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Zusammenfassung

Gentner’s Structure-Mapping Theory of analogy deriva(i®NT) and its im-
plementation in the Structure Mapping Engine (SME) haveabveey influential in
Cognitive Science and Atrtificial Intelligence. Motivateg lboth the need for SME
to handle realistic input sizes and claims that SMT is comuaially intractable,
the original exhaustive-search strategy in SME was redlacdater versions by
a heuristic. However, computing optimal solutions in SMiiddence SME) may
yet be tractable for certain classes of inputs that occuraetjce, making heuri-
stics unnecessary in those situations. In this technigartewe give the first for-
mal statement of the optimization problem of deriving ogtirstructure-mappings
in SMT, and use parameterized complexity to investigatgtitlgnomial-time al-
gorithmic possibilities for this problem relative to a widariety of qualitative and
quantitative restrictions on input and output structure.



Supplementary Material for:

Identifying Sources of Intractability in Cognitive Modelsn lllustration using Analo-
gical Structure Mapping

Iris van Rooij, Patricia Evans, Moritz Muller, Jason Gedgedd Wareham

1 Definitions

Digraphs

A directed graph or digraph, for short,G is a pair(V, A) of a nonempty set ofertices
V and a set ofircs A C V2 of ordered pairgv, w) of two distinct vertices, w € V.
Such a pair is informally understood as an arc pointing frono w. A digraph is
acyclic, or a DAG, if and only if it does not contain directed cyclessubdag of DAG
GisaDAGG = (V', A’) such thatd’ C AandV’ C V'. We callG’ induced (by V')
ifandonly if A" = An (V' x V).

LetG = (V, A) be a DAG. Aroot of G is a vertex with no incoming arcs. l&af of
G is a vertex with no outgoing arcs. A vertex which is not a lesdahternal. A vertex
v is achild of a vertexw if and only if (w,v) € A. A vertexv is adescendent of a
vertexw if and only if there is a directed path from to v. The height of G is the
length (number of arcs) of a longest directed patt¥inThe graphunderlying G is the
(undirected) grapliV, £') with E = {{v,w} | (v,w) € A}, i.e. the graph obtained
when we forget the direction of the arcsGh A component of GG is a subdag induced
by the vertices of a component of the graph underlyihg

A directed tree is a DAG such that for any two verticesw € V there is at most
one directed path from to w. A poly-treeis a DAG G such that the graph underlying
G is a forest.

Concept graphs

A concept graphis a quadrupelG, A4, A, Ap) fora DAG G = (V, A) and functions
Aa, Mg, Ap calledlabelings such that

1. \4:A— N,

2. A\p isinjective and defined on the leafsGf
3. \p is defined on the internal vertices Gf
4

. If v is an internal vertex, theh4 either enumerates the set of arcs leaviny
is constantly 0 on this set. In the first casis ordered, in the secondinordered.

(&

. for internal vertices, v with Ap(u) = Ap(v) the following holds:

(a) either both, andv are ordered or both andwv are unordered,
(b) u andv have the same number of childrenGh



© {(v; Aa(v,v)) | (v,0') € A} # {(W/; Aa(u, u')) | (u,u) € A}

Usually we denote the range &% by B and the range ofp by P. Elements of3 are
calledentities, those of P predicates or relations. A predicate isordered if and only
if at least one vertex (equivalently: all vertices) labeleith it is ordered. A concept
graph isordered (unordered) if and only if all its vertices are ordered (unordered).

Analogy morphisms

LetG = (V, A) andG’ = (V', A’) be two DAGs. Asubdag isomorphismfromG to G’
is an isomorphisny of a subdag of> onto a subdag of’. We writeGy = (Vy, Ay)
for the subdag on the domain gfand call it thesubdag associated with f.

LetG := (G, 4, \p,A\p) andG’ = (G', \a, A\pr, Ap/) be two concept graphs.
An analogy morphism of G andg’ is a subdag isomorphism froti to G’ satisfying
the following three conditions:

1. for allv € V; also all children o in G are inV;.
2. Ap/(f(v)) = Ap(v) forallv € V.
3. Aar((f(v), f(w))) = Aa((v, w)) forall (v, w) € Ay.

The value of analogy morphisms

Leta conceptgraph® = (G, Aa, Ap, Ap) be given. Relative to a functigwval : P —
N and two naturalém, trd € N we associate galuation val mapping vertices of7 to a
value in N. This function is defined inductively over the height of thretex inG: the
value of a vertex is
match(v) + Y trd- val(w)
(w,w)eA

wherematch(v) ispval(Ap(v)) if vis aninternal vertex anld if v is a leaf. The value
val(G') of a subdagz’ = (V/,A") of G is ) . val(v). The value of an analogy
morphismf of two concept graphs igl (G ).

