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Zusammenfassung
Gentner’s Structure-Mapping Theory of analogy derivation(SMT) and its im-

plementation in the Structure Mapping Engine (SME) have been very influential in
Cognitive Science and Artificial Intelligence. Motivated by both the need for SME
to handle realistic input sizes and claims that SMT is computationally intractable,
the original exhaustive-search strategy in SME was replaced in later versions by
a heuristic. However, computing optimal solutions in SMT (and hence SME) may
yet be tractable for certain classes of inputs that occur in practice, making heuri-
stics unnecessary in those situations. In this technical report, we give the first for-
mal statement of the optimization problem of deriving optimal structure-mappings
in SMT, and use parameterized complexity to investigate thepolynomial-time al-
gorithmic possibilities for this problem relative to a widevariety of qualitative and
quantitative restrictions on input and output structure.
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Supplementary Material for:

Identifying Sources of Intractability in Cognitive Models: An Illustration using Analo-
gical Structure Mapping

Iris van Rooij, Patricia Evans, Moritz Müller, Jason Gedge, Todd Wareham

1 Definitions

Digraphs

A directed graph or digraph, for short,G is a pair(V, A) of a nonempty set ofvertices
V and a set ofarcs A ⊆ V 2 of ordered pairs(v, w) of two distinct verticesv, w ∈ V .
Such a pair is informally understood as an arc pointing fromv to w. A digraph is
acyclic, or a DAG, if and only if it does not contain directed cycles. Asubdag of DAG
G is a DAGG′ = (V ′, A′) such thatA′ ⊆ A andV ′ ⊆ V ′. We callG′ induced (by V ′)
if and only if A′ = A ∩ (V ′ × V ′).

Let G = (V, A) be a DAG. Aroot of G is a vertex with no incoming arcs. Aleaf of
G is a vertex with no outgoing arcs. A vertex which is not a leaf is internal. A vertex
v is a child of a vertexw if and only if (w, v) ∈ A. A vertexv is a descendent of a
vertexw if and only if there is a directed path fromw to v. The height of G is the
length (number of arcs) of a longest directed path inG. The graphunderlying G is the
(undirected) graph(V, E) with E = {{v, w} | (v, w) ∈ A}, i.e. the graph obtained
when we forget the direction of the arcs inG. A component of G is a subdag induced
by the vertices of a component of the graph underlyingG.

A directed tree is a DAG such that for any two verticesv, w ∈ V there is at most
one directed path fromv to w. A poly-tree is a DAGG such that the graph underlying
G is a forest.

Concept graphs

A concept graph is a quadrupel(G, λA, λB , λP ) for a DAGG = (V, A) and functions
λA, λB , λP calledlabelings such that

1. λA : A → N,

2. λB is injective and defined on the leafs ofG,

3. λP is defined on the internal vertices ofG,

4. If v is an internal vertex, thenλA either enumerates the set of arcs leavingv or
is constantly 0 on this set. In the first casev is ordered, in the secondunordered.

5. for internal verticesu, v with λP (u) = λP (v) the following holds:

(a) either bothu andv are ordered or bothu andv are unordered,

(b) u andv have the same number of children inG,
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(c) {(v′, λA(v, v′)) | (v, v′) ∈ A} 6= {(u′, λA(u, u′)) | (u, u′) ∈ A}.

Usually we denote the range ofλB by B and the range ofλP by P . Elements ofB are
calledentities, those ofP predicates or relations. A predicate isordered if and only
if at least one vertex (equivalently: all vertices) labeledwith it is ordered. A concept
graph isordered (unordered) if and only if all its vertices are ordered (unordered).

Analogy morphisms

Let G = (V, A) andG′ = (V ′, A′) be two DAGs. Asubdag isomorphism from G to G′

is an isomorphismf of a subdag ofG onto a subdag ofG′. We writeGf = (Vf , Af )
for the subdag on the domain off and call it thesubdag associated with f .

Let G := (G, λA, λP , λB) andG′ = (G′, λA′ , λP ′ , λB′) be two concept graphs.
An analogy morphism of G andG′ is a subdag isomorphism fromG to G′ satisfying
the following three conditions:

1. for all v ∈ Vf also all children ofv in G are inVf .

2. λP ′ (f(v)) = λP (v) for all v ∈ Vf .

3. λA′((f(v), f(w))) = λA((v, w)) for all (v, w) ∈ Af .

