can affect the performance

of a computation model.

2.1 Representation

The first step for setting up evolution with a population is to decide on the representation

of evolutionary individuals. Each individual should be encoded as a candidate solution to

a given problem, which subsequently determines the search space of an algorithm. There-

fore, the representation strategy is important because it predicates the input to the search

process that should produce a satisfactory output. Here, we highlight two biological mech-

anisms, a protection mechanism for robust information preservation, and a communication

mechanism for information interaction between different molecules. First we review general

forms of redundancy in living systems. Then we discuss molecular interaction to encourage

communication among different components of an individual.
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2.1.1 Redundancy

Living systems may seem wasteful and luxurious to computer scientists. The most distin-

guishing aspects of biology compared to other natural sciences are complexity and diversity,

which are of central concern to biologists. In the face of cruel competitive circumstances,

organisms show great redundancy and resilience. Redundancy exists at different levels in

natural organisms, including the genomic, transcriptomic, and phenotypic levels.

In biology, the genome of an organism is defined as the information encoded in DNA

sequences and inherited from generation to generation. The double helix structure of DNA

sequences itself is a form of protective redundancy of genetic information. Genomes carry

genes and other non-coding DNA sequences. A gene is a string of base pairs grouped by

a function generating proteins and polypeptides (protein fragments). Non-coding DNA se-

quences, formerly called “junk DNA”, are not expressed as proteins, although they might

be involved in their manufacturing process. However, genes are only quite small a fraction

of the entire genome [131], with more than 98% of the human genome, for instance, being

non-coding DNA sequences [9]. Furthermore, even a gene sequence itself is divided into

exons and introns, where exons directly participate in protein expression but introns do

not. Nevertheless, these non-coding DNA sequences are not useless. Modern biological

discoveries indicate that they play an important role in the regulation of gene transcrip-

tion [165]. Regulation mechanisms will be discussed later in Section 5.1.1. Wren et al. [166]

indicate that tandem-repeat polymorphism in genes is quite common, and that such poly-

morphism can enhance the ability of some genes to respond rapidly to fluctuating selection

pressure. The mechanism of gene duplication will be discussed in detail in Section 3.1.2.

Moreover, it is well known that the human genome has two copies of each chromosome,

one copy inherited from each parent. In recent research, a great number of human DNA

segments are found to have more than two copies. The Copy Number Variations (CNVs) in

human and other mammalian genomes discovered lately accounts for a substantial amount
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of genetic variation other than single necleoside polymorphisms [47, 69, 139, 153], and it is

considered to have an important contribution to phenotypic variation. This phenomenon

will be discussed in detail later in Section 3.1.3.

The transcriptome describes the set of all transcribed RNAs in cells. In the human tran-

scriptome, the proportion of transcribed non-protein-coding sequences is large and shows a

great complexity [48]. Substantially more DNA is transcribed than is translated, and only

a small proportion of mRNAs will be translated into proteins. The remaining part is called

non-coding RNA or ncRNA. About 98% of all transcribed output in humans are ncRNA

sequences [100]. Although many of the functions of these non-coding sequences are unclear,

the high complexity of the transcriptome is considered important to studying mechanisms

of gene transcription in the human genome.

As an important contributor to evolvability, genetic redundancy at both levels of genome

and transcriptome has attracted increasing research interest in evolutionary biology [34], and

was found to be created by a number of mechanisms. Krakauer and Plotkin [86], however,

propose a new concept of antiredundancy. They declare that this antiredundancy emerges as

well as redundancy in cells, and natural organisms can modify the redundancy properties in

genotypes during evolution. Table 1 shows a summary of observed mechanisms responsible

for both redundancy and antiredundancy at the cellular level. Mechanisms for redundancy

mask the phenotypic effect of mutations and allow mutants to stay in sequences, while

mechanisms for antiredundancy enhance the efficiency of local selection to remove damaged

components.

Redundancy at the phenotypic level lies in an organism’s robustness against intrinsic or

environmental changes.

Definition 2: Robustness. The robustness of a biological or engineering system is its

capability in functioning continuously in the face of genetic or environmental pertur-

bations [156].
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Table 1: Mechanisms responsible for creating redundancy and antiredundancy at the cellular
level. (Adapted from Krakauer and Plotkin [86].)

Redundancy Antiredundancy
Gene duplication Overlapping reading frames
Neutral codon usage Nonconservative codon bias

Gene silencing
Polyploidy Haploidy
Multiple regulatory elements for n genes Single regulatory element for n genes
Chaperone and heat shock proteins
Checkpoint genes promoting repair Checkpoint genes inducing apoptosis
Telomerase induction Loss of telomerase
Dominance Incomplete dominance
Autophagy
mRNA surveillance
Bulk transmission Bottlenecks in transmission
Molecular quality control
tRNA suppressor molecules
Modularity
Multiple organelle copies Single organelle copies
Parallel metabolic pathways Serial metabolic pathways
Correlated gene expression Uncorrelated gene expression
DNA error repair Loss of error repair

With low robustness, a species would gradually go extinct due to lethal mutations because

random mutations are usually a cause of deleterious changes that destroy an individual.

One may note that robustness and evolvability seem to have a contradictory relation. Since

a system has high robustness, it can be tolerant to intrinsic or environmental changes that

less variation will be required, thus it should be less evolvable. Wagner [157, 158] discusses

this contradiction and resolves it. He distinguishes robustness and evolvability as quantities

at both the genotypic and the phenotypic level. If one considers genotype, the more robust

a genetic sequence is, the less innovation this sequence will produce. However, robustness

and evolvability are characteristics of an entire system and if investigated at phenotypic

level show a strong correlation. A system with high phenotypic robustness harbors a great

number of “neutral” variations that have no functional effects. According to the notion
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of exaptation proposed by Gould and Vrba [57], these neutral variations do not change

phenotypic function during relatively static evolution periods but may be able to generate

adaption later under certain genetic or environmental changes. Thus, a system with high

phenotypic robustness provides a great potential for phenotypic innovation in the future,

i.e., high evolvability [158].

Redundancy is wide-spread in natural organisms as an efficient protection mechanism

against internal or environmental changes, whereas in EC models components that do not

seem to be immediately relevant are often considered superfluous. In recent years, however,

representation redundancy has arisen as a by-product of computational evolution and has

attracted increasing interest from EC researchers.

Definition 3: Representation Redundancy. In genetic and evolutionary algorithms,

representations are redundant if the number of genotypes exceeds the number of phe-

notypes [134].

Rothlauf and Goldberg [134] examine the effects of redundant representations on the per-

formance of an EC system both theoretically and empirically, and they propose that redun-

dant representations can increase the reliability and efficiency of EC models. Specifically

in genetic programming, representation redundancy is usually identified as introns (or non-

effective, neutral code) [16] in programs. Researchers have made great effort to investigate

both the positive and negative effects of introns [91, 97, 116, 170], and a positive rela-

tion between neutral code and evolvability in genetic programming has been suggested.

The important role of redundancy in evolvability has been realized though most of this

redundancy comes as a by-product of evolution. We might, therefore, consider designing

protective redundancy into our algorithms to make them resilient against changes while

improving adaptation. Such capabilities complicates the algorithms but may be worthwhile

if the resulting robustness can generate higher evolvability when applying intense changes

(pressure?) to produce adaptive responses. Furthermore, evolution can be accelerated be-
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cause the system has a quick and robust reply to evolution pressures. This is particularly

true with the growth computational power available today.

2.1.2 Molecular Interaction

Natural living systems are remarkably diverse from simple organisms such as bacteria to

highly complex creatures such as humans. This diversity is not the result of vastly different

chemical constituents of creatures. In fact, many organisms carry out similar metabolic, cell

division and replication processes under similar assembly principles [18]. The differences

that distinguish natural species are caused by the arrangement and distribution of basic

building blocks [71] and molecular interactions contribute significantly to these organiza-

tional mechanisms.

Interactions in a cell can happen between the same type of molecules, such as protein-

to-protein interaction, or between different types of molecules, such as protein-to-DNA

interaction. Signals can also be sent and responded to by cells in multicellular organisms.

Molecular interactions can be triggered by energy supply, e.g., in metabolic pathways, a chain

of interaction catalyzed by enzymes, or triggered by external stimuli, e.g., signaling pathways

that enable communication through the cell membrane [28]. Proteins are not only a product

enabling various organismal structures, but also work as control factors in various processes

from the synthesis of cells, metabolism, gene regulation, to sexual reproduction. They

accomplish complex tasks under the condition of frequent and continuous communication

between molecules and cells.

