
Computer Science

Technical Report #2008-02
Department of Computer Science

Memorial University of Newfoundland
St. John’s, NL, Canada

A FILTERING ALGORITHM FOR APPROXIMATE PATTERN
MATCHING WITH REDUCED VERIFICATION

by

Christoph J. Richter (1) and Wolfgang Banzhaf (2)

Department of Computer Science, University of Dortmund, 44221 Dortmund,1

Germany, Email: christoph.richter@cs.uni-dortmund.de

 Department of Computer Science, Memorial University of Newfoundland, St.2

John’s, NL, Canada A1C 5S7, Email: banzhaf@cs.mun.ca

Department of Computer Science
Memorial University of Newfoundland

St. John’s, NF, Canada A1B 3X5

January 2008

mailto:rosskopf@cs.uni-duesseldorf.de

A �ltering algorithm for approximatepattern mat
hing with redu
ed veri�
ationChristoph J. Ri
hterUniversity of DortmundDept. of Computer S
ien
e44221 Dortmund, Germany
hristoph.ri
hter�
s.uni-dortmund.de Wolfgang BanzhafMemorial University of NewfoundlandDept. of Computer S
ien
eSt. John's, NL, Canada A1C 5S7banzhaf�
s.mun.
aThis paper des
ribes an algorithm for approximate pattern mat
hing basedon the partitioning into exa
t sear
h �ltering approa
h. The Sequitur algo-rithm is mainly utilized to redu
e the amount of
he
king needed, as
he
kingis the expensive part in �ltering algorithms. Thus, a better �ltration e�-
ien
y
ould be a
hieved for higher error levels and also a good performan
efor shorter texts.Keywords: approximate pattern mat
hing, sequen
e
omparison, �ltering,partitioning into exa
t sear
h, Sequitur1 Introdu
tionApproximate string mat
hing (or also
alled approximate pattern mat
hing or k di�er-en
es problem) des
ribes the problem of �nding a
ertain pattern in a text assumingthat either the text or the pattern
ontains errors. As a result, all positions are a

eptedwhere a pattern is found in the text, whi
h di�ers not more than a
ertain limited num-ber of errors from the given pattern. Sin
e this is a very general problem, there is agreat variety of appli
ations in di�erent areas like
omputational biology, text retrieval,and others like listed in [23, 31, 43℄. To solve the problem a lot of algorithms have beendesigned. Overviews are given in various papers and books whereas [17, 30, 31, 36℄ arethe most re
ent ones.One
lass of solutions is the
lass of �ltering algorithms. The algorithms of this
lass are working in two phases, one for �ltration and one for the
he
king (also
alledveri�
ation). Sin
e the
he
king phase is more expensive, it is useful to redu
e theproportion of this phase that the algorithm spends less time there.Closely related to approximate string mat
hing is the problem of
ompressed approxi-mate string mat
hing. It deals with
ompressed, i. e. redundan
y redu
ed, texts instead ofun
ompressed texts. The pattern sear
h is performed without un
ompressing the text.

This problem was investigated only in the very re
ent years and there are only a fewsolutions to this problem up to now [22, 27, 28, 37℄.The algorithm presented in this paper solves the problem of approximate stringmat
hing on the basis of a �ltering approa
h, but uses the general idea of redundan
yredu
tion to spend less time in the
he
king phase. Before performing the pattern sear
hon the text, a prepro
essing step is used to
al
ulate the redundan
y information (this
an be
ompared to the
ompression step in
ompressed approximate string mat
hing).During the sear
h, the redundan
y information
an be used to skip sear
h and veri�
ationin some areas of the text or to repeat mat
hings.This paper is organized as follows. In the next se
tion we brie�y dis
uss prevoiuswork. After the algorithm itself is presented in Se
tion 3, in Se
tion 4 the pra
ti
albehavior of the algorithm is estimated. Finally the last se
tion draws
on
lusions andgives suggestions for future work.2 Related WorkIn this se
tion, a formal de�nition of the problem is given. Furthermore, the general
ontext is outlined and the algorithm presented here is positioned in this
ontext.The problem of approximate pattern mat
hing is de�ned as follows: Given a textT = t1 : : : tn, and a pattern P = p1 : : :pm (ti; pj 2 �), �nd all positions in T , where Pappears with at most k errors, i. e. return the set fjx �P j; T = x �Py ^ d(P; �P) � kg. x andy are substrings of T , j:j gives the length of a string and d(P; �P) gives the edit distan
e(also
alled Levenshtein distan
e [26℄) between P and �P . The edit distan
e between twostrings
hara
terizes the number of transformation operations (insertion, deletion andrepla
ement), that are ne
essary to transform one string into the other one.The general solution prin
iple utilizes dynami
 programming and was �rst used onlyto
al
ulate the edit distan
e (e. g. in [40, 43, 44℄); though with minor
hanges a sear
hvariant is also possible [45, 47℄. Using the unit
ost error model (
ounting of errors =
ost 1 per error), the general dynami
 programming algorithm takes O(nm). Based onthis prin
iple, a lot of other algorithms have been developed [31℄ whi
h a
hieve O(kn)in the worst
ase and O(kn=p�) in the average
ase (like the algorithm of Chang andLampe [9℄), where � is the size of the alphabet �.To a
hieve a better average
ase behavior the
on
ept of �ltering was applied to ap-proximate pattern mat
hing (�rst by Tarhio and Ukkonen [53℄ followed by many others).The idea behind this
on
ept is, that it is sometimes easier to de
ide for a text positionthat no approximate mat
hing o

