Memorial

University of Newfoundland

Technical Report #2008-02
Department of Computer Science
Memorial University of Newfoundland
St. John’s, NL, Canada

A FILTERING ALGORITHM FOR APPROXIMATE PATTERN
MATCHING WITH REDUCED VERIFICATION

by

Christoph J. Richter (1) and Wolfgang Banzhaf (2)

'Department of Computer Science, University of Dortmund, 44221 Dortmund,
Germany, Email: christoph.richter@cs.uni-dortmund.de

* Department of Computer Science, Memorial University of Newfoundland, St.
John’s, NL, Canada A1C 5S7, Email: banzhaf(@cs.mun.ca

Department of Computer Science
Memorial University of Newfoundland
St. John’s, NF, Canada A1B 3X5

January 2008

mailto:rosskopf@cs.uni-duesseldorf.de

A filtering algorithm for approximate
pattern matching with reduced verification

Christoph J. Richter Wolfgang Banzhaf
University of Dortmund Memorial University of Newfoundland
Dept. of Computer Science Dept. of Computer Science
44221 Dortmund, Germany St. John’s, NL, Canada A1C 557
christoph.richter@cs.uni-dortmund.de banzhaf@cs.mun.ca

This paper describes an algorithm for approximate pattern matching based
on the partitioning into exact search filtering approach. The Sequitur algo-
rithm is mainly utilized to reduce the amount of checking needed, as checking
is the expensive part in filtering algorithms. Thus, a better filtration effi-
ciency could be achieved for higher error levels and also a good performance
for shorter texts.

Keywords: approximate pattern matching, sequence comparison, filtering,
partitioning into exact search, Sequitur

1 Introduction

Approzimate string matching (or also called approzimate pattern matching or k differ-
ences problem) describes the problem of finding a certain pattern in a text assuming
that either the text or the pattern contains errors. As a result, all positions are accepted
where a pattern is found in the text, which differs not more than a certain limited num-
ber of errors from the given pattern. Since this is a very general problem, there is a
great variety of applications in different areas like computational biology, text retrieval,
and others like listed in [23, 31, 43]. To solve the problem a lot of algorithms have been
designed. Overviews are given in various papers and books whereas [17, 30, 31, 36] are
the most recent ones.

One class of solutions is the class of filtering algorithms. The algorithms of this
class are working in two phases, one for filtration and one for the checking (also called
verification). Since the checking phase is more expensive, it is useful to reduce the
proportion of this phase that the algorithm spends less time there.

Closely related to approximate string matching is the problem of compressed approzi-
mate string matching. It deals with compressed, i. e. redundancy reduced, texts instead of
uncompressed texts. The pattern search is performed without uncompressing the text.

This problem was investigated only in the very recent years and there are only a few
solutions to this problem up to now [22, 27, 28, 37|.

The algorithm presented in this paper solves the problem of approximate string
matching on the basis of a filtering approach, but uses the general idea of redundancy
reduction to spend less time in the checking phase. Before performing the pattern search
on the text, a preprocessing step is used to calculate the redundancy information (this
can be compared to the compression step in compressed approximate string matching).
During the search, the redundancy information can be used to skip search and verification
in some areas of the text or to repeat matchings.

This paper is organized as follows. In the next section we briefly discuss prevoius
work. After the algorithm itself is presented in Section 3, in Section 4 the practical
behavior of the algorithm is estimated. Finally the last section draws conclusions and
gives suggestions for future work.

2 Related Work

In this section, a formal definition of the problem is given. Furthermore, the general
context is outlined and the algorithm presented here is positioned in this context.

The problem of approximate pattern matching is defined as follows: Given a text
T =t...t,, and a pattern P = py...p, (t,p; € X), find all positions in 7', where P
appears with at most k errors, i.e. return the set {|zP|,T = 2Py Ad(P, P) < k}. z and
y are substrings of T, |.| gives the length of a string and d(P, P) gives the edit distance
(also called Levenshtein distance [26]) between P and P. The edit distance between two
strings characterizes the number of transformation operations (insertion, deletion and
replacement), that are necessary to transform one string into the other one.

The general solution principle utilizes dynamic programming and was first used only
to calculate the edit distance (e.g. in [40, 43, 44]); though with minor changes a search
variant is also possible [45, 47]. Using the unit cost error model (counting of errors =
cost 1 per error), the general dynamic programming algorithm takes O(nm). Based on
this principle, a lot of other algorithms have been developed [31] which achieve O(kn)
in the worst case and O(kn/\/0) in the average case (like the algorithm of Chang and
Lampe [9]), where o is the size of the alphabet 3.

To achieve a better average case behavior the concept of filtering was applied to ap-
proximate pattern matching (first by Tarhio and Ukkonen [53] followed by many others).
The idea behind this concept is, that it is sometimes easier to decide for a text position
that no approximate matching occurs than to ensure whether there is an approximate
matching. Different filtering algorithms can be classified by the filtering approach and
additionally by the online applicability. Unlike online algorithms, offline algorithms pre-
process the text in advance by building an index to use it for a better performance during
the search. Usual indexing data structures are suffix trees [12, 19, 46, 56|, suffix arrays

[34], g-grams [8, 19, 29, 32] and ¢-samples [39, 51|. If the text is too large or a search
is performed in the text very frequently, the preprocessing costs may pay off and offline
algorithms can be used as alternative approaches to online algorithms.

There are different filtering approaches. Most approaches can be seen as applications
of the following Lemma (see [36]):

Lemma Let A and B be two strings, such that d(A, B) < k. Let A = Ayz 1 Ay.. .2 1 A;
for strings A; and z; and for any 7 > 1.

1. For j < k+1: Let k; be any set of nonnegative numbers such that > 7_, k; > k—j+1.
Then, at least one string A; appears with at most k; errors in B.
2. For j > k+ 1, then
a) at least j — k strings A4;, ..., A;,_, appear in B.
b) the relative distances from these j—k strings inside B cannot differ from those
in A by more than k.