Metabolism is a key process to maintain the growth and reproduction of cells. The

metabolic pathway of a cell is an elaborate network of numerous chemical reactions catalyzed

by enzymes. Most enzymes are proteins, and they are an important factor in cellular

reactions [160]. Different types and amounts of enzymes are produced according to different

energy supplies, and these enzymes will determine different metabolic pathways by their
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Figure 1: The genetic switch in Jacob-Monod model. A specific repressor protein acts as
the switch. When it binds to a DNA site near the gene encoding beta-galactosidase, the
RNA polymerase protein cannot bind nor can it synthesize RNA from the gene. The gene
is turned off. When lactose is present, it binds to the repressor and keeps it from the DNA
site. The gene turns on. (Adapted from Kirschner and Gerhart [82].)

catalysis. In the process of gene expression, the function achieved can be controlled by

molecular interactions. For instance, the process of how a parsimonious bacterium responds

to food supplies during metabolism shows a simple genetic switch mediated by molecular
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interactions. Since the metabolic pathways of bacteria are much simpler than those of

multicellular organisms, the regulation of gene expression is more tractable in bacteria. The

phenomenon of enzyme induction [82] describes the adaptation of a bacterium to material

supplies by producing varying amounts of enzyme. What triggers this production and how

does this mechanism work? The Jacob-Monod model (shown in Figure 1) first described

the regulation mechanism of inhibiting or repressing genes by an inhibitory proteins, called

repressor in bacteria. The binding of lactose to a repressor enables the production of

RNAs by removing the repressor from its binding sites on the gene sequence where RNA

polymerase can bind. However, this is not a simple on-off switch model. The continuity

lies in the binding duration which decides the rate of protein synthesis. Therefore, if more

sugar is absorbed during metabolism, more protein is synthesized by RNA translation.

This simple sugar metabolism model captures the mechanism of how a repressor affects

gene functions. The enzyme here works as a trigger for the protein synthesis process under

various molecular interactions. In addition, most enzyme effects are sensitive to ambient

temperature [3], which is an important parameter to control metabolic interactions.

Signaling and cellular responses to signals are complex. These responses are controlled

by a plethora of positive and negative feedback loops. The presence of feedback complicates

the simple picture of a linear pathway, but is an essential part of the signaling process [18].

This makes signaling pathways involving molecular or cellular communication a network-

like structure, with complex regulatory processes at work. The cellular infrastructure of

eukaryotic organisms is only a few times larger than that of bacteria, but the complexity

of signaling network control differs greatly, by orders of magnitude. The linkage between

various parts of the gene expression apparatus in eukaryotic organisms is weakened by a

far less-precisely defined control than that found in prokaryotic cells [81]. For instance,

geometric requirements for binding sites are significantly relaxed in eukaryotic gene regu-

lation. A repressor does not have to bind at the exact position of a target, but just in the

15



neighborhood. Such a weak linkage also enables potential interactions between different

gene sequences by lowering constraints for cooperation. Signaling between cells is possible

only after a sufficiently large number of repressors participate simultaneously. Also, a sin-

gle signal may incur a much more complex response [31]. Allosteric proteins, which have

multiple sites for interaction, also make gene expression much more flexible because they

have different sites for different functions. The regulatory decisions on which genes are tran-

scribed when, where, and under what circumstances makes eukaryotic cells well conserved

but enormously adaptive to generate new phenotypes in changing environments [96].

Computational models used to analyze and understand multi-input/output, high-order

complex signaling systems have shown recent progress in bioinformatics [114]. In contrast,

current EC models are mostly limited to representing evolutionary material based on the

infrastructure of natural organisms, while disregarding the vast potential of interaction

mechanisms at both the molecular and cellular levels. The absence of such mechanisms in

EC, however, reveals significant research opportunities in this area.

2.2 Population Size

After the encoding of an individual is determined, a population is set up. Several features

of a population are tightly coupled to its evolutionary capabilities. In a computational

population, the most relevant feature is population size itself.

In nature, different species have various population sizes, and this characteristic has been

realized to play an important role in evolution. In the living world it is common that smaller

groups constituting species evolve faster, though smaller groups sometimes become extinct,

while species with larger populations evolve slower, staying unchanged for relatively long

periods. However, neither a small nor a large population size is unconditionally beneficial

to evolution. The relation between them should be understood in different scenarios.

The study of population genetics was formulated by Fisher [41], Haldane [61] and
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Wright [167]. It focuses on gene frequency changes in populations under the effects of

natural selection, mutation, genetic drift, and population size fluctuation. In this field, sci-

entists have examined the role of population size in molecular evolution using mathematical

analysis. The rate of molecular evolution is usually measured by the nonsynonymous to

synonymous substitution ratio ka/ks, discussed in Section 1.2. Decades ago Kimura [78]

proposed a strong dependency of the rate of molecular evolution on population size . More

recently, Gillespie [49, 50] has conjectured that there is only a very weak dependency on

population size. Between these two opinions, Ohta [118] finds population size to be related

to the rate of evolution under different assumptions regarding mutation types. The nearly

neutral theory of molecular evolution proposed by Kimura and Ohta [119, 120] has been re-

garded as one of the most important foundations for modern molecular evolution analysis.

In this theory, it is predicted that there is a substantial number of nearly neutral mutations

(including slightly deleterious and slightly advantageous ones) in molecular evolution, and

that these contribute to evolution by providing a potential for future phenotypic innovation.

Ohta [118] predicts that population size affects the rate of evolution under various mutation

patterns. If most mutations are deleterious, a smaller population can evolve faster, because

the chance of a slightly deleterious mutant being favored by selection is greater within a

smaller population and these nearly neutral mutations bring genetic variation and may

further trigger phenotypic innovation. In contrast, if mutations are mostly advantageous,

the rate of evolution in a larger population is greater. If most mutations are neutral, the

evolution rate is nearly independent of the population size. In general, random mutations

are more deleterious than advantageous in natural systems. Thus species with a small

population size usually evolve fast.

A number of studies focus on testing the relation between population size and evolution

rate by using comparisons. Island endemic species usually have small population sizes

because they are restricted to a limited geographical region. Woolfit and Bromham [163]
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study species on islands in support of the effect of population size on the rate of molecular

evolution. They compare island endemic species to closely related species on a nearby

mainland and find that island endemic species have a significantly higher nonsynonymous

to synonymous nucleotide substitution ratio than their counterparts on the mainland. This

result indicates a decrease in the population size will lead to an increase in the rate of

evolution. Wright et al. [168] study tropical species which are generally regarded to have

a rapid molecular evolution rate due to several factors such as latitude and climates. It

is believed that tropical organisms possess great species richness and dynamics with small

but highly diverse populations [149]. However, there are also exceptions that increasing

population size can accelerate evolution as well. By studying the recent rapid molecular

evolution in human genomes, Hawks et al. [65] suggest that if a population is highly adapted

to a current environment, evolution will become stagnant. Under these circumstances a

growing population size can provide the potential for rapid adaptive innovations. Thus,

enlarging the population size under chaotic environments can promote the rate of adaptive

evolution.

Population size is also involved in research on genome robustness. Visser et al. [34]

postulate that the population size should be sufficiently large for selection to be effective to

evolve the robustness of a system. Small populations have difficulty to achieve this robust-

ness. In a different study Krakauer and Plotkin [86] find, however, that small populations

will also favor evolving robustness by increasing genetic drift pressure and a buffering mech-

anism of hiding mutations from being diminished by selection. This hypothesis is supported

by Elena et al. [40]. Among the different authors, there is an agreement that the effect of

population size, either large or small, varies in different models.

In the EC community, many efforts have been dedicated to the optimization of popula-

tion size [95] in algorithms, since it is believed to have a high correlation with the perfor-

mance of an EC method. The challenge is that adapting population size is problem-specific
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and to date it is still unclear how to estimate the relations among various EC parameters. In

general, current work on this topic concentrates on two tasks: (i) initializing a proper pop-

ulation size prior to a run, and (ii) adjusting population size during a run. Most theoretical

works on population size initialization are based on Goldberg’s components decomposition

approach and the notion of Building Blocks [52, 54]. With many other publications, these

contributions propose to choose the population size according to the “hardness” of a spe-

cific problem. They reveal a general principle in setting population size: The more difficult

a problem is, the more diversity is required and the larger the population should be. In

later research, it has been realized that even for a specific problem the requirement for

population size may differ during different stages of evolution. Therefore, in addition to

setting a proper population size beforehand, many empirical methods on adjusting popu-

lation size during runs have been proposed recently, such as the Genetic Algorithm with

Variable Population Size (GAVaPS) proposed by Arabas et al. [8], the parameter-less GA

by Harik and Lobo [62], the Adaptive Population size Genetic Algorithm (APGA) by Back

et al. [10], and the Population Resizing on Fitness Improvement GA (PRoFIGA) by Eiben

et al. [38]. However, mechanisms for dynamically adjusting population sizes in EC are much

simpler than those found in nature, in that a fluctuating population size still has little to do

with mutation and selection patterns in different evolutionary stages. This relation requires

further exploration as a promising indicator of adjusting population size during a run.