urs than to ensure whether there is an approximatemat
hing. Di�erent �ltering algorithms
an be
lassi�ed by the �ltering approa
h andadditionally by the online appli
ability. Unlike online algorithms, o�line algorithms pre-pro
ess the text in advan
e by building an index to use it for a better performan
e duringthe sear
h. Usual indexing data stru
tures are su�x trees [12, 19, 46, 56℄, su�x arrays

[34℄, q-grams [8, 19, 29, 32℄ and q-samples [39, 51℄. If the text is too large or a sear
his performed in the text very frequently, the prepro
essing
osts may pay o� and o�inealgorithms
an be used as alternative approa
hes to online algorithms.There are di�erent �ltering approa
hes. Most approa
hes
an be seen as appli
ationsof the following Lemma (see [36℄):Lemma Let A and B be two strings, su
h that d(A;B) � k. Let A = A1x1A2 : : : xj�1Ajfor strings Ai and xi and for any j � 1.1. For j < k+1: Let ki be any set of nonnegative numbers su
h thatPji=1 ki � k�j+1.Then, at least one string Ai appears with at most ki errors in B.2. For j � k + 1, thena) at least j � k strings Ai1 : : : ; Aij�k appear in B.b) the relative distan
es from these j�k strings inside B
annot di�er from thosein A by more than k.Though not all �ltering approa
hes
an be
ategorized by this Lemma (e. g. [29,38, 55℄), it is very useful to
lassify �ltering approa
hes. The �rst
ase of the lemma(j < k + 1)
hara
terizes a partitioning of the problem into smaller problem instan
es,while the se
ond
ase (j � k + 1)
hara
terizes what is
alled partitioning into exa
tsear
h. Furthermore it is a di�eren
e for an algorithm, whether A in the lemma is ano

urran
e �P of P in T (i. e. the errors are assumed to be in the text) or A
orrespondsto P dire
tly (i. e. the errors are assumed to be in the pattern). Figure 1 shows the
lassi�
ation of di�erent �ltering algorithms following the lemma.smaller instan
es exa
t sear
herror in pattern [5℄, [34℄� [6℄,[10℄,[18℄,[32℄�,[46℄�,[53℄,[58℄error in text [11℄, [39℄� [19℄�,[50℄�,[51℄�,[52℄�Figure 1: Classi�
ation of di�erent �ltering algorithms. � denotes an indexed algorithmin the referen
ed paper.In this paper partitioning into exa
t sear
h is used assuming that errors o

ur in thepattern. A brief overview on the algorithms of this
lass follows now. The algorithms ofJokinen et al. [18℄ and of Tarhio and Ukkonen [53℄
an be
lassi�ed also as
ounting �lters,as the number of
hara
ters ful�lling
ertain
onditions in a text window is
ounted. Inboth algorithms j is
hosen as m and thus every Ai of the lemma
orresponds to asingle
hara
ter of the pattern. While in [18℄ the only
ondition is the number of exa
tmat
hing
hara
ters between a text window and the pattern, in [53℄ the number of bad
hara
ters is
ounted, i. e. the number of
hara
ters that do neither mat
h at the a
tualposition nor in a distan
e of at most k. Whenever the
ounting
ondition is not ful�lled