Though not all filtering approaches can be categorized by this Lemma (e.g. [29,
38, b5]), it is very useful to classify filtering approaches. The first case of the lemma
(7 < k+ 1) characterizes a partitioning of the problem into smaller problem instances,
while the second case (j > k 4 1) characterizes what is called partitioning into exact
search. Furthermore it is a difference for an algorithm, whether A in the lemma is an
occurrance P of P in T (i.e. the errors are assumed to be in the text) or A corresponds
to P directly (i.e. the errors are assumed to be in the pattern). Figure 1 shows the
classification of different filtering algorithms following the lemma.

smaller instances exact search
error in pattern [5], [34]* [6],[10],[18],[32]*,[46]*,[53],[58]
error in text [11], [39]* [19],[50]*,[51]*,[52]*

Figure 1: Classification of different filtering algorithms. * denotes an indexed algorithm
in the referenced paper.

In this paper partitioning into exact search is used assuming that errors occur in the
pattern. A brief overview on the algorithms of this class follows now. The algorithms of
Jokinen et al. [18] and of Tarhio and Ukkonen [53] can be classified also as counting filters,
as the number of characters fulfilling certain conditions in a text window is counted. In
both algorithms j is chosen as m and thus every A; of the lemma corresponds to a
single character of the pattern. While in [18] the only condition is the number of exact
matching characters between a text window and the pattern, in [53] the number of bad
characters is counted, i.e. the number of characters that do neither match at the actual
position nor in a distance of at most k. Whenever the counting condition is not fulfilled

in the text window, it is shifted further along the text using Boyer—Moore [7] techniques.
Also Chang and Lawler [10] apply the lemma in the same way with j = m. Basically,
they check whether more than m — k text characters are needed to cover k strokes of
consecutive character matchings with the pattern. To search the strokes of matching
characters a suffix tree of the pattern is used.

The algorithm presented in Section 3 applies the lemma in the same way as Wu and
Manber [58] or Baeza-Yates and Perleberg [6]. The pattern is split into k 4 1 pieces (the
A; in the lemma) and all of these pieces are searched exactly in the text. If one of these
pieces is found, an area containing this exact matching is checked for an approximate
matching with a non filtering algorithm. To search for the pattern pieces, in [58] an
extension of shift-or [4] is used, while in [6] the algorithm of Aho and Corasick [2] (which
is a multi pattern variant of the Knuth-Morris—Pratt [21] search algorithm) is applied.

Navarro and Baeza-Yates [32] implemented an indexed variant of the k41 partitioning
with searching the pattern pieces in a g-gram index. Shi [46] extended the principle of
k + 1 partitioning to k + s, s > 1 partitioning and performed the search of the pattern
pieces with the help of a suffix tree index of the text.

Besides these algorithms with errors assumed in the pattern, there are also some
algorithms (see Figure 1) considering the errors to be in the text while following the
partitioning into exact search approach.

The algorithms in [50], [52] and [19] can be seen as earlier versions of the algorithm
of Sutinen and Tarhio [51], where a ¢g-sample index (samples taken with a distance h,
q < h < m) of the text is used. All pattern ¢g-grams are searched in the index and if at
least s (depending on h) consecutive g-samples are matched a checking is triggered.

As with O(m?) the costs for checking are expensive compared to the linear time of the
search algorithmes, it is very important for the filtering algorithms that the checking time
is not dominant, i.e. that the average checking costs are O(1). This is heavily dependent
on the error level & = k/m, because the less errors are allowed, the less possible hits
needs to be checked. The kind of filter considered in this paper (partitioning into exact
search of k + 1 pattern pieces) has been proven to be good for low error levels [31], but
whenever there are too many possible hits to check, the time needed for checking is too
high.

There are different ideas to reduce the overall time needed for checking. In a general
improvement method for filtering algorithms, Giegerich et al. [16] mixed the checking
phase with the search phase. With the information of the search phase about the maximal
number of errors left, the checking phase can be stopped prematurely if in the progress of
checking the actual number of errors shows that an approximate matching is not possible
anymore. With hierarchical verification another idea was presented by Navarro and
Baeza-Yates [30, 33, 35]. They applied the lemma mentioned above not only during the
search phase of pattern pieces with [k/j| errors, but also in the checking phase. Instead
of checking the complete area at once, two neighboring pattern pieces are merged and
checked for [k/%] errors. This merging is successively continued until either the whole

pattern is found with at most k errors, or in one of the merging steps the checking failed.
Another idea to reduce the overall checking time, is to adapt the checking algorithm for
reusing the information already calculated, if the area to be checked partly overlaps with
the last checked area (patchwork verification).

A very different idea for the same purpose is presented in this paper. To reduce the
total amount of checking needed, the redundancy of the given text can be used.

In a problem closely related to approximate string matching the principle of redun-
dancy reduction is also utilized. In compressed approximate string matching the text is
considered to exist in a compressed (i. e. redundancy reduced) form. There are several
different compression schemes and for various dictionary based methods like the Lempel-
Ziv family [57, 59, 60|, Sequitur [42], BPE (byte pair encoding) [13], Re-Pair (recursive
pairing) [25] and run length encoding, Kida et al. [20] introduced a collage system as a
unifying framework. They also introduced a general algorithm for exact compressed pat-
tern matching within this framework, but the problem of compressed approximate string
matching was not addressed. Kérkkiinen et al. [22] presented the first algorithm to solve
this problem. Their algorithm is for LZ78 [60] and LZW [57] compressed texts and uses
a dynamic programming approach to achieve O(mkn 4+ r) time and O(nkm + nlogn)
space, where r is the number of matches and n the compressed length of the text. Based
on the same compression schemes Matsumoto et al. [27] presented an algorithm using bit-
parrallel techniques and running in O(k%*n+ km) time and O(k?n) space. !!!!Navarro et
al. [37] presented an algorithm with a better practical behavior using a filtering approach.
They perform a multi pattern search on pieces of the pattern followed by verification on
a locally decompressed text if necessary. A different text compression scheme, run length
encoding, is assumed by Méakinen et al. [28]. Their algorithm can handle arbitrary costs
of the basic edit operations and runs in O(mnm) time, where m is the compressed length
of the pattern. For other compression methods the problem of compressed approximate
string matching has not been solved yet.