3 Exploratory Operations

Evolvability is understood as the capability to generate offspring fitter than the parents [6].

Exploratory operators are mainly responsible, since generating variation is the method to

search for more adaptive individuals. Due to the complex mapping process from genotypic

to morphological level in biology, genotypic and phenotypic variation discussed separately.
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3.1 Genotypic Variation

Genotypic variation generally means mostly changes happening to DNA sequences in both

protein-coding and non-coding regions in the form of point mutation and gene rearrange-

ment. Gene sequences are highly conserved against lethal changes that would likely lead to

destructive consequences because a tiny mutant at the genetic level can cause a great change

in function [82]. In contrast, changes to the regulatory or non-coding part of sequences are

considered more able to increase adaptability and plasticity of a system. In this section,

we will discuss the general form of mutation first and then gene duplication as the most

important form of rearrangement, followed by a comparison between point mutation and

gene rearrangement.

3.1.1 Mutation

Searching for the essential driving force of evolution has been a central topic in evolution-

ary biology. Since Darwin declared that natural selection is the main force of evolution,

controversies have arisen on different aspects of this explanation. In modern biology, the

two main schools of thoughts are selectionism and neutralism [111]. Some scientists argue

that genotypic variation is maintained by selection, which is the central perspective of neo-

Darwinians. Other evolutionists insist that high genotypic variation can be explained as a

result of neutral mutations. In either case, mutation is accepted as a major mechanism to

generate genotypic variation.

Mutation can happen at either coding or non-coding regions of DNA sequences, and

may consequently cause functional or regulatory changes. The notion of neutral mutation

is based on the fact that the majority of mutations have no consequent effects on protein

function due to DNAs’ repair abilities and the redundancy in the translation apparatus. By

observing the rate of nucleotide substitution, neutralism proposes that mutations change the

function of gene products barely noticeably [111]. High genotypic variation might exist, but
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fatal destruction will not be able to influence species because fixation of those mutations

will not happen. Therefore, innovation from random mutations is capable of generating

adaptive morphology rather than random properties.

What triggers mutation and what is the relation between mutation and selection? Does

selection pressure indeed generate new mutations or simply allow existing mutants to be

fixed faster than before? Research on mutation under selection has received wide interest

since Darwin’s time. Controversies have arisen regarding the effect of selection pressure on

mutation, and different models have been proposed in the meantime [133]. It is now believed

that it is impossible to separate any form of mutation from the effect of selection. Roth and

Andersson [132] define adaptive mutations as fitter mutations that arise under selective con-

ditions to investigate “directed” mutation pathways. In subsequent work [66, 87, 145], their

group propose a gene duplication-amplification model to study the mutagenesis stimulated

by enhancement of selection. In addition, a recent study by Weinreich et al. [161] on the

effects of Darwinian selection on random mutation argues that environmental selection can

make some multi-step mutation pathways unaccessible. By studying “five point mutations”

in a lactamase allele that can increase bacterial resistance to an antibiotic, several muta-

tion pathways are in principle possible for these mutations. After calculating the different

probabilities of these pathways, their experimental results show that under intramolecular

interactions that increase the fitness of proteins, only a small number of pathways are really

accessible. This is quite an interesting phenomenon because mutations might be supervised

by some unknown fitness-increasing principles and consequently product proteins might be

reproducible and even predictable. These feedback and interaction mechanisms may reduce

the harm that mutations could bring to organisms. This point of view also conforms to

Kirschner and Gerhart’s definition of evolvability [81], which they define as “the ability to

reduce the potential deleterious mutations and the ability to reduce the number of muta-

tions needed to produce phenotypically novel traits”. If mutations can be supervised, fewer
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changes are needed to generate the required adaptation. Therefore, evolvability is improved

by reducing the cost of mutations.

In EC, mutation is regarded as an important exploratory operator. Artificial evolu-

tionary search should be good at both exploring suitable genetic novelty and maintaining

successive improvements. Holland [68] discusses this principle as the tension between “ex-

ploration” and “exploitation”. To keep this balance, a very important parameter for mu-

tation is the mutation rate, which has already been considered as an evolvable parameter

contributing to evolvability. Bedau et al. [21, 22] divide evolutionary adaptation concep-

tually in two stages: the novelty stage, where an evolving system enhances its adaptabil-

ity against a changing environment, and the memory stage, where the evolving system is

building up this adaptability through incremental improvements. By providing a simple

two-dimensional model, Bedau et al. postulate that the mutation rate should increase dur-

ing the novelty stage and decrease during the memory stage. This fluctuation of mutation

rates is able to keep the balance between evolutionary novelty and memory, and thus to

increase the evolvability of adaptive systems.

However, compared to natural evolutionary systems, genotypic variation in computation

is somewhat arbitrary and not as adaptive. First, the fixation process of mutations is not

simulated appropriately in EC, because all changes to individual sequences are translated

into phenotypic properties. Recovery or repair mechanisms are usually not applied to

individuals suffering deleterious mutations, which make those individuals unfavored during

the selection process. Second, biological development of selection-driven mutation pathways

is an interesting direction to explore in computational models. These topics should be

considered in future research in EC to make the best use of the evolutionary power of

mutation.
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3.1.2 Gene Duplication

Natural selection acts mostly at the phenotypic level, but genetic changes are the major

thrust of evolution. Gene duplication is an important mechanism creating new genes and

new genetic subsystems. This mechanism has been recognized to generate abundant genetic

material and contributes substantially to biological evolution [117]. A large number of

duplicate genes have been discovered to exist in vertebrate genomes [110], and a repeated

number of whole genome duplications is being considered as key events in evolutionary

history [147]. In modern biology, gene duplication and its subsequent function-specialized

divergence are widely believed to be a major reason for functional novelty.

Figure 2: Two common modes of gene duplication. (a) Unequal crossing over, which results
in a recombination event in which the two recombining sites lie at nonidentical locations
in the two parental DNA molecules. (b) Retroposition, which occurs when a message
RNA (mRNA) is retrotranscribed to complementary DNA (cDNA) and then inserted into
the genome. Squares represent exons and bold lines represent introns. (Adapted from
Zhang [171].)

Gene duplication is usually generated by unequal crossover or retroposition [171] (see

23



Figure 2). Unequal crossover is similar to but different from normal crossover that occurs

when two chromosomes exchange a proportion of DNA at the same locus in base pair

sequences. Unequal crossover happens if this exchange occurs in different loci, with the

consequence that duplicate genes appear in one chromosome while the other turns out to

contain pseudogenes. Retroposition happens when an mRNA is retrotranscribed into a

complementary DNA (cDNA) and then inserted into the original genome. Besides such

gene duplication, duplication at other scales in cells has been discovered recently [11, 147],

including segmental duplication and whole-genome duplication. Here, we only consider gene

duplication. The main products of gene duplication are called paralogous genes, a type of

homologous genes. Studying homologous genes has emerged as an efficient way to search for

molecular innovation and species formation. Homologous genes have two main categories,

paralogs and orthologs. Paralogs are results of gene duplication and code for proteins with

different functions. Orthologs are the products of speciation events and the proteins they

code for serve similar functions.

Once a gene duplication has happened a complex fixation process on the duplicate

genes takes place. Purifying selection and gene conversion are the main pressures affecting

the survival of duplicate genes [113]. Most duplicate genes become pseudogenes after one

or more mutations disable them and no promoting functions is yielded. However, multiple

copies of identical genes can, after duplication, promote functional redundancy against fatal

changes. The process of pseudogenization is reported occurring in the early stage of rapid

evolution [63], with evidence of many pseudogenes found in the human genome. Other

duplicate genes are changed by selection pressure and functionally diverge. Subfunctional-

ization and neofunctionalization are the two main channels of functional divergence [171]. In

subfunctionalization of two gene duplicates, shown in Figure 3, each copy adopts a different

aspect of the function of the original gene. Both copies will be stably maintained because

both aspects of the function are indispensable. Subfunctionalization leads to functional spe-
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cialization by dividing multi-functional genes once the newly emerged genes perform better.

Alternatively, some relatively new function can also evolve after gene duplication [172], and

this process is called neofunctionlization. This has been revealed earlier as the Dykhuizen-

Hartl Effect [35] where a random mutation is preserved in the duplicated gene by reducing

selection pressure due to functional redundancy that results from gene duplication. Such

mutations may accumulate and induce a genetic function change depending on conditions of

a dynamic environment. New adaptive functions may thus be generated and later preserved

during evolution. By possibly creating novel functions and allowing evolution under fewer

constraints, neofunctionlization is an important outcome of gene duplication.