The value of analogy morphisms

Let a concept graphsG = (G, λA, λP , λB) be given. Relative to a functionpval : P →
N and two naturalslm, trd ∈ N we associate avaluation val mapping vertices ofG to a
value in N. This function is defined inductively over the height of the vertex inG: the
value of a vertexv is

match(v) +
∑

(w,v)∈A

trd · val(w)

wherematch(v) is pval(λP (v)) if v is an internal vertex andlm if v is a leaf. The value
val(G′) of a subdagG′ = (V ′, A′) of G is

∑
v∈V ′ val(v). The value of an analogy

morphismf of two concept graphs isval(Gf ).
It is easy to see that the value of a given analogy morphism between two concept

graphs can be computed in time polynomial in the size of the concept graphs.

The problem

The NP-optimization problem is

Input: two concept graphsG andG′, a functionpval : P → N, whereP
are the predicates inG, and naturalslm, trd ∈ N.

Solutions: all analogy morphisms betweenG andG′

Cost: the valuationval associated withpval, lm, trd.

Goal: maximization.

The associated decision problem is
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Input: two concept graphsG andG′, a functionpval : P → N, whereP
are the predicates inG, naturalslm, trd ∈ N and a naturalk ∈ N

Question: is there an analogy morphism betweenG andG′ of value at least
k?

Here it is understood that “value” refers to the valuation associated withpval, lm, trd.

In our work we are concerned with the following slightly simplified version. Of
course intractability of this simplified version immediately implies intractability of the
non-simplified version.

SMAD

Input: two concept graphsG andG′.
Problem: is there an analogy morphism betweenG andG′ of value

at leastk?

Here it shall be understood that value refers to the valuation associated with the function
pval which is constantly one and the constantslm = trd = 1. We denote this valuation
by val.

2 Complexity

Classical complexity

SUBGRAPH ISOMORPHISM

Input: two graphsG andH .
Problem: is H isomorphic to a subgraph ofG?

SUBFORESTISOMORPHISMis the restriction of SUBGRAPH ISOMORPHISMto in-
stances whereG is a tree andH is a forest.

Lemma 1 There is a polynomial time reduction from SUBGRAPH ISOMORPHISM to
SMAD .

Proof: Let G = (V, E) be a graph. We define the concept graph

C(G) = (C(G), λA, λP , λB)

as follows. The DAGC(G) has verticesV ∪ E and arcs

A := {(e, v) | v ∈ e ∈ E}.

λA is constantly 0,λP is constantlyp (for some predicatep) onE andλB is the identity
onV .

Let (G, H) be an instance of SUBGRAPH ISOMORPHISM. Then iff is an isomor-
phism fromH onto a subgraph ofG, thenf ′ is an analogy morphism betweenC(H)
andC(G), wheref ′ is defined as follows: it maps all entities (vertices ofH) as f
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does and additionally maps an edge{h, h′} of H (which is also a vertex inC(H)) to
{f(h), f(h′)} (a vertex inC(G)). The value off ′ is the value ofC(G).

Conversely, iff ′ is an analogy morphism betweenC(H) and C(G) with value
val(C(H)), then its domain is the set of all vertices ofC(H). Hence its restriction
to the vertices ofH is an isomorphism to a subgraph ofG - why? To see this let{h, h′}
be an edge ofH . This is a vertex inC(H). Sincef ′ preserves predicates, this vertex
is mapped to a vertex inC(G) which is an edge{g, g′} of G. By defnition of analogy
morphisms, then{f(h), f(h′)} equals{g, g′}, and so is an edge ofG.

It follows that(G, H) 7→ (C(H), C(G), val(C(H))) defines a polynomial time re-
duction as claimed. �

It is easy to see that SMAD ∈ NP. Because SUBGRAPH ISOMORPHISMis famously
NP-complete, it follows

Corollary 2 SMAD is NP-complete.

The reduction given in the previous Lemma is robust enough tosurvive under va-
rious restrictions. For example, observe that if a graphG is a forest, thenC(G) is a
poly-tree. It is well-known that SUBFOREST ISOMORPHISM is NP-complete. It fol-
lows that

Corollary 3 SMAD restricted to instances where the given concept graphs are poly-
trees is NP-complete.

Parameterized complexity

In the paper we make several tractability and intractability claims numbered from 1
to 6. We prove them subsequently. All proofs of intractability use some common as-
sumption from parameterized complexity. The assumption that W[1] 6= FPT is strong
enough for all our purposes.

Claim 1 SMAD is fp-intractable for parameter set {h, a, f, s}.

Proof: It is enough to show that SMAD is NP-hard even when instances are restricted
to those where all parameters are required to be bounded by a constant. Then it follows
that the parameterized problem is complete for the huge class paraNP [1, Theorem
2.14] and is thus fixed-parameter tactable if and only if P= NP.