It is easy to see that the value of a given analogy morphismd®at two concept
graphs can be computed in time polynomial in the size of timeept graphs.

The problem

The NP-optimization problem is

Input: two concept graph§ andg’, a functionpval : P — N, whereP
are the predicates i#, and naturalém, trd € N.

Solutions: all analogy morphisms betweéhandgG’

Cost: the valuationval associated witlpval, Im, trd.

Goal: maximization.

The associated decision problem is



Input: two concept graph§ andg’, a functionpval : P — N, whereP
are the predicates i@, naturaldm, trd € N and a naturat € N

Question: is there an analogy morphism betwegandG’ of value at least
k?
Here it is understood that “value” refers to the valuatiosogsated withpval, Im, trd.

In our work we are concerned with the following slightly silifipd version. Of
course intractability of this simplified version immedigtenplies intractability of the
non-simplified version.

SMAD
Input: two concept graph§ andg’.
Problem: is there an analogy morphism betwegandg’ of value
at leastt?

Here it shall be understood that value refers to the valnatssociated with the function
pval which is constantly one and the constamts= trd = 1. We denote this valuation
by val.

2 Complexity

Classical complexity

SUBGRAPH |SOMORPHISM
Input:  two graphsz andH.
Problem: is H isomorphic to a subgraph 6?

SUBFORESTISOMORPHISMiS the restriction of BBGRAPH I SOMORPHISMtO in-
stances wheré&' is a tree and{ is a forest.

Lemma 1 There is a polynomial time reduction from SUBGRAPH |SOMORPHISMtO
SMAD.

Proof: Let G = (V, E) be a graph. We define the concept graph
C(G) = (C(G), Aa, Ap, AB)
as follows. The DAGC(G) has verticed” U E and arcs
A:={(e,v) |veEec E}.

A4 is constantly O\ p is constantly (for some predicatg) on £ and) 3 is the identity
onV.

Let (G, H) be an instance of 88GRAPH ISOMORPHISM Then if f is an isomor-
phism fromH onto a subgraph aff, then f’ is an analogy morphism betwe€(H )
andC(G), where f’ is defined as follows: it maps all entities (verticesij as f



does and additionally maps an edde 2’} of H (which is also a vertex i€’ (H)) to
{f(h), f(W)} (avertex inC(G)). The value off’ is the value o’ (G).

Conversely, if f’ is an analogy morphism betweél{Hd) and C(G) with value
val(C(H)), then its domain is the set of all vertices ©fH). Hence its restriction
to the vertices off is an isomorphism to a subgraph@f- why? To see this lefh, h'}
be an edge off. This is a vertex inC(H). Sincef’ preserves predicates, this vertex
is mapped to a vertex i@'(G) which is an edgéd g, ¢’} of G. By defnition of analogy
morphisms, thek f(h), f(h')} equals{g, ¢}, and so is an edge @F.

It follows that(G, H) — (C(H),C(G),val(C(H))) defines a polynomial time re-
duction as claimed. O

Itis easy to see thataD € NP. Because $8GRAPH | SOMORPHISMis famously
NP-complete, it follows

Corollary 2 SMAD is NP-complete.

The reduction given in the previous Lemma is robust enougtuteive under va-
rious restrictions. For example, observe that if a grépls a forest, therC'(G) is a
poly-tree. It is well-known that 88FORESTISOMORPHISMiS NP-complete. It fol-
lows that

Corollary 3 SMAD restricted to instances where the given concept graphs are poly-
treesis NP-compl ete.

Parameterized complexity

In the paper we make several tractability and intractabdiaims numbered from 1
to 6. We prove them subsequently. All proofs of intractapilise some common as-
sumption from parameterized complexity. The assumptiabt{1] # FPT is strong
enough for all our purposes.

Claim 1 SMAD isfp-intractablefor parameter set {h, a, f, s}.

Proof: It is enough to show thatMsaD is NP-hard even when instances are restricted
to those where all parameters are required to be boundeddaystemt. Then it follows
that the parameterized problem is complete for the huges gdasaNP [1, Theorem
2.14] and is thus fixed-parameter tactable if and only i RIP.