Figure 3: Division of expression after gene duplication. Squares represent genes, closed
ovals represent cis-acting elements that regulate gene transcription, and open ovals represent
deactivated cis-elements. Consider a gene that is expressed in tissues T1 and T2, with a
cis-acting regulatory element A1 controlling the expression in T1 and A2 controlling the
expression in T2. Following gene duplication, one daughter gene might lose the A1 element
whereas the other gene might lose A2, so that each is expressed in only one of the two
tissues. (Adapted from Zhang [171].)

In brief, gene duplication contributes substantially to genomic and organismal evolution.

It provides abundant material for mutation and selection, and allows to specialize function
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or generate completely new functions. The acceleration of protein sequence evolution after

gene duplication has recently been reported in research on yeast genes, Gu et al. [60]. The

authors use an additive expression distance between duplicate genes to measure the rate

of expression divergence, and rapid evolution of gene expression and regulatory divergence

after gene duplication is observed.

In summary, the mechanism of gene duplication can considerably increase evolvability

of a system by reducing the cost of mutations. In EC, the idea of using gene duplication

and deletion operators was proposed some time ago. Those operators are in general based

on the method of variable-length genotypes, and are executed with predefined duplication

or deletion probability [59, 85, 136, 137]. Unfortunately, so far only application-oriented

work has appeared with different representations [25], and a common framework for this

concept is missing. More details of gene duplication in biology should be taken into account

to benefit computational evolution. In particular, the question of how gene duplication

reduces the limitations of mutation and selection, and in the process promotes evolvability

needs to be studied. Is there a way to implement functional specialization and innovation

through gene duplication in EC?

3.1.3 Point Mutation vs. Gene Rearrangement

A point mutation occurs when a base on a DNA sequence is changed to another base at the

same locus. Gene rearrangement is a change in the order of a DNA sequence on a chromo-

some. This change can be an inversion, translocation, addition, or deletion of genes. Earlier

research focused mostly on Single Nucleotide Polymorphisms (SNPs) in genomes due to the

enormous complexity of genetic sequence analysis, but gene rearrangement was still be-

lieved to contribute to evolvability more than simple point mutation does [79]. Fortunately,

the recent development of technology has facilitated the shift in focus from a locus-based

analysis to a genome-wide assessment of genotypic variation [47].
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Genetic rearrangements, rather than point mutations, can maintain the connective in-

formation internal to gene sequences. Because genes form networks of functional control,

rearrangement is better able to preserve internal structures. Genetic changes are highly

constrained to gene sequences and gene rearrangements occur far more frequently than

point mutations.

The ubiquity of Copy Number Variations (CNVs) has been realized recently in mam-

malian genomes by different groups of biologists, such as Iafrate et al. [69], Sebat et al. [139],

and Tuzun et al. [153]. CNV is regarded as a predominant type of genotypic variation lead-

ing to vast phenotypic diversity in mammalia. CNVs show that large segments of DNA,

with sizes from thousand to millions of base pairs, can vary in copy number of genes. This

variation can lead to protein dosage differentiation in the expression of genes, and CNV

is therefore regarded as being responsible for a significant proportion of phenotypic vari-

ation [47]. The mechanisms that create CNV have not yet been clearly understood, but

some hypotheses have been proposed in the literature. Fredman et al. [46] and Shaw and

Lupski [140] propose that CNV might be the result of large segmental gene duplications or

non-homologous recombination events.

Recent bioinformatics research uses statistical and computational tools to analyze chro-

mosomal evolution by a comparison of genome-rearrangements between sequences of related

species [135]. Although the biochemical mechanisms of gene rearrangement are still far from

being fully understood, it is time to start simulating such rearrangement operations in com-

putational models in EC. Particularly, the recent discovery of CNVs requires attention by

computer scientists, in order to achieve similar benefits in EC.

3.2 Phenotypic Variation

As mentioned in Section 2.1.2, despite their vast phenotypic differences, metabolic processes

and cell structures in bacteria and humans are quite similar [82]. What, then, makes
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humans so different morphologically from other organisms? It is phenotypic variation.

Unfortunately, the relation between genotypic variation and phenotypic variation is still

not fully clarified in current biological research. Since selection acts on phenotypes rather

than on genotypes, phenotypic variation should be used to explain the immense diversity

among organisms. Here, we discuss several aspects of phenotypic variation. We leave

the discussion of the mapping process between genotype and phenotype that controls the

direction of phenotypic changes resulting from genotypic variation to Section 5.1.

3.2.1 Conservation and Relaxation

According to Kirschner and Gerhart, evolution possesses two important features: conser-

vation at the molecular level and relaxation at the anatomical and physiological level [82].

By conservation it is meant that the genetic components of organisms tend to maintain

relatively stable structures; relaxation refers to the less constrained phenotypic diversifica-

tion of organisms. The authors state that conservation on the genotypic level reduces the

constraints on the phenotypic level.

In Darwin’s evolutionary theory, all organisms have evolved from the same ancestor.

After primal initialization and evolution, genetic structures of organisms are highly con-

served during the course of billions of years [160]. This can well explain why the number

of human genes is only a few times that of bacterial genomes but significant anatomical

and behavioral differences exist between them. A surprisingly small number of genes in

humans and other complex organisms shows that the great diversity and complexity at the

anatomical and physiological levels have to rely on and organize / reuse limited genetic

material. When certain organisms need to improve their adaptivity in order to survive in a

new environment, the regulation system only has to recombine existing mechanisms for the

generation of adaptive functions, which requires little or no new genetic material [81]. Not

only gene sequences are highly conserved, the core processes of coordination of the genetic
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material are also well conserved since the time they initially emerged [82]. These conserved

core processes are used repeatedly for different purposes and functions under different cir-

cumstances, at different times, with different genetic material. The Baldwin Effect [144]

explains that phenotypic variation is not generated out of the blue but through regulation

of existing components in organisms: Mutation simply happens to stabilize and to extend

what has already existed to improve somatic adaptability towards external stimulations.

This conservation mechanism can efficiently prevent lethal changes in genotypic variation

and is an economic method to increase the adaptability of organisms. New material is not

needed to adapt to changing environments, but a few modifications will suffice.

Functional innovation is heavily constrained due to molecular interactions among various

genetic components that are involved to produce a specific trait. If the participation of more

genetic components is needed, it becomes harder for functions to change. In fact, relatively

little genetic material is required to generate all proteins of organisms. Under selection

pressure from a changing environment, organisms have to yield adaptive phenotypic traits

to survive, however, and the highly conserved core processes mentioned above are used

repeatedly to generate new cooperation among the conserved genetic material, bringing

about fitter function and behavior. Relying more on the combinatorics of components is

equivalent to a relaxation on phenotypic variation.

The relaxation on phenotypic variation has been highlighted as the notion of “decon-

straint” in Kirschner and Gerhart’s [81] research on evolvability which studies the mapping

from genotype to phenotype. Enhancing phenotypic variability under changing environ-

mental conditions allows nature more evolvability. Not only can deleterious changes be

avoided, but nonlethal genetic and phenotypic variation is indeed the material from which

innovation can be generated.

What is the role of conservation and relaxation in EC? First, an economic use of genomes

or building blocks can help to conserve genetic information. Second, by reducing the con-
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straints on making changes to a phenotype we can try to enhance the exploratory capability

of a computational system to find better solutions. How that can be implemented in actual

systems is presently unknown, but a worthwhile line of inquiry.

3.2.2 Modularity

Modularity is a widespread structural property of complex systems. It has attracted con-

siderable interest from studies of both natural and artificial evolutionary systems, and is

regarded as strongly related to evolvability [159] and the acceleration of evolution [143].

Modularity exists at various levels, .e.g., at the level of gene expression or embryonic

development. Here we adopt the definition of modularity proposed by Simon [142] in his

research on hierarchies in complex systems.

Definition 4: Modularity. In a complex system, modularity refers to the property that

a loose horizontal coupling exits between the entities at the same level of this sys-

tem. [142].

Simon [141, 143] further defined that “a system is nearly decomposable if it consists of a

hierarchy of components, such that, at any level of the hierarchy, the rate of interaction

within components at that level is much higher than the rates of interactions between

different components”. Although this “Near Decomposability (ND)” is attributed to a

vertical separation while modularity describes the separable property of components at the

same level, they seem closely related that they both describe how a complex system is

decomposed into sub-systems.