in the text window, it is shifted further along the text using Boyer�Moore [7℄ te
hniques.Also Chang and Lawler [10℄ apply the lemma in the same way with j = m. Basi
ally,they
he
k whether more than m � k text
hara
ters are needed to
over k strokes of
onse
utive
hara
ter mat
hings with the pattern. To sear
h the strokes of mat
hing
hara
ters a su�x tree of the pattern is used.The algorithm presented in Se
tion 3 applies the lemma in the same way as Wu andManber [58℄ or Baeza-Yates and Perleberg [6℄. The pattern is split into k+1 pie
es (theAi in the lemma) and all of these pie
es are sear
hed exa
tly in the text. If one of thesepie
es is found, an area
ontaining this exa
t mat
hing is
he
ked for an approximatemat
hing with a non �ltering algorithm. To sear
h for the pattern pie
es, in [58℄ anextension of shift-or [4℄ is used, while in [6℄ the algorithm of Aho and Corasi
k [2℄ (whi
his a multi pattern variant of the Knuth�Morris�Pratt [21℄ sear
h algorithm) is applied.Navarro and Baeza-Yates [32℄ implemented an indexed variant of the k+1 partitioningwith sear
hing the pattern pie
es in a q-gram index. Shi [46℄ extended the prin
iple ofk + 1 partitioning to k + s; s � 1 partitioning and performed the sear
h of the patternpie
es with the help of a su�x tree index of the text.Besides these algorithms with errors assumed in the pattern, there are also somealgorithms (see Figure 1)
onsidering the errors to be in the text while following thepartitioning into exa
t sear
h approa
h.The algorithms in [50℄, [52℄ and [19℄
an be seen as earlier versions of the algorithmof Sutinen and Tarhio [51℄, where a q-sample index (samples taken with a distan
e h,q � h < m) of the text is used. All pattern q-grams are sear
hed in the index and if atleast s (depending on h)
onse
utive q-samples are mat
hed a
he
king is triggered.As with O(m2) the
osts for
he
king are expensive
ompared to the linear time of thesear
h algorithms, it is very important for the �ltering algorithms that the
he
king timeis not dominant, i. e. that the average
he
king
osts are O(1). This is heavily dependenton the error level � = k=m, be
ause the less errors are allowed, the less possible hitsneeds to be
he
ked. The kind of �lter
onsidered in this paper (partitioning into exa
tsear
h of k + 1 pattern pie
es) has been proven to be good for low error levels [31℄, butwhenever there are too many possible hits to
he
k, the time needed for
he
king is toohigh.There are di�erent ideas to redu
e the overall time needed for
he
king. In a generalimprovement method for �ltering algorithms, Giegeri
h et al. [16℄ mixed the
he
kingphase with the sear
h phase. With the information of the sear
h phase about the maximalnumber of errors left, the
he
king phase
an be stopped prematurely if in the progress of
he
king the a
tual number of errors shows that an approximate mat
hing is not possibleanymore. With hierar
hi
al veri�
ation another idea was presented by Navarro andBaeza-Yates [30, 33, 35℄. They applied the lemma mentioned above not only during thesear
h phase of pattern pie
es with bk=j
 errors, but also in the
he
king phase. Insteadof
he
king the
omplete area at on
e, two neighboring pattern pie
es are merged and
he
ked for bk= j2
 errors. This merging is su

essively
ontinued until either the whole

pattern is found with at most k errors, or in one of the merging steps the
he
king failed.Another idea to redu
e the overall
he
king time, is to adapt the
he
king algorithm forreusing the information already
al
ulated, if the area to be
he
ked partly overlaps withthe last
he
ked area (pat
hwork veri�
ation).A very di�erent idea for the same purpose is presented in this paper. To redu
e thetotal amount of
he
king needed, the redundan
y of the given text
an be used.In a problem
losely related to approximate string mat
hing the prin
iple of redun-dan
y redu
tion is also utilized. In
ompressed approximate string mat
hing the text is
onsidered to exist in a
ompressed (i. e. redundan
y redu
ed) form. There are severaldi�erent
ompression s
hemes and for various di
tionary based methods like the Lempel-Ziv family [57, 59, 60℄, Sequitur [42℄, BPE (byte pair en
oding) [13℄, Re-Pair (re
ursivepairing) [25℄ and run length en
oding, Kida et al. [20℄ introdu
ed a
ollage system as aunifying framework. They also introdu
ed a general algorithm for exa
t
ompressed pat-tern mat
hing within this framework, but the problem of
ompressed approximate stringmat
hing was not addressed. Kärkkäinen et al. [22℄ presented the �rst algorithm to solvethis problem. Their algorithm is for LZ78 [60℄ and LZW [57℄
ompressed texts and usesa dynami
 programming approa
h to a
hieve O(mk�n+ r) time and O(�nkm+ �n log �n)spa
e, where r is the number of mat
hes and �n the
ompressed length of the text. Basedon the same
ompression s
hemes Matsumoto et al. [27℄ presented an algorithm using bit-parrallel te
hniques and running in O(k2�n+km) time and O(k2�n) spa
e. !!!!Navarro etal. [37℄ presented an algorithm with a better pra
ti
al behavior using a �ltering approa
h.They perform a multi pattern sear
h on pie
es of the pattern followed by veri�
ation ona lo
ally de
ompressed text if ne
essary. A di�erent text
ompression s
heme, run lengthen
oding, is assumed by Mäkinen et al. [28℄. Their algorithm
an handle arbitrary
ostsof the basi
 edit operations and runs in O(m�n �m) time, where �m is the
ompressed lengthof the pattern. For other
ompression methods the problem of
ompressed approximatestring mat
hing has not been solved yet.The algorithm presented in this paper does not deal with the
ompressed variant ofthe approximate string mat
hing problem, but uses the Sequitur
ompression s
heme[42℄ in the prepro
essing step. The basi
 idea of the Sequitur algorithm is to representthe input sequen
e in a way that no phrase appears twi
e or more often. To a
hievethis, every phrase appearing more than on
e is repla
ed with a nonterminal symbolrepresenting a rule that exa
tly des
ribes this phrase. The algorithm pro
esses the inputsequen
e linearly and takes
are that the following two properties hold:� no pair of adja
ent symbols appears more than on
e in the grammar (guaranteesuniqueness of rules)� every rule is used more than on
e (guarantees that ea
h rule is useful)For example, pro
essing the text ab
abab
 results in the grammarS ! R1R2R1