The algorithm presented in this paper does not deal with the compressed variant of
the approximate string matching problem, but uses the Sequitur compression scheme
[42] in the preprocessing step. The basic idea of the Sequitur algorithm is to represent
the input sequence in a way that no phrase appears twice or more often. To achieve
this, every phrase appearing more than once is replaced with a nonterminal symbol
representing a rule that exactly describes this phrase. The algorithm processes the input
sequence linearly and takes care that the following two properties hold:

e no pair of adjacent symbols appears more than once in the grammar (guarantees
uniqueness of rules)

e every rule is used more than once (guarantees that each rule is useful)
For example, processing the text abcababc results in the grammar

S — Rl R2R1

Rl — R2 C
R2 — ab

where S' is the start symbol and Ry and R, are nonterminals.

A Sequitur grammar can be calculated in linear time [42] and used as compression
method, it has been shown [41] to be extremely effective in the compression of semi-
structured text.

In the next section a filtering algorithm for approximate pattern matching will be
described that uses the Sequitur grammar to gain redundancy information, which will be
used to reduce the amount of checking needed. Thus, as a complete filtering algorithm,
the algorithm is not an alternative to the other approaches to reduce overall checking
amount described earlier. It can be seen as an extension of the partitioning into exact
search filtering algorithm, that still could be combined with one of the methods to reduce
checking amount.

3 The Algorithm

The algorithm described in this section solves the problem of approximate pattern match-
ing as defined in Section 2. First, the general principle of the algorithm will be explained.
Afterwards, a more formal description of the algorithm will reveal details. At the end of
this section some variations of the algorithm are discussed.

3.1 General Principle

Generally the algorithm consists of two phases. The first phase is the preprocessing phase,
where information about the text redundancy is gained. The second phase performs the
actual search of the approximate occurrences of the pattern.

The preprocessing phase focuses on the text primarily, but a very few calculations
on the pattern are necessary also. Using the Sequitur algorithm (Section 2) a grammar
is inferred from the text T. With the grammar the text is represented by a starting
rule referring to symbols and other rules, while the existence of every other rule means
that the text component represented by this rule appears at least twice in T' (Sequitur
condition). Additionally, for every rule of the grammar the length of represented text
component and a list of all positions where this rule occurs in the text is stored.

The pattern is divided into k + 1 pattern pieces or subpatterns as it is necessary for
the kind of filtering approach (Section 2) used here.

The processing phase is basically the same as in any filtering algorithm based on the
principle of partitioning into exact search. Though, besides a search and a verification
step a third step is used to evaluate information gained in the other two steps. For the
search step, here, a multi pattern search extension (like in [33]) of Sunday’s algorithm [48]

is used. In the verification step the algorithm of Chang and Lampe [9] is applied. How-
ever, in principle any multi pattern search algorithm resp. approximate pattern matching
algorithm could serve as search algorithm resp. verification algorithm.

Starting point for the algorithm is a list of search areas initialized with [1,n]. The
first interval in the list of search areas is selected. If there is none, the loop of searching,
verification and evaluation is stopped. Otherwise, a multi pattern search for all subpat-
terns is performed in this interval and stops either if one of the subpatterns was found or
if none of the subpatterns could be found in the interval. In the second case, the actual
interval is removed from the list of search areas and as long as there is another interval
in the list, the search is started anew with the new first interval. If a subpattern was
found, an interval including this position is determined. This interval needs to be wide
enough to ensure that every approximate matching containing the matched subpattern
is included. Using the checking algorithm, all approximate matchings are found in this
interval. These resulting hits are stored in a list collecting all hits.

All information of the checking (matching subpattern, verified area, results), called
verify from now on, are stored in a list of verifies for further use in the next step, where
the preprocessed rule information is evaluated. This step begins with updating the first
(and current) search interval of the list of search areas by setting the new interval start
to the position right behind the position where the exact matchig was found. Then three
important calculations are performed to gain benefits from the rule information. First,
it is checked whether a rule (at the position of the first appearance of this rule) covers a
verified area completely. If so, all the hits found for this verify are duplicated to every
position of the rule (see Figure 2) and inserted into the list of hits. Second, if a verified
area wasn’t covered completely, it is checked whether a rule covers the subpattern that
triggered the verification. If so, the verified area is duplicated to every position of the rule
(see Figure 3) and is stored in a list containing intervals, that need further checking. And
finally the third calculation takes the rules that are not affected by future verification
areas and removes for every rule position the area from the list of search areas, that
definitively can be excluded from further search (see Figure 4).

With the modified list of search areas the search is started anew as long as the list
of search areas is not empty.

Finally, to complete the list of hits, every element in the list of intervals that needed
further checking is verified.

In the following the different parts of the algorithm are described more formally to
enable a better understanding of some details.

3.2 Preprocessing Text

Using the Sequitur algorithm [42], a grammar is constructed from the text. Based on the
grammar, a few additional features that are essential for the algorithm are calculated:

actual position

1} ' ‘ o L ‘ R ‘ -—--—n
N —’
neighborh.
N—— N——
R R

Figure 2: Duplication of checking results. In a former computational step a pattern piece
P; triggered a checking of a neighborhood. The neighborhood is covered by the
rule R. All hits found in the neighborhood can be reproduced for every future
occurrence of the rule R.

actual position

1} At — L - bt ——-—n
W _
N—— N —
R R
N —’ N —’
neighborhood needs further checking

Figure 3: Duplication of checking information. The rule R covers only the pattern piece
FP; completely, but not the neighborhood. For every future occurrence of the
rule R, a neighborhood is marked to be checked later.

actual position

A I T N O

N—— N—— SNe——
R R R

Figure 4: Preventing search on processed rules. For every future occurrence of the rule
R a text aera (marked gray) can be excluded from further search.

e For each rule R the length R.length of the rule, i.e. the number of text symbols
covered by the rule, is determined.

e For each rule R, a sorted list PositionlList containing all positions of this rule in
the text is build.

e An array SR containing all rules is constructed. In this array the rules are sorted
regarding the position of the first appearance in the text (SR = sorted rules).

e For each rule R, the number incl Number of the rule a level above, i.e. the rule
completely including this rule during the first appearance in the text, is determined.
The number is set to —1 if there is no such rule.

e An array TR is build, containing for each text position the number of the last rule,
that is completely included in the text up to this text position. For every rule
only the end position of the first appearance is relevant. The number of the rules
corresponds to the numbers in the SR-Array (TR = text-rule).

e An array TL is constructed, containing for each text position either the highest
number of the rule, which covers this position or, if this position isn’t covered by a
rule, the number of the position before (T'L = top level).