The modularity property of genotype-phenotype mappings has been extensively studied

in gene expression. It reduces harmful pleiotropic effects of gene expression and can lead

to adaptive phenotypic variation. Pleiotropy is a general property of genotypic variation,

expressing the fact that one change at the genetic level can cause a multitude of functional

changes at the phenotypic level. Pleiotropy can generate both advantageous and disad-
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vantageous results. Pleiotropy can sometimes generate unexpectedly improved functions,

but can also be harmful or even fatal to evolutionary systems [7]. Since a gene can affect

multiple functions, optimizing one particular function at the phenotypic level inevitably

incurs side-effects on other functions. Bonner [24] proposes the notion of “gene nets” by

grouping gene actions and their products into discrete units during evolution. In general,

for a given organism, the mapping from genotype to phenotype can be divided into modules

such that the sets of genes in one module only affect the functions in that same module.

The mapping is therefore decomposed into groups of independent “sub-mappings”. Bonner

finds that the phenomenon of gene nets becomes increasingly prevalent as organisms become

more complex. Wagner and Altenberg [159] investigate modularity in genotype-phenotype

mapping in both biology and EC views. They interpret modularity as a means for dividing

phenotypic traits into different “compartments” to reduce interference among different op-

timization modules. With such modularity, optimization of a function in one module has

no effect on functions in other modules. As a result, pleiotropy can be confined to a known

set of functions during evolution. Figure 4 shows a simple example of this idea of modular

separation.

Wagner and Altenberg [159] further propose that modularity results from evolutionary

modifications in natural organisms. In their view, the evolution of modularity follows two

mechanisms, dissociation and integration. Dissociation is the suppression of pleiotropic

effects by disconnecting interactions between different modules, while integration is real-

ized by strengthening of pleiotropic connections among traits in the same modules. Both

mechanisms are driven by the selection pressure.

Thus, modularity can be conceptualized as an evolutionary mechanism to promote evolv-

ability. It reduces the interdependence of disjoint components and consequently reduces the

chance of pleiotropic damage by mutation [81]. It allows genotypic variation and selection

to affect separate features in a complex system and to evolve various functions without
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Figure 4: Example of a modular representation. Complexes C1 ={A, B, C, D} and C2 ={E,
F, G} serve to functions F1 and F2. Each character complex has a primary function, F1
for C1 and F2 for C2. Only weak influences exist of C1 on F2 and vice versa. The genetic
representation is modular because the pleiotropic effects of the genes M1 ={G1, G2, G3}
have primarily pleiotropic effects on the characters in C1 and M2 ={G4, G5, G6} on the
characters in complex C2. There are more pleiotropic effects on the characters within each
complex than between them. (Adapted from Wagner and Altenberg [159].)

interference [92]. Sub-systems as part of an entire system can evolve faster to optimize

their local sub-functions individually, by decreasing crosstalk between genetic changes. In a

study of encoding schemes in EC by Kazadi et al. [77], a compartment is defined similar to

a module in the genotype-phenotype mapping, and such compartmentalization at different

levels is claimed to contribute to the acceleration of evolution. In RNA research, Manrubia

and Briones [98] propose that the increase of molecule length and subsequent increase in

function complexity could be mediated by modular evolution. They find that short repli-

cating RNA sequences with a small population size can be assembled in a modular way and

create complex multi-functional molecules faster than conventional evolution of complex

individuals toward multiple optima.
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Modularity in general has been widely used in computer science and engineering by sub-

dividing complex entities into smaller components to yield higher computational efficiency,

and we expect it to play a major role in EC. In current EC models, phenotypic variation is

mostly generated from genotypic variation with mappings that are not very complex. It is

our opinion that considering genotypic and phenotypic variation separately but connected

with a number of complex and sophisticated evolutionary mechanisms like modularity, will

allow EC to benefit substantially.

3.2.3 Facilitated Variation

Kirschner and Gerhart [82] emphasize that variation is much less random at the phenotypic

level of organisms than at the genotypic level, where genetic mutations show considerable

randomness. Since phenotypic variation should be favored by selection via modifying exist-

ing evolutionary components, this variation is facilitated.

Kirschner and Gerhart summarize three principles of facilitated variation. It serves (i)

to reduce lethal pleiotropic effects, (ii) to increase phenotypic variation in light of a given

number of genetic changes, and (iii) to improve genetic diversity in evolutionary populations

(by reducing lethality). Evolution is not so much affected by the content of genetic and

protein structures but by regulation capabilities to organize and reuse these functional parts

and to decide the targets of such regulation. The core processes instead are conserved being

built in a special way, only to be linked together under new circumstances like time, place,

and the number of genetic material that may participate in generating new phenotypic

variation. It is clear that only adaptive phenotypic variation can be maintained during

evolution, and the relevant product proteins mostly will have multiple functions for various

adaptive requirements under selection.

We must realize that EC systems use more randomness in searching for improvements

than natural evolution. Despite the limitations in recognizing these phenomena in biology,
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we should explore methods to reduce randomness in computation models to make evolving

processes more “intelligent” and facilitate their finding of good solutions.

3.3 Epigenetic Mechanism

Epigenetics has become a new research direction in evolutionary biology [70]. Literally,

“epi”-genetic control lies in the regulation of gene expression without changing the DNA

sequence itself, so it is “beyond the conventional genetic” control. Epigenetic regulation

arises during the processes of organism development and cell proliferation, triggered by

intrinsic signals or environmental stimulations [72]. Epigenetic changes are heritable in the

short term from cell generation to cell generation, and these stable alterations do not involve

mutations on DNA sequences. Epigenetic regulation of DNA expression lies at the heart of

many complex and long-term human diseases [17].

Figure 5: Nucleosome structure. A DNA sequence winds with four classes of histones
marked by four colors here. Histone tails in a nucleosome can be attached by different
groups, which will lead to different chromatin compositions. (Adapted from Vidal [2].)

Previous research in genetics mostly focused on the sequential information carried by

DNA. However, DNA sequences are coiled up in cells in intimate complexes with the help

of so called histone proteins. Figure 5 depicts a DNA sequence wrapped with histones that

comprise a nucleosome. Chromatin is the complex of nucleosomes in the nucleus of cells
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which participates in the control process of gene expression. The chromatin composition

varies according to cell type and response to internal and external signals. The different

composition of chromatin may affect expression and thus change the produced proteins even

in the absences [5].

Figure 6: Euchromatin and Heterochromatin. Histone tails have three types of modifica-
tion including acetylation (Ac), phosphorylation (p), and methylation (Me). Euchromatin
(left) is the loosely packed state that most histone tails are attached by acetyl groups.
Heterochromatin (right) is the tightly packed state that most histone tails are attached by
methyl groups. (Adapted from Jenuwein and Allis [73].)

The main mechanisms of epigenetic control are DNA methylation and histone modifica-

tion [72]. Modifications to chromatin, either on the DNA sequence itself (DNA methylation)

or on its surrounding proteins (histone modification), affect gene expression and can be in-

herited from cell generation to cell generation during cell division. DNA methylation is a

chemical addition to DNA sequences. Genes with methyl marks are repressed in expression,

despite unchanged DNA content [162]. In histone modification, the tails of histone proteins

are modified by different molecular attachments, e.g., acetyl, phosphoryl, and methyl groups

(see Figure 6). If acetyl groups are attached to the histone tails of a chromatin, it will be

loosely packed, a state called euchromatin. In euchromatin, DNA is readable and can be ex-

pressed in RNA and later translated into proteins. In contrast, if methyl groups are attached

to histone tails, chromatin is tightly compressed, a state called heterochromatin. In the het-

erochromatin state, genes are inaccessible to the transcriptional machinery such as RNA

polymerase or to transcription factors, and genes are prevented from being transcribed [58].
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Other recognized mechanisms responsible for epigenetic regulation of gene expression in-

clude chromatin remodeling, histone variant composition, and non-coding RNA regulation.

A discussion of these mechanisms can be found in Allis et al. [4].

The key feature of epigenetic mechanisms is their ability to coordinate internal and

environmental signals can collaborate for modification of protein production [72]. The

underlying interactions involve various molecules, such as DNA, RNA, and protein, but the

extensive feedback between these molecules is still beyond our current understanding.