This in turn follows by a reduction due to Veale et al. [2] fromthe NP-complete
problem 3-DIMENSIONAL MATCHING which produces concept graphs such thath =
1, a = 2, f = 1 ands = 0. �

Remark 4 As a matter of fact, the reduction in [2] produces ordered concept graphs.

Claim 2 SMAD is fp-intractable for parameter set {n/h}.

Here the parameter is to be understood to bemax{n1/h1, n2/h2}.
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Proof: For a concept graphG = (G, λA, λP , λB) defineG̃ as follows: sayG hasn
vertices. We add toG a directed path withn vertices and an arc from the leaf of this
path to a leaf ofG. We label each new vertex with an own new predicate. All new arcs
get label 1. TheñG has2n vertices and heightn. Thus the parameter of this instance is
at most2.

An instance(G,G′, k) of SMAD is equivalent to(G̃, G̃′, k) (provided the new pre-
dicate labels chosen in the construction ofG̃ andG̃′ are different) because no analogy
morphism betweeñG andG̃′ can involve some of the new vertices.

But the instance(G̃, G̃′, k) has parameter at most 2, so paraNP-hardness follows as
in the previous proof. �

Remark 5 The construction above preserves the property of being ordered, i.e. ifG is
ordered, then so is̃G.

Claim 3 SMAD is fp-tractable for parameter set {n1}.

Proof: As we have explained in the paper, this is trivial. �

Claim 4 SMAD is fp-intractable for parameter set {n2, r, h, a, p}.

Proof: It is well-known that the parameterized problem

p-CLIQUE

Input: a graphG and a naturalk ∈ N.
Parameter: k.

Problem: doesG contain a clique withk elements?

is W[1]-hard. It thus suffices to give a parameterized reduction from this problem.
Let Ck be a clique withk vertices.G has ak clique if and only if (G, Ck) is

a “yes” instance of SUBGRAPH ISOMORPHISM, hence by Lemma 1, if and only if
(Ck, G, val(Ck)) is a “yes” instance of SMAD . The parameters of the instance produced
aren2 = k, a = 2, p = r = h = 1, all in O(k). �

Claim 5 SMAD is fp-tractable for parameter set {o}.

Proof: Let (G,G′, ℓ) be an instance of SMAD . Let k denote the maximum number of
leafs in one of the given concept graphs.

Let F be the set of bijections between a subset of leafs ofG and a subset of leafs of
G′. Letg ∈ F . We stepwise extend this morphism. For each verticesv of level one inG
there is at most one vertexv′ of level one inG′ such that extendingg by mappingv tov′

is an analogy morphism. We make all possible such extensions. Then we proceed in the
same way with the vertices in level two and so on. This way we generate in polynomial
time an analogy morphism with the best possible value among those whose restriction
to the leafs equalg.

We compute this value for eachg ∈ F and accept if we find a value≥ ℓ. Doing this
amounts to|F | times a polynomial time computation. Because|F | can be effectively
bounded ink, this is fpt time. �
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Remark 6 Claim 5 in the paper is weaker than what we prove here - in the paper we
claimed the result only for ordered concept graphs.

Claim 6 Claim 1 to 5 hold true when SMAD is restricted to instances with ordered
concept graphs only.

Proof: By Remarks 4 and 5 we are left to verify this for Claim 4. There in the proof we
constructed an instance with unordered concept graphsC(Ck) andC(G).

Fix an arbitrary linear order< on the vertices ofG. We transformC(G) to an
ordered concept graphC(G)′ by labeling an arc({v, v′}, v) in C(G) (for an edge
{v, v′} of G) with 1 if v < v′ and with 2 otherwise. Clearly any analogy morphism
betweenany ordered version ofC(Ck) andC(G)′ is also an analogy morphism bet-
weenC(Ck) andC(G) of the same value. Conversely if there is an analogy morphism
betweenC(Ck) andC(G) then this is also an analogy morphism betweenC(G)′ and
some ordered version ofC(Ck). Thus by the proof of Claim 4, we conclude thatG
has ak clique if and only if there is an ordered versionC(Ck)′ of C(Ck) such that
(C(Ck)′, C(G)′, val(C(Ck))) is a “yes” instance of SMAD .

For the sake of contradiction assume that there is an fpt algorithm A solving SMAD

with parameter set{n2, r, h, a, p}. We get a contradiction by deriving thatp-CLIQUE

would then also be fixed-parameter tractable. By the latter condition of the above
equivalence we get an fpt algorithm solvingp-CLIQUE by simulatingA on input
(C(Ck)′, C(G)′, val(C(Ck))) for all possible ordered versionsC(Ck)′ of C(Ck). As
the number of such ordered versions can be effectively bounded ink, this amounts to
an fpt running time. �
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