3.3 Preprocessing Pattern

The pattern is divided into k£ + 1 subpatterns Py ...Fx11. The length of the longest
subpattern is Py, 4.

3.4 Processing

The processing can be divided into the three phases initialization, search and verify and
checking, which will be explained in the following.

3.4.1 Initialization

In the initialization phase, a well-defined initial state for the other parts of the algorithm
is created:

e List of search areas SL = {[1, n]}
e List of all final hits Hitlist = 0

e List of verifies (verification areas) VL = ()
A verify contains the following information: the subpattern that matched exactly;
the position in the text, where the subpattern matched; the start and the end
position of the verification in the text; the number of true verified positions in this
area; a pointer to the first of this true verified positions in the Htlist.

e List of intervals, that need to be checked later CL = {)

e Number of the last rule processed Ry = —1

3.4.2 Search and Verify

This phase contains the exact search filter and the evaluation of the search results. The
algorithm ProcessRules (called in line 9) uses the rule information to duplicate search
results if possible.

Algorithm SearchAndVerify
while SL #0 do
(Exact) linear multi pattern search of P, ..., Pry1 in [ty t.]
if P, found at t, then
posy =t, — (m+k—1)
pos. =ty + (m+k—1)
Verify [posy, pose]
Insert the positions of the h resulting hits into the Hitlist.
Append the verify (¢, 1, posy, pos., h, hPos) to VL (where hPos is a pointer to
the first element inserted into the Hitlist)
9. ProcessRules
10. else
11. Remove [ty, t.] from SL

0 =~ O Tt = W N —

As the processing of rules in line 9 is a very crucial part of the algorithm, it’s now
described into more detail:

Algorithm ProcessRules
(* processes the rules: inferring hits and areas of no further interest %)
Substitute the first area [t;, t.] in SL with [t, 4+ 1,¢.]
for =R+ 1 to TR[t;] (* only rules, which appeared at least once until ¢, %)
R = SR[i] (* get the rule x)
if ((R islong enough) and (R.incINumber > TR]t;])) then
CheckVL(R, 1)
ActualizeSL(R)

R; = TR[t,] (% no rule needs to be considered twice %)

AN i

Algorithm CheckVL

Input: rule R, number ¢ of R

(* tries to infer further hits from position of R and the elements of VL x)
1. for (tz,1,posy, pose, h,hPos) € VL

2. if TL[pos.] < i then (x this verify is not important anymore %)

3. Remove this verify from VL

4. else

5. if R.Positionlist. first < t, then (x this and none of the following verifies
is covered by the R)

6. return

7. else

8 if R covers [posy, pos.] completely then

9. Reproduce the hits of this verification to all positions in R.Positionlist

10. elseif R covers the subpattern F; in this verify then

11. Reproduce this verify area to all positions in R.Positionlist and insert

these intervals in CL.

Algorithm ActualizeST

Input: rule R

(* using positions of R to exclude intervals from SL, which are of no further interest *)
1. for t, € R.PositionList

2. Exclude [t, + Par — 1,t, + R.length — Py q,] from SL

3.4.3 Checking

In the phases of final checking, all intervals collected in CL are verified. The positions of
positive verifications are inserted into the Hitlist.
3.5 Improvements of the basic Algorithm

In the following some minor variations of the algorithms will be discussed.

3.5.1 Minimal Length of Rule

In line 2 of ActualizeSL the area is determined, which does not need to be examined
further for exact machings of subpatterns. The size of this area depends on P, the
size of the longest subpattern, and on R.length, the length of the rule. In order to ex-
clude at least one symbol from further examination, the difference between both interval
boundaries must be greater or equal to zero, i.e.

(tr + R.length — Ppay) — (t + Ppaz — 1) > 0.
Transforming this inequation results in
R.length > 2P, — 1,

what is exactly one of the conditions inspected in line 4 of ProcessRules. It is obvious
that it is better to skip larger areas and furthermore that it is worth to skip shorter areas

especially if positions are excluded, that trigger a verification (i.e. considering only the
probabilities of the occurrence of symbols, it is easy to see, that the exclusion of shorter
areas is more useful for smaller alphabets).

To be able to control the influence at this point, a parameter was introduced, that is
also inspected in line 4 of ProcessRules and that defines the minimal length of rules to
be processed at all.

3.5.2 Optimizing Checklist

It is possible, that in the list CL of intervals that need further verification (Section 3.4.3)
some intervals are included, which are already verified in the end when it comes to
the final verification. To avoid unnecessary checking, verifies can be stored instead of
removing them in line 3 in CheckVL and thus it is possible to remove intervals that are
already treated from CL right before the list is processed (Section 3.4.3).

3.5.3 Verification

Though the algorithm of Chang and Lampe [9] was implemented here, in general any
approximate string matching algorithm (like [14, 24, 47, 54] or any other) could serve as
verification algorithm.