Epigenetics indeed opens up a new field in evolvability studies both in biology and

EC. Sophisticated epigenetic feedback networks suggest a new structure for EC compared

to the linear computing flow usually employed in the literature. For instance, in some

dynamic optimization problems, not all genes responsible for different subfunctions need to

be expressed all the time. We anticipate that a “controller switch” can be integrated into

the genotype allowing short-term changes, where fragments of the genome can be turned on

and off in response to feedback from outside. Such a mechanism for repression of expression

has barely been used in computation. Similar multi-layer adaptive encoding schemes have

been proposed, e.g., the messy Genetic Algorithm (mGA) [55] that combines short building

blocks to form variable-length chromosomes to increasingly cover all features of a problem,

or diploid Genetic Algorithm, e.g., [154] using a two-chromosome representation to adapt

phenotypic variation in dynamic environments. However, existing work has not embedded

the organizational epigenetic control in algorithms that would allow significant flexibility in

changing environments. We anticipate that epigenetic mechanisms will play a crucial role

in increasing the evolvability of EC algorithms.

4 Stabilization Operations

There are two main stabilization operations in evolution: recombination and selection,

which will be reviewed in this section.
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4.1 Recombination

Recombination is a process that generates combinations of existing genetic material in con-

trast to mutation which creates new alleles. Recombination is regarded as an important

force shaping genomes and phenotypes. Since some highly efficient and accurate compu-

tational methods can be used in biology, analysis of gene recombination has made much

progress by way of comparing aligned genome sequences. These comparisons facilitate a bet-

ter understanding of several aspects of genetic and evolutionary biology, notably genotypic

and phenotypic variation and genome structures [125].

Recombination exchanges genetic material between two DNA sequences swapping strands

between one or multiple crossover points. Recombination can occur on homologous or non-

homologous sequences. The former is more prominent in research because it is more common

and efficient in generating adaptation in nature. Generally, research on recombination fo-

cuses on prevalent eukaryotic organisms rather than prokaryotes, which do not have sex.

Unequal crossover is fairly rare and may lead to duplication or loss of some genes (discussed

in Section 3.1.2) and other results [146]. Combination events can take place between dif-

ferent gene sequences, as in intergenic recombination, or between alleles on the same gene

sequence, as in intragenic recombination [125]. Despite various forms of recombination,

their outcome is crossover at one or multiple points and a swapping of fragments of genetic

sequences.

The rate of recombination can significantly affect the rate of adaptation. It is usu-

ally higher than the rate of mutation, which implies that recombination introduces much

less lethality to an evolutionary population than mutation. Instead, it advances evolution

remarkably by stabilizing adaptive traits from parents to offspring. By drawing a recom-

bination map of the human genome, Kong et al. [83] discovered that recombination rates

vary in different regions of the genome. This variation is due to such functional features as

gene density, other gene properties, and frequency of sequence repetitions. Recombination
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rates are also different in autosomes between different sexes. Recombination contributes

to producing both genotypic and phenotypic variation, and is able to repair DNA double

strand breaks. Sexual reproduction is an important outcome of recombination.

In EC, recombination operations are considered an essential search strategy. Chro-

mosome coding is much more flexible in computation than in nature, and thus, vari-

ous recombination techniques have been proposed and studied, including double-parent

and multi-parent crossover [37], fixed-length chromosome and variable-length chromosome

crossover [55, 64], and homologous and non-homologous crossover [90, 115, 124]. High re-

combination rates are usually also adopted in computation because of its perceived efficiency

in generating beneficial genetic and phenotypic variation. Elsewhere, adaptive recombina-

tion rates are proposed to strike a balance between exploration and exploitation [148]. In

most of these adaptive recombination rate schemes, modification of recombination rates is

based on fitness value. Different from natural recombination mechanisms, most adaptive

recombination rate proposals simply react to the current search status, in order to escape

from local optima. However, rate adaptation in biology is much more complex and suggests

other models for computation. For instance, the rate may vary among different individuals

or in different modules serving sub-functions in the genome. Such function-specific recom-

bination rates could also consider the method of “compartmentalization” for modularity

(Section 3.2.2). The notion of epistatic clustering in contributing to evolution of evolv-

ability has recently been studied [122]. Genetic linkage patterns between different loci are

claimed to affect recombination rates, and the simultaneous optimization of different recom-

bination rates on different traits would be realized by a method called epistatic clustering.

Evolvability would be improved through co-evolution of trait clustering and recombination

mechanisms.
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4.2 Selection

Although Darwin’s theory of evolution being directed primarily by natural selection has been

the subject of much argument, selection is an extremely important operation to stabilize

the functional traits already generated by some exploratory operations [111]. Selection

mechanisms are divided into two types by their effects on different stages of evolution.

First, positive selection, i.e., Darwinian selection, enhances the fixation of advantageous

alleles thus improving the diversity in early stages of evolution [171, 172]. Second, negative

selection, also known as stabilizing selection or purifying selection, occurs at later stages of

evolution when genetic diversity decreases when such selection eliminates deleterious alleles

and only stabilizes specific traits [113]. The balance between selection and diversity of an

evolutionary population has been a critical problem, and the dynamic pressure and some

consequences of selection are still under active investigation. In general, selection pressure

is produced by two factors, the environment and the mating competition, both of which

will be discussed next.

4.2.1 Environmental Selection

Environmental selection comes from external surroundings enforcing the adaptivity of or-

ganisms to survive. Since Darwin environmental selection has received extensive research in

evolutionary biology. Natural selection is an extremely important driving force for adaptive

evolution in natural populations [67].

The first response of a living organisms to a changing environment is somatic adapta-

tion. A simple example of somatic adaptation is human temperature compensation [82].

When the external temperature increases above normal, humans will sweat to adapt to this

new environment. Shivering will happen if temperature falls below a normal value. Somatic

adaptation happens directly as an organismal reaction to a changing environment, and is

not fixed in morphological structures as an evolutionary change unless some deeper adapta-
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tions caused by somatic changes can increase the survivability of an organism. Organisms

have plenty of latent traits within their somatic adaptability, so they have a fairly high

tolerance to changes in their environment [82]. Somatic adaptation mechanisms can only

adjust existing functions to external changes. However, if evolution acts for a long time un-

der environmental selection, changes can be stabilized by mutations in the germ-line after

somatic adaption has tested them through promotion of survivability of the organism.

Selection can act at different levels depending on its targets [81]. These might be

individual selection, individual-and-clade selection, or clade selection. At the individual

level, the selection process has the fewest constraints since it directly affects phenotypic

function fitness, and fewer mutation changes are required for a new adaptive trait. An

individual can also interact with others in a clade, such as through recombination, and

survive under selective pressure as a member in this clade. At the highest level, selection

can happen on the level of an entire clade given large environmental impact, and the entire

clade can, as a whole, escape from extinction. Some small groups of the lineage might go

extinct, but the entire will be able to survive.

Interactions between different species may also cause environmental changes. Phillips

and Shine [123] report an interesting phenomenon on species invasion. Toxic cane toads

induced morphological changes among a species of snakes in Australia. Generally, native

natural ecosystems can be devastated by the invasion of new species. At the beginning

of the arrival of such an invasive species, the number of native organisms may decrease.

As these native organisms adapt towards the invaders, the impact of the invasion declines

and a new balance is achieved. Morphological changes are fixed subsequently. Complex

natural ecosystems possess communities with highly frequent and dense interactions between

species, as well as between species-specific functional traits within a species.

Although environmental selection is widely accepted as contributing significantly to

natural evolution, selection has not been the mainstream of studies in evolvability. As a
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potential to generate adaptation, evolvability is difficult to observe and to select for. How-

ever, there is increasing research arguing that evolvability is selectable and environmental

selection can improve the evolution of evolvability. In the real world, the environment is

changing constantly and fixes beneficial mutations, and there is a growing acceptance that

a changing environment is a key ingredient to studying evolvability. Selection pressure is

a critical operator to control an evolutionary process. Earl and Deem [36] suggest that se-

lection pressure is increasingly strong when the environment becomes uncertain. Dramatic

environmental changes lead to selection for better evolvability. They consider evolvability

as a selectable trait, and facilitating environmental changes can be a method to accelerate

evolution. A recent simulation by Kashtan et al. [76] in a biologically realistic setting also

suggests that varying environments may accelerate natural evolution. In their work, dif-

ferent scenarios of temporarily changing optima were used. Kashtan and Alon [75] report

that a goal that varies in a modular way can speed up evolution. Other work [30] takes

into account the effect of the rate of environmental change. By observing the dynamics

of adaptive walks under varying speed scenarios, they find that environments with varying

rates of change have noticeably different effects on the fixation of beneficial mutations, the

substitution time required, and the final phenotypic variation.