This in turn follows by a reduction due to Veale et al. [2] frahe NP-complete
problem 3-DMENSIONAL MATCHING which produces concept graphs such that
l,a=2,f=1ands=0. O

Remark 4 As a matter of fact, the reduction in [2] produces orderedccephgraphs.
Claim 2 SMAD isfp-intractablefor parameter set {n/h}.

Here the parameter is to be understood tab&{n,/h1,n2/ha}.



Proof: For a concept grapB = (G, A4, Ap, Ap) defineG as follows: sayG hasn
vertices. We add to- a directed path wit vertices and an arc from the leaf of this
path to a leaf of5. We label each new vertex with an own new predicate. All nexg ar
get label 1. Theiy has2n vertices and height. Thus the parameter of this instance is
at most2.

An instance(G, G, k) of SMAD is equivalent ta G, G’, k) (provided the new pre-
dicate labels chosen in the constructiorgoindG’ are different) because no analogy
morphism betweef andg’ can involve some of the new vertices.

But the instancégG, G/, k) has parameter at most 2, so paraNP-hardness follows as
in the previous proof. O

Remark 5 The construction above preserves the property of beingeddee. ifG is
ordered, then so i§.

Claim 3 SMAD isfp-tractablefor parameter set {n}.
Proof: As we have explained in the paper, this is trivial. O
Claim 4 SMAD isfp-intractablefor parameter set {no, r, h, a, p}.

Proof: It is well-known that the parameterized problem

p-CLIQUE
Input: agraphG and a naturat € N.
Parameter: k.
Problem: doesG contain a clique withk elements?

is W[1]-hard. It thus suffices to give a parameterized reidadrom this problem.

Let Cy be a clique withk vertices.G has ak clique if and only if (G, Cy) is
a “yes” instance of 8BGRAPH ISOMORPHISM hence by Lemma 1, if and only if
(Ck, G,val(Cy)) is a“yes” instance of @BAD . The parameters of the instance produced
areny = k,a=2,p=r=h=1,alin O(k). O

Claim5 SwMAD isfp-tractablefor parameter set {o}.

Proof: Let (G, G, ¢) be an instance of AD. Let k& denote the maximum number of
leafs in one of the given concept graphs.

Let F' be the set of bijections between a subset of leats ahd a subset of leafs of
G'. Letg € F. We stepwise extend this morphism. For each verticefdevel one inG
there is at most one verteof level one inG’ such that extendingby mapping to v’
is an analogy morphism. We make all possible such extensitres we proceed in the
same way with the vertices in level two and so on. This way weegae in polynomial
time an analogy morphism with the best possible value amoogetwhose restriction
to the leafs equaj.

We compute this value for eaghe F' and accept if we find a value ¢. Doing this
amounts tg F'| times a polynomial time computation. Becausg can be effectively
bounded ik, this is fpt time. O



Remark 6 Claim 5 in the paper is weaker than what we prove here - in tpempae
claimed the result only for ordered concept graphs.

Claim 6 Claim 1 to 5 hold true when SMAD is restricted to instances with ordered
concept graphs only.

Proof: By Remarks 4 and 5 we are left to verify this for Claim 4. Theréhe proof we
constructed an instance with unordered concept gréght ) andC(G).

Fix an arbitrary linear ordex on the vertices ofy. We transformC(G) to an
ordered concept grapf(G)’ by labeling an ard{v,v'},v) in C(G) (for an edge
{v,v'} of G) with 1 if v < ¢ and with 2 otherwise. Clearly any analogy morphism
betweerany ordered version of(Cy) andC(G)’ is also an analogy morphism bet-
weenC'(Cy) andC(G) of the same value. Conversely if there is an analogy morphism
betweenC(C}) andC(G) then this is also an analogy morphism betwé&id)’ and
some ordered version o (Cy). Thus by the proof of Claim 4, we conclude thait
has ak clique if and only if there is an ordered versi6Cy)" of C(Cy) such that
(C(Cr),C(G),val(C(Cy))) is a“yes” instance of BAD.

For the sake of contradiction assume that there is an fptighgoA solving SMAD
with parameter sefno, r, h, a, p}. We get a contradiction by deriving thatCLIQUE
would then also be fixed-parameter tractable. By the latbedition of the above
equivalence we get an fpt algorithm solvipgCLIQUE by simulatingA on input
(C(Cy),C(G),val(C(Cy))) for all possible ordered version$(Cy)’" of C(Cy). As
the number of such ordered versions can be effectively bediimdk, this amounts to
an fpt running time. O
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