Intuitively, it is better to select the area [posy, pos.], that is going to be verified (line 6
in SearchAndVerify), as small as possible. To determine pos; and pos., first it is assumed,
that the only knowledge is that P; is a subpattern of P that matches at position ¢, in 7.
With this, it could be possible that P; is located at the very beginning of P and thus

pos. = t, +m+k—1 (3.1)
is obtained. On the other hand, P; could be the last symbol of P and thus it is:
posy =t —m—k+1 (3.2)

Adding the additional information of the position p, (0 < p, < m — 1) of P, in P
and the length P;.length of subpattern P;, a smaller interval can be obtained. For that
it is also important to know, whether the subpattern F, is unique in P or not. In the
first case, still all k£ errors could follow after ¢,, but only a maximum of m — p, symbols
of P; could follow (including the position ¢,). Also, all k errors could be before t,, and
the first symbols of the pattern should be taken into account also. This results in:

pos, = tp+k+m—p,—1 (3.3)
posy, = by — k— Pz (34)

In the second case (the subpattern P; is not unique in P), nothing can be improved
except considering that F; is located at ¢, and thus at least the symbols of F; are not

before t,. This case results in:

pos, = ty+k+m-—1 (3.5)
pos, = tp,—k—p; (3.6)

If a verify algorithm now completely processes the given interval [posy, pos.], it is for
sure better to choose the shortest interval (i. e. equations 3.3-3.6).

4 Analytical Experiments

In this section, the algorithm of Section 3 is evaluated. For a better handling, this
algorithm will be called Gral/ (Grammar based Index) here. As Gral was intended to
reduce the amount of checking needed with a partitioning into exact search filter, the
basic filtering algorithm of this kind (following the algorithm of Wu and Manber [58])
was also implemented. This algorithm will be called Pk1 (Partitioning into k+1 pieces)
here and uses the same algorithms for exact searching (multi pattern extension of Boyer—
Moore-Sunday [48]) and for checking (Chang and Lampe [9]) like Gral. Furthermore, the
SLEQ (static locations of exact g-grams) algorithm of Sutinen and Tarhio [51] serves as
comparative indexed algorithm here, whereas the sample stepsize was chosen as h = 3
and the size of g-grams was ¢ = 3. All algorithms were implemented in Java and all
experiments were done on a 2.4 GHz Linux PC with 1 GB RAM. Within the experiments
at least 20 repetitions were done, building a basis for the standard deviation bars in the
figures.

During all experiments, the search pattern were randomly selected from the text.
The text was either random with varying alphabet sizes ¢ or in English language (King
James Bible converted to upper case, seperators except line breaks converted into space)
with an alphabet size of 28.

In comparison to Pkl, Gral is intended to do less checking. As all algorithms share
the same verification algorithm, it is sufficient to count the number of accesses to either
text or pattern symbols in this algorithm. Figure 5 shows this number for a random text.
It is obvious that for a very small alphabet (see Figure 5(a)) the effect of saving symbol
accesses during checking with Gral is bigger than for larger alphabets (see Figure 5(b)).
The reason for this is the grammar concept, which generates more rules (this is, where
the algorithms starts working on), the more redundancy can be found in the text. Of
course, a random text of a small alphabet contains more repeated areas than a random
text of a larger alphabet.

Less usage of the verification algorithm has also a direct impact on the filtration
efficiency f, which is a qualitative better measure. Basically, there are two possible ways
to calculate the effective filtration efficiency.

e Filtration efficiency regarding the text length: f, = (n — n,)/n, where n, denotes

1.6e+07

1.6e+06

—— Gra —— o
Laero? | g Laeros | T g
B 1zet07 ¢ B 12006 ¢
= =
2 1e+07 F 1e+06
8 8
£ 8e+06 |- € 800000 |
& &
z | 5 i
y e p 60000 -
E a6l § 400000 |
= =
26+06 | 200000 |-
0 - 0 - L " L L
15 2 25 35 45
k k
(a) o =2 (b) ¢ =30

Figure 5: Number of symbol accesses. n = 100000, m = 10

the number of text symbols considered during verification [51]. f,, describes the
proportion of verified symbols.

o Filtration efficiency regarding the number of matches: f = mat, /mat,, where mat,
denotes the number of real matchings found and mat, the number of potential
matchings detected by the algorithm [49]. f describes the quota of real matchings
per potential matching.

During the experiments, only f was calculated. A potential matching was counted
every time when the verification algorithm was started. With this, f was calculated when
the complete text was processed (and thus all matchings were found).

Note that even if f will be less then 1 mostly, it can be a greater than 1. This is
the case, if the verification following after detecting a potential matching identifies more
than one real matching and further this real maching does not trigger another potential
matching later.

When comparing the algorithm to the basic partition into k& + 1 pieces filter, the
conditions for achieving a better filtration efficiency can be calculated very roughly. As
the filtering principle is exactly the same, it is only necessary to consider the cases, when
a potential matching may lead to further potential or real matchings. This can only
happen, if the condition

R.length > 2P, — 1

holds (see Section 3.5.1). Not that but not every matching is necessarily part of a rule.
For a noticeable effect it is necessary that this condition holds for the average rule.

Considering Py,q = m/(k+ 1) and the average rule length [,,, the condition is

Lo > 22— — 1
=Tk
Sharpening this a little bit,
Loy > 2% —1

is achieved. With the error level « defined as av = k/m, this can be transformed to

2
o>

o lav —I_ 1

Figure 6(a) shows the filtration efficiency when searching random patterns of length

m = 10 in a random text of length n = 100000 (alphabet size ¢ = 4). The average

length of the rules is [, = 6.63. Using equation 4.1 results in error levels o > 0,262,

where the filtration efficiency is greater than that of Pkl. In Figure 6(a) the conformity

of this calculated result and the measured value can be seen, as with an error level of

a > k/m = 3/10 the filtration efficiency is greater than that of Pkl and also of the

indexed algorithm SLEQ. Figure 6(b) illustrates the same effect in another case, but

also that the analysis is really very roughly. Here the average length of rules is 3.67 and

with equation 4.1 it is o > 0,428. Thus, with m = 10 the effect of the better filtration
efficiency should start around k& = 4.

(4.1)

0.2

015

5 5
k) k)
i T o1t
]]
g g
- T oos
0 e
1 15 2 25 35 4 45 5
k k
(a) o = 4,n = 100000, m = 10 (b) ¢ = 30,n = 20000, m = 10

Figure 6: Filtration efficiency. A very crude analysis (equation 4.1) calculates roughly
the point, where the filtration efficiency of Gral diverges from that of Pkl.