In EC, selection strategies are considered affecting search capability significantly during

an evolutionary process. Different selection strategies have been proposed and the dynamics

of selection pressure has been studied extensively [23, 53]. Since the effects of environmen-

tal selection on the evolution of evolvability have been recognized, further research on the

dynamics of selection is required. Moreover, somatic adaptation should be considered when

applying selection. Group-based selection methods should also be studied for varying se-

lection pressure, so that a balance between the development of a minority and of the entire

population can be dynamically achieved.
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4.2.2 Sexual Selection

Sexual selection was proposed by Darwin as the pressure away from the possibility of mating

failure. Two forms of sexual selection pressure are met by mature high-level animals: the

battle between male individuals who fight, and the competition through mating choice

made by females. Fisher [41] proposed a runaway process, where a male trait and female

preferences for it can both evolve dramatically over time until finally checked by severe

counter-selection. In modern biology, scientists pay much attention to these sex-based

competitions that can generate and evolve several kinds of traits in high-level organisms.

For instance, Kirkpatrick and Ravigne [80] find that some secondary sexual characteristics

among individuals of the same sex can trigger rapid speciation.

Sexual selection happens at the inter-species level and affects reproductive fitness of

individuals. Reproductive fitness is the probability of successfully generating offspring.

Sexual selection has two main forms: intra-sexual selection and inter-sexual selection. Intra-

sexual selection is known as the combat between competitive male individuals, and usually

occurs in the form of fight. Inter-sexual selection is based on the choice made by the opposite

sex. Male secondary sexual characteristics and female mating preferences can affect each

other and evolve cooperatively [89]. This joint selection pressure, combined with natural

selection, is a powerful force for rapid evolution.

Recent research in biology has connected sexual selection to the acceleration of evolu-

tion. Colegrave [29] finds that the rate of adaptation can be increased by sex mechanisms

because sexual selection allows a rapid adaptive response under changing conditions by fix-

ing beneficial mutations. Swanson and Vacquier [151] observe that rapid evolution emerges

in reproductive proteins. This rapid evolution is forced by three main selective factors:

sperm competition, sexual selection, and sexual conflict. Sperm competition is quite fierce

in that each sperm will compete with billions of others to fuse with the only egg, and this

competition exists in multiple steps for the sperm. Sexual selection happens when different
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eggs have variant affinities for a special allele of a sperm-surface protein, and only the egg

with the highest affinity is most likely to bind to this sperm. Sexual conflict means only

one egg can be fused with the sperm to avoid polyspermy such that only one embryo is

fertilized. These types of mechanisms add considerable selection pressure to reproductive

proteins, and thus trigger rapid evolution in certain regions of these proteins.

The concept of mating choice was already applied in EC decades ago by Miller [106, 105].

Some co-evolutionary algorithms have been proposed to simulate mechanisms from sexual

selection by constructing subgroups which can affect each other cooperatively to evolve in

parallel. As more and more knowledge has been accumulated by biologists on the complex

process of sexual selection, especially on the advantages that sex mechanisms contribute to

the acceleration of speciation and evolution, this should be better incorporated in EC.

5 Quality Differentiation

As discussed previously, exploration and stabilization processes generate variation and adap-

tation at different levels. In contrast, the process of quality differentiation allows to quantify

this adaptation and to distinguish between individuals. Two aspects are involved in quality

differentiation, genotype-phenotype mapping and fitness evaluation. Genotype-phenotype

mapping translates genetic information into visible functional phenotypes, and fitness eval-

uation measures the adaptation of variant individuals based on its ability to survive.

5.1 Genotype-Phenotype Mapping

In EC, mapping from genotype to phenotype is an encoding process, especially in evolu-

tionary algorithms and evolutionary strategies, where the mapping mechanism is simply to

calculate a fitness function of each individual. However, in nature, the mapping process is

much more complex, typically from the highly conserved genotypic information to greatly

divergent polymorphism in phenotypes. The fundamental process in biological genotype-
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phenotype mapping is gene expression, and the most important mechanism in this process

is regulation of gene expression, which will be discussed first here. Since research on tran-

scriptional regulation has discovered increasing evidence that RNA plays an important role

in gene expression, the transcriptome, i.e., the set of all transcribed RNAs, will be reviewed

next.

5.1.1 Regulation of Gene Expression

In biology, the core processes (Section 3.2.1) in organisms are responsible for generating

anatomy and behavior using genetic and cell materials. These core processes include

metabolism, gene expression, and interaction among molecules and cells [82], which are

well conserved but still under exploration. Regulation of gene expression is the most im-

portant mechanism among the core processes to facilitate organismal novelties in evolution.

Kirschner and Gerhart highlight the characteristics of “conservation” and “economy” in

regulatory core processes in [82].

Scientists have been trying to understand the process of gene expression for decades. In

1956, Crick proposed the Central Dogma of molecular biology, as shown in Figure 7, which

describes the transmission of genetic information from DNA to protein. The circular arrow

around DNA means that a DNA is a template for self-replication. The arrow from DNA to

RNA indicates that an RNA is transcribed on a DNA template, and the arrow from RNA

to protein signifies that a protein is translated on an RNA template.

However, later biological research revealed that the process of gene expression is much

more complex than such a linear flow, and involves a considerable number of complex reg-

ulation operations. The Central Dogma was challenged by discoveries of proteins playing

an important role in regulation of gene expression, and most recently, the non-coding RNA

control of chromosome architecture proposed by Mattick [101]. In this section, we con-

centrate on gene expression regulation by proteins and will discuss RNA effects in next
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section.

Duplication

DNA RNA Protein

TranslationTranscription

Figure 7: Central Dogma. The Central Dogma of biology by Crick holds that genetic
information normally flows from DNA to RNA to protein, which involves the mechanisms
of gene replication, transcription and translate.

Recall the discussion of genome redundancy in Section 2.1.1. Coding regions on genetic

sequences that can be expressed into proteins only occupy a small portion of the entire

genome in eukaryotic cells. This discovery indicated that a huge number of regulatory ele-

ments exist in genomes that participate in generating adaptation in evolution according to

changes in environments. Although living systems have evolved for billions of years, regu-

latory core processes in various organisms have remained mostly unchanged despite species

divergence. By comparison of related species from the same ancestors, such as humans and

chimpanzees, at both the molecular and organismal levels King and Wilson [79] had already

found in 1975 that genetic structures in these two species are almost the same; while at

the organismal level, the anatomy, physiology, behavior and ecology of these two species

are significantly different. This suggested to them that the complex adaptive evolution lies

is produced by a combination and multiple utilization of similar, highly conserved genetic

components under the control of regulatory systems.

A key step in the regulation of gene expression is transcription. Studies there are

concentrated on two primary components: promotors and transcription factors. Promotors,

also known as cis-regulatory sequences, are responsible for regulatory transcription. Cis-

regulatory sequences are a part of non-coding DNA sequences, and they can determine

the target genes and the length of the loci that will be transcribed under which conditions.

Transcription factors are proteins interacting with these cis-regulatory sequences by binding

to certain sites on DNA sequences. Interested readers are referred to Wray et al. [165]
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for more details. Transcription factors act either as activators or as repressors of gene

expression. For example, if a transcription factor A binds to a site on a DNA sequence

that is responsible for generating protein B, then this factor A is regarded as a repressor to

protein B. In addition, as a protein itself, factor A also has its template gene sequence. If

another transcription factor C can bind to this site and represses the generation of protein

A, C acts as a repressor to A but in turn as an activator to the expression of protein B.

These activators and repressors can work together as a network of logic control. Promotors

usually contain a number of binding sites for transcription factors, where each site can

only be occupied by one factor at a time. These binding sites occupy, however, only a

small fraction of sequences, and are distributed unevenly. Some binding sites of different

functions can overlap. Furthermore, binding affinities of different materials are important

for regulation as well. On the other hand, most transcription factors have numerous target

genes and use priorities in binding with any of them [165]. This sophisticated network

endows the regulation system with high robustness and plasticity necessary for evolution of

capabilities of organisms.

Evolution of cis-regulatory sequences as non-coding sequences is considerably different

from that of protein-coding sequences, and is less understood. King and Wilson [79] sug-

gested that protein-coding sequences are highly conserved during evolution since they were

synthesized. It is mutations on promoters that causes most morphological variation. Re-

search on the evolution of transcriptional regulation has become mainstream in molecular

biology in recent years [165]. In particular, Roderiguez-trelles et al. [131] find that signif-

icant substitution rate differences exist among different promotors, and even some neigh-

boring cis-regulatory promotors involved in the same regulatory network can have different

evolution rates. Moreover, Stone and Wray [150] propose that local point mutations on

binding sites can lead to rapid evolution in gene expression, which indicates their potential

of accelerating evolution. Wagner [155] points out that other simple changes such as gene
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duplication and deletion of promotors can also result in rapid evolution in gene regulatory

networks. By comparing genomes, Fondon and Garner [44] discovered that gene-associated

tandem repeat expansions and contractions exist and give rise to rapid morphological evolu-

tion. In their experimental research, a tandem repeat mutation shows both elevated purity

and intensive length polymorphism among different dog breeds. Mutations on non-coding

sequences can modify regulation of the target genes, the length of coding loci to transcribe,

and the occurrence conditions. Furthermore, they also result in morphological variation

and accelerated phenotypic evolution.