Considering equation 4.1 it is obvious that Gral performs better for higher error levels
. For low error levels and longer patterns SLEQ achieves a better filtering efficiency
then Gral or Pkl. Figure 7 shows examples of this case.

— Gra |, ‘ ‘ — Gra
""""" Pkl | P 1
g L et SLEQ ! SLEQ
[35
> L * P 3 L
5 * . 5 O
2 - X S 25 %
T3l © E -
s S 2t ‘
g ‘ 8 i 5
2 2t ! 2 15 .
1} I
1t L
05 | L
0 * 0 . M z
0 2 14 16 0o 2 4 6 8 10 12 14 16
k k
(a) o = 30,n = 100000, m = 30, random text (b) ¢ = 28,n = 20000, m = 30, English text

Figure 7: Filtration efficiency. Gral does not achieve a better filtration efficiency than
Pk1 for low error levels and longer pattern. In fact, both algorithms can not
compete with SLEQ in this case.

Not only the filtration efficiency is of interest, but also the search time. Figure 8
shows that Gral performs comparatively good for higher error levels (a higher number
of errors k for a fixed m).

A better filtration efficiency does not always mean a better search performance. Usu-
ally, the price for this better filtration efficiency are higher expenses in other parts of
the algorithm. Of course, in Gral the text is preprocessed, but this takes only linear
time and is done once before performing several searches. Other expenses result from
the management of additional information.

If there is a lot of additional information to manage, the search process is slowed
down. This is the main drawback with Gral that for longer texts this effect of slowing
down occurs. Figure 9 shows the same searches in the same English text, but restricted
to different text lengths. For the longer text (Figure 9(b)) Gral performs worse than for
the shorter text.

This leads to the benefits of the parameter introduced in Section 3.5.1 to allow skip-
ping of shorter rules during the process of evaluation. The minimal length needed for
a rule to be used for duplicating information (see Section 3.1) also controls directly the
amount of additional information that is managed. Figure 10 illustrated the effect when
the minimal length of rules is varied. Of course, the performance depends on the average
length of rules in the grammar. If the minimal length of rules selected is a lot greater
than the average length of rules in the grammar, not much can be gained, as only a very
few rules will influence the calculation. In Figure 10 it can be seen that the overall best
performance can be reached with a minimal rule length close to the average length of

time (ms)

Figure 8: Search time. Time needed for searching pattern of different lengths in a part

time (ms)

Figure 9: Expenses for management of additional information. In the longer English text,

400

350 -

300

250

200

150

100

450
400
350
300
250
200
150
100

(a) m =30

1200 ‘ ‘ ‘
— Gra
| E— Pk1
1000 T SLEQ
| 800 |
@
£
1 S 600 -
E
1 400 |
| 200
0 1
16 0 5
k
(b) m =60

of the King James Bible of length n = 20000.

1 200 -

4 700

400

time (ms)

1 100 .

Gral
Pk1
SLEQ
:
3 4
k
(a) n = 20000

(b) n = 100000

searching the same pattern (m = 10) takes more time.

rules in the grammar.

300

250

200

150

time (ms)

100

50

Figure 10: Effect of different minimal rule lengths. Approximate matching of short pat-
tern (m = 10) in English text of length n = 50000. The average length of
rules in the grammar of the text is 7.37.

5 Conclusions and Outlook

In this paper a filtering algorithm for approximate string matching is presented. The
algorithms is based on the principle of partitioning into exact exact search with the in-
tention to reduce the overall amount of checking. Using the Sequitur grammar, this aim
was achieved for the filtering approach with partitioning the pattern into k£ 4+ 1 pieces.
It was also shown that compared to the basic approach a better filtration efficiency is
reached for higher error levels. The algorithms perform comparatively good for a higher
number of errors, but for long texts the expenses for the management of additional infor-
mation dominate. Within small limits, this influence can be controlled with a parameter
of the algorithm.

To remove the influence of management costs in longer text, the text could be devided
in blocks that are processed seperately. Then, rule information should be duplicated only
when processing of a block is finished.

A Sequitur grammar can be extended online for a growing text. Here, the additional
features needed by the algorithm (Section 3.2) are calculated separately, but the calcu-
lation could be integrated into the Sequitur algorithm to achieve a better applicability.

Combining this algorithm with other methods to reduce the overall checking amount
like hierarchical verification or patchwork verificaction (Section 2) is still possible and
may lead to an enhanced overall performance.

Acknowledgements

Thanks to André Leier for numerous discussions and productive notes.

References

[1] Proceedings of the 11th IEEE Data Compression Conference (DCC '01), IEEE Com-
puter Society Press, March 2001.

[2] A. V. AHOo AND M. J. CORASICK, Efficient string matching: An aid to bibliographic
search, Communications of the ACM, 16 (1975), pp. 333-340.

[3] A. AposToLico, M. CROCHEMORE, 7. GALIL, AND U. MANBER, eds., Proceed-
ings of the 3rd Annual Symposium on Combinatorial Pattern Matching (CPM’92),
vol. 644 of LNCS, Springer, April/May 1992.

[4] R. A. BAEZA-YATES AND G. H. GONNET, A new apporach to text searching,
Communications of the ACM, 35 (1992), pp. 74-82. Preliminary version in ACM
SIGR’89.

[65] R. A. BAEzZA-YATES AND G. NAVARRO, Faster approximate string matching, Al-
gorithmica, 23 (1999), pp. 127-158. Preliminary versions in Proceedings of CPM’96
(LNCS, vol. 1075, 1996) and in Proceedings of WSP’96, Carleton Uni. Press, 1996.

[6] R. A. BAEZA-YATES AND C. H. PERLEBERG, Fast and practical approrimate string
matching, in Apostolico et al. [3], pp. 185-192.

[7] R.S. BOYER AND J. S. MOORE, A fast string searching algorithm, Communications
of the ACM, 20 (1977), pp. 762-772.