Since the mechanisms of regulation of gene expression can well explain many phenom-

ena in evolvability and rapid evolution in living systems, research on artificial regulatory

networks has also arisen in computer science. Several models of artificial evolution regu-

latory networks have been proposed such as Banzhaf et al. [12, 13, 15, 88], Chavoya and

Duthen [27], Mattiussi and Floreano [103], Nehaniv [109], etc. These artificial models intend

to generate regulatory behavior akin to that of natural systems. However, these research

efforts are still in the early stage, and more work on evolvability and dynamics in artificial

regulatory networks is necessary.

5.1.2 The Transcriptome

The transcriptome, or collection of transcripts, refers to all RNAs produced in a single

or a group of cells, working as an intermediate component of gene expression. In high-

level eukaryotes such as humans, most regions of the transcriptome are not translated

into protein. What necessitates the existence of such a large number of RNAs in the

transcriptome of high-level eukaryotes? Regulatory functions is one answer to this question.

Although regulation of gene expression starts with the transcription step, these transcribed

but non translated sequences or non-coding RNA sequences act as regulators for translation

in gene expression, and are currently attracting increased interest in biological research [48,
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Figure 8: Eukaryotic genetic system. Expression of genes is not with an irreversible linear
flow in eukaryotes, but involves frequent feedback and interactions among different molecules
including DNA, RNA, and protein, as the dotted lines shown here.

102].

An RNA is not just a temporary medium between genes and proteins as described in

the Central Dogma. In high-level eukaryotes, the information transmission from DNA to

protein is not a one-way process, but involves many functionalities of the transcriptome.

The new perspective of gene expression proposed by Mattick [101, 102] can be described in

Figure 8. Compared to a prokaryotic genetic system, an eukaryotic system has a parallel

control mechanism with multiple outputs and information transfers. Rather than a simple

medium of gene expression, RNA metabolism and interaction have been discovered playing

an important role in gene expression regulation.

Mattick [100] proposes that non-coding RNAs participate extensively in gene expression

regulation, being present in about 98% of all transcriptional outputs in eukaryotes. In the

research on human transcriptome, Frith et al. [48] found that non-coding RNAs play an

important role in generating phenotypic variation. Non-coding RNAs are classified into two

categories: introns and other non-coding RNAs.

Regulation of the transcriptome shows contributions to evolvability and rapid evolu-

tion. Introns, an important category of non-coding RNAs, are found more susceptible to

mutations than their neighboring protein-coding exons. Rather than having no function, as

thought previously, the fewer constraints on introns offer flexibility to generate new func-

tions and rapid protein sequence evolution during the process of regulation, especially in

connection with alternative splicing. The evolution of RNA communication networks may

also accelerate the evolution of gene expression, as observed by Mattick [100]. These RNA
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communication networks, which describe interaction among different layers of RNA signal-

ing, provide a sophisticated regulatory architecture, enabling DNA-DNA, DNA-RNA, or

RNA-RNA communication, DNA methylation, chromatin generation, and RNA transla-

tion.

Compared to natural systems, the genotype-phenotype mapping in EC is rather primi-

tive still and a transcriptome is mostly missing in algorithms. The complex RNA parallel

information transfer framework inspires various applications. Based on what computational

models have already achieved with artificial regulatory networks, more mechanisms should

be implemented, especially the newly discovered powerful mechanisms of transcriptome

regulation.

5.2 Fitness Evaluation

Fitness evaluation measures behavior or function of individuals or species. In nature, fitness

of an individual or species is implicit and subject to natural selection, whereas in EC, fitness

is mostly based on numerical values of an individual as solution to a given problem, and

this fitness is explicit.

In nature, adaptable species survive through different challenges, and less fit species

may become extinct during evolution. Adaptability lies not only in the currently existing

adaptivity to the environment, but also in the capability to generate more adapted offspring,

also known as fertility. Such adaptability enables organisms to survive despite the pressure

of environmental selection. Some factors are included in fertility characteristics, such as age

and sexuality [82]. The age indicates how long an individual has been in an evolutionary

system and, usually, a greater age means relatively higher adaptability but lower fertility.

An individual dies at a certain age in a natural evolution population, and this is a way to

keep diversity and to make an evolutionary system evolve continually. Sexuality varies under

sexual selection, as discussed in Section 4.2.2, and mostly depends on mating preferences
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of female individuals. An individual with stronger secondary sexual characteristics is more

likely to be chosen by the opposite sex to generate offspring.

The above implicit fitness in natural organisms emphasizes evolvability under intricate

pressures from interactions among evolutionary components, internal or external to these

organisms during a long, continuing evolutionary process [122]. In reality, the fitness of

individuals in a system can vary a great deal. Moreover, a large-scale quality differentia-

tion exists in almost every natural evolutionary system, and these vastly diverse evolution

systems exhibit great evolvability. Since selection and evaluation act directly on observ-

able phenotypic functions but evolvability only provides the potential for better functions,

selection and evaluation for evolvability are not observable directly. Reisinger and Miikku-

lainen [129] propose an evolvable representation and an evaluation strategy to exert indirect

selection pressure on evolvability. In their work, a systematically changing fitness function

is adopted according to a special evolvable representation that can reflect efficiently how ge-

netic changes restructure phenotypic variation. Thus, evolvability can be evaluated through

how such a systematical structure can expand in phenotypes.

As the method of EC has been widely applied in many areas of industry and academia,

fitness evaluation arises as a difficult problem because it is usually very CPU-intensive. In

the current literature, two main methods of fitness evaluation are employed, absolute fit-

ness and relative fitness. Absolute fitness of each individual usually refers to its value of a

specified fitness function. Relative fitness compares different individuals and gives a rank

to each individual to produce a record of winners. This methods is good at suppressing

exceptionally good individuals, thus, helping an evolutionary system to escape from pre-

mature convergence. In fact, evaluating the fitness of each individual is usually difficult

for many optimization problems in the real world because explicit fitness can be hard to

define and expensive to calculate. As a result, a fitness approximation has been proposed

with differing levels of approximation, including “problem approximation”, “functional ap-
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proximation” and “evolutionary approximation”. Jin [74] has surveyed these approaches.

They are sensitive to training data and to varying constraints of different models, so a

common framework would be required. Nevertheless, it is a good starting point to simulate

the implicit adaptive fitness evaluation from nature, a method that has good prospects for

detecting or evolvability in EC.

6 Conclusion

Since Darwin proposed his theory of natural evolution based on heritable variation and

natural selection, numerous research efforts have been dedicated on this subject. In modern

biology, many details about mechanisms of evolution and factors that can affect evolution

have been revealed. Besides understanding the history of evolution, biologists are currently

paying more attention to the capability of organisms to evolve and to the evolution of such

capability in the open-ended natural evolutionary process. Varying evolution rates among

different species or different regions of genetic material in an organism attract research inter-

est for acceleration of evolution. Meanwhile, in research of artificial evolutionary systems,

one is also working on improving the capability of computational models of evolution by

studying more intelligent and adaptive mechanisms.

Evolvability, as the capability to generate adaptation by producing fitter offspring via

evolutionary operations, has received considerable interest in recent research in both biol-

ogy and EC. Substantial work has been done on this topic in both disciplines, and many

factors are found to contribute to evolvability. After some phenomena of rapid evolution

have been reported, acceleration of evolution has also become an important research topic.

Evolvability indicates the potential of a system to evolve, and it can well be a long-term

method to accelerate evolution. However, in the short term, concentrating on evolvabil-

ity may slow down the rate of evolution, since some individuals or groups which are more

capable to evolve do not show sufficient fitness improvement. Consequently, rather than
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improving immediate fitness, evolvability concentrates on significantly longer, or even open-

ended evolution, especially under changing environments. Evolution should be accelerated

in the long term with such capability. Therefore, evolvability and acceleration of evolution

are interrelated and crucial aspects in biology and EC.

In this review, we started from notions and new discoveries in biology, including aspects

that have been recognized to improve evolvability or to accelerate the evolution of natural

systems. The order in the presentation of these ideas conforms to the flow of an evolutionary

algorithm. In each part of the flow, we first reviewed relevant results in biology. Next, a brief

survey was provided to describe current research status in EC, followed by an outlook for

further research. Our goal was to describe and present new research outcomes to computer

scientists, especially in the field of EC. Since it is accepted that artificial evolutionary

systems are much less evolvable than natural systems, we hope these ideas can inspire new

methods and applications in EC.
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