[8] S. BURKHARDT AND J. KARKKAINEN, One-gapped g-gram filters for Levenshtein
distance, in Proceedings of the 13th Annual Symposium on Combinatorial Pat-
tern Matching (CPM’02), A. Apostolico and M. Takeda, eds., vol. 2373 of LNCS,
Fukuoka, Japan, July 2002, Springer, pp. 225-234.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[20]

W. 1. CHANG AND J. LAMPE, Theoretical and empirical comparisons of approximate
string matching algorithms, in Apostolico et al. [3], pp. 175-184.

W. 1. CHANG AND E. L. LAWLER, Sublinear approximate string matching and

biological applications, Algorithmica, 12 (1994), pp. 327-344. Preliminary version in
FOCS™90.

W. 1. CHANG AND T. G. MARR, Approximate string matching and local stmilarity,
in Proceedings of the 5th Annual Symposium on Combinatorial Pattern Match-
ing (CPM’94), M. Crochemore and D. Gusfield, eds., vol. 807 of LNCS, Asilomar,
California, USA, June 1994, Springer, pp. 259-273.

A. L. CoBBs, Fuast approximate matching using suffiz trees, in Proceedings of the
6th Annual Symposium on Combinatorial Pattern Matching (CPM’95), Z. Galil and
E. Ukkonen, eds., vol. 937 of LNCS, Espoo, Finland, July 1995, Springer, pp. 41-54.

P. GAGE, A new algorithm for data compression, The C Users Journal, 12 (1994),
pp- 23-38.

7. GaLIL AND K. PARK, An wmproved algorithm for approximate string match-
ing, SIAM Journal on Computing, 19 (1990), pp. 989-999. Preliminary version in
ICALP’89 (LNCS, vol. 372, 1989).

R. GIANCARLO AND D. SANKOFF, eds., Proceedings of the 11th Annual Symposium
on Combinatorial Pattern Matching (CPM’00), vol. 1848 of LNCS, Springer, June
2000.

R. GieGERICH, F. HisCHKE, S. KURTZ, AND E. OHLEBUSCH, A general technigue
to tmprove filter algorithms for approximate string matching, in Proceedings of the
Fourth South American Workshop on String Processing (WSP’97), R. Baeza-Yates,
ed., Valparaiso, Chile, November 1997, Carleton University Press, pp. 38-52.

D. GUSFIELD, Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology, Cambridge University Press, 1997.

P. JokINEN, J. TARHIO, AND E. UKKONEN, A comparison of approzimate string
matching algorithms, Software—Practice and Experience, 26 (1996), pp. 1439-1458.

P. JOKINEN AND E. UKKONEN, Two algorithms for approximate string matching
wn static texts, in Proceedings of 16th International Symposium on Mathematical
Foundations of Computer Science (MFCS’91), A. Tarlecki, ed., vol. 520 of LNCS,
Kazimierz Dolny, Poland, September 1991, Springer-Verlag, Berlin, pp. 240-248.

T. Kipa, Y. SHIBATA, M. TAKEDA, A. SHINOHARA, AND S. ARIKAWA, A unifying
Sframework for compressed pattern matching, in Proceedings of the 6th international

[30]

[31]

Symposium on String Processing and Information Retrieval (SPIRE’99), Cancun,
Mexico, September 1999, IEEE CS Press, pp. 89-96.

D. E. KnutTH, J. H. MORRIS, JR., AND V. R. PRATT, Fast pattern matching in
strings, SIAM Journal on Computing, 6 (1977), pp. 323-350.

J. KARKKAINEN, G. NAVARRO, AND E. UKKONEN, Approzimate string matching
over ziv-lempel compressed text, in Giancarlo and Sankoff [15], pp. 195-209.

K. KukicH, Techniques for automatically correcting words in text, ACM Computing
Surveys, 24 (1992), pp. 377-439.

G. M. LANDAU AND U. VISHKIN, Fast parallel and serial approximate string match-
ing, Journal of Algorithms, 10 (1989), pp. 157-169. Preliminary version in ACM
STOC’85.

N. J. LARSSON AND A. MoFrFrAT, Offline dictionary-based compression, in Proceed-
ings of the IEEE Data Compression Conference (DCC ’99), Snowbird, Utah, USA,
March 1999, IEEE Computer Society Press, pp. 296-305.

V. 1. LEVENSHTEIN, Binary codes capable of correcting deletions, insertions and
reversals, Soviet Physics - Doklady, 10 (1966), pp. 707-710. Original in Russian in
Doklady Akademun Nauk SSSR, 163, 4, 845848, 1965.

T. MaTsumoTo, T. Kipa, M. TAKEDA, A. SHINOHARA, AND S. ARIKAWA, Bit-
parallel approach to approximate string matching in compressed texts, in Proceedings
of the 7th international Symposium on String Processing and Information Retrieval
(SPIRE’00), A Coruna, Spain, September 2000, IEEE CS Press, pp. 221-228. Pre-
liminary version as Tech. Rep. DOI-TR-~174, Dept. of Informatics, Kyushu Univer-
sity, 2000.

V. MAKINEN, G. NAVARRO, AND E. UKKONEN, Approximate matching of run-
length compressed strings, Algorithmica, 35 (2003), pp. 347-369.

E. W. MYERS, A sublinear algorithm for approximate keyword searching, Algorith-
mica, 12 (1994), pp. 345-374. Earlier version in Tech. Rep. TR-90-25, Dept. of
Computer Science, Univ. of Arizona, 1990.

G. NAVARRO, Approzimate Text Searching, PhD thesis, Department of Computer
Science, University of Chile, Santiago, Chile, December 1998.

G. NAVARRO, A guided tour to approximate string matching, ACM Computing Sur-
veys, 33 (2001), pp. 31-88.

[32]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

G. NAVARRO AND R. BAEZA-YATES, A practical g-gram index for text retrieval
allowing errors, CLEI Electronic Journal, 1 (1998). Previous version in Proceedings
of the XXII Latin American Conference on Informatics (CLEI’97).

G. NAVARRO AND R. BAEzZA-YATES, Very fast and simple approximate string
matching, Information Processing Letters (IPL), (1999), pp. 65-70.

G. NAVARRO AND R. BAEZA-YATES, A hybrid indexing method for approximate
string matching, Journal of Discrete Algorithms, 1 (2000), pp. 205-239. Previous
version in CPM’99.

G. NAVARRO AND R. BAEZA-YATES, Improving an algorithm for approximate pat-
tern matching, Algorithmica, 30 (2001), pp. 473-502. Previous version: Tech. Rep.
TR/DCC-98-5, Dept. of Computer Science, University of Chile.

G. NAVARRO, R. BAEZA-YATES, E. SUTINEN, AND J. TARHIO, Indexing methods
for approximate string matching, IEEE Data Engineering Bulletin, 24 (2001), pp. 19—
27. Special issue on Managing Text Natively and in DBMSs. Invited paper.

G. Navarro, T. Kipa, M. TAKEDA, A. SHINOHARA, AND S. ARIKAWA, Faster
approzimate string matching over compressed text, in Proceedings of the 11th IEEE
Data Compression Conference (DCC ’01) [1], pp. 459-468.

G. NAVARRO AND M. RAFFINOT, Fast and flexible string matching by combining bit-
parallelism and suffiz automata, ACM Journal of Experimental Algorithmics (JEA),
5 (2000). Previous version in Proceeedings of CPM’98. LNCS, Springer Verlag, New
York.

G. Navarro, E. SuTINEN, J. TANNINEN, AND J. TARHIO, Indexing text with
approximate g-grams, in Giancarlo and Sankoff [15], pp. 350-363.

S. B. NEEDLEMAN AND C. D. WUNSCH, A general method applicable to the search

for similarities in the amino acid sequence of two proteins, Journal of Molecular
Biology, 48 (1970), pp. 443-453.

C. G. NEVILL-MANNING AND I. H. WITTEN, Compression and explanation using
hierarchical grammars, Computer Journal, 40 (1997), pp. 103-116.

C. G. NEVILL-MANNING AND I. H. WITTEN, Identifying hierarchial structures in
sequences: A linear-time algorithm, Journal of Artificial Intelligence Research, 7
(1997), pp. 67-82.

D. SaANKOFF AND J. B. KRUSKAL, eds., Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison, Addison-Wesley,
Reading, Massachusetts, 1983.

[44]

[45]

[46]

[51]

[52]

[53]

[54]

[55]

P. H. SELLERS, On the theory and computation of evolutionary distances, SIAM
Journal on Applied Mathematics, 26 (1974), pp. 787-793.

P. H. SELLERS, The theory and computation of evolutionary distances: Pattern
recognition, Journal of Algorithms, 1 (1980), pp. 359-373.

F. SH1, Fast approximate string matching with g-blocks sequences, in Proceedings of
the Third South American Workshop on String Processing (WSP’96), N. Ziviani,
R. Baeza-Yates, and K. S. Guimaraes, eds., Carleton University Press, pp. 257-271.

T. F. SMITH AND M. S. WATERMAN, Identification of common molecular subse-
quences, Journal of Molecular Biology, 147 (1981), pp. 195-197.

D. M. SunDAY, A wvery fast substring search algorithm, Communications of the
ACM, 33 (1990), pp. 132-142.

E. SUTINEN, Approzimate Pattern Matching with the g-gram Farmuly, PhD thesis,
Department of Computer Science, University of Helsinki, Finland, 1998. Tech. Rep.
TR A-1998-3.

E. SUTINEN AND J. TARHIO, On using g-gram locations in approximate string
matching, in Proceedings of Third Annual European Symposium on Algorithms
(ESA’95), P. Spirakis, ed., vol. 979 of LNCS, Corfu, Greece, September 1995,
Springer-Verlag, Berlin, pp. 327-340.

E. SUTINEN AND J. TARHIO, Filtration with g-samples in approzimate string match-
ing, in Proceedings of the 7th Annual Symposium on Combinatorial Pattern Match-
ing (CPM’96), D. S. Hirschberg, ed., vol. 1075 of LNCS, Laguna Beach, California,
USA, June 1996, Springer, pp. 50-63.

T. TAKAOKA, Approzimate pattern matching with samples, in Proceedings of
ISAAC’94, D.-Z. Du and X.-S. Zhang, eds., vol. 834 of LNCS, Springer-Verlag,
Berlin, 1994, pp. 234-242.

J. TarHIO AND E. UKKONEN, Approzimate boyer-moore string matching, SIAM
Journal on Computing, 22 (1993), pp. 243-260. Preliminary version in SWAT’90
(LNCS, vol. 447, 1990).

E. UKKONEN, Algorithms for approximate string matching, Information and Con-
trol, 64 (1985), pp. 100-118. Preliminary version presented at the International
Conference on “Foundations of Computation Theory”, Sweden, Aug. 1983.

E. UKKONEN, Approximate string-matching with g¢-grams and mazimal matches,
Theoretical Computer Science, 92 (1992), pp. 191-211.

[56] E. UKKONEN, Approximate string-matching over suffiz trees, in Proceedings of the
4th Annual Symposium on Combinatorial Pattern Matching (CPM’93), A. Apos-
tolico, M. Crochemore, 7. Galil, and U. Manber, eds., vol. 684 of LNCS, Padova,
Italy, June 1993, Springer, pp. 228-242.

[67] T. A. WELCH, A technique for high performance data compression, IEEE Computer
Magazine, 17 (1984), pp. 8-19.

[68] S. Wu aND U. MANBER, Fast text searching allowing errors, Communications of
the ACM, 35 (1992), pp. 83-91.

[69] J. Ziv AND A. LEMPEL, A wuniversal algorithm for sequential data compression,
IEEE Transactions on Information Theory, 23 (1977), pp. 337-343.

[60] J. Z1v AND A. LEMPEL, Compression of individual sequences via variable-rate cod-
ing, IEEE Transactions on Information Theory, 24 (1978), pp. 530-536.

	Technicalreport2008-02coverWB.pdf
	Page 1

	MUN-CS-2008-02.pdf