R1 ! R2
R2 ! abwhere S is the start symbol and R1 and R2 are nonterminals.A Sequitur grammar
an be
al
ulated in linear time [42℄ and used as
ompressionmethod, it has been shown [41℄ to be extremely e�e
tive in the
ompression of semi-stru
tured text.In the next se
tion a �ltering algorithm for approximate pattern mat
hing will bedes
ribed that uses the Sequitur grammar to gain redundan
y information, whi
h will beused to redu
e the amount of
he
king needed. Thus, as a
omplete �ltering algorithm,the algorithm is not an alternative to the other approa
hes to redu
e overall
he
kingamount des
ribed earlier. It
an be seen as an extension of the partitioning into exa
tsear
h �ltering algorithm, that still
ould be
ombined with one of the methods to redu
e
he
king amount.3 The AlgorithmThe algorithm des
ribed in this se
tion solves the problem of approximate pattern mat
h-ing as de�ned in Se
tion 2. First, the general prin
iple of the algorithm will be explained.Afterwards, a more formal des
ription of the algorithm will reveal details. At the end ofthis se
tion some variations of the algorithm are dis
ussed.3.1 General Prin
ipleGenerally the algorithm
onsists of two phases. The �rst phase is the prepro
essing phase,where information about the text redundan
y is gained. The se
ond phase performs thea
tual sear
h of the approximate o

urren
es of the pattern.The prepro
essing phase fo
uses on the text primarily, but a very few
al
ulationson the pattern are ne
essary also. Using the Sequitur algorithm (Se
tion 2) a grammaris inferred from the text T . With the grammar the text is represented by a startingrule referring to symbols and other rules, while the existen
e of every other rule meansthat the text
omponent represented by this rule appears at least twi
e in T (Sequitur
ondition). Additionally, for every rule of the grammar the length of represented text
omponent and a list of all positions where this rule o

urs in the text is stored.The pattern is divided into k + 1 pattern pie
es or subpatterns as it is ne
essary forthe kind of �ltering approa
h (Se
tion 2) used here.The pro
essing phase is basi
ally the same as in any �ltering algorithm based on theprin
iple of partitioning into exa
t sear
h. Though, besides a sear
h and a veri�
ationstep a third step is used to evaluate information gained in the other two steps. For thesear
h step, here, a multi pattern sear
h extension (like in [33℄) of Sunday's algorithm [48℄

is used. In the veri�
ation step the algorithm of Chang and Lampe [9℄ is applied. How-ever, in prin
iple any multi pattern sear
h algorithm resp. approximate pattern mat
hingalgorithm
ould serve as sear
h algorithm resp. veri�
ation algorithm.Starting point for the algorithm is a list of sear
h areas initialized with [1; n℄. The�rst interval in the list of sear
h areas is sele
ted. If there is none, the loop of sear
hing,veri�
ation and evaluation is stopped. Otherwise, a multi pattern sear
h for all subpat-terns is performed in this interval and stops either if one of the subpatterns was found orif none of the subpatterns
ould be found in the interval. In the se
ond
ase, the a
tualinterval is removed from the list of sear
h areas and as long as there is another intervalin the list, the sear
h is started anew with the new �rst interval. If a subpattern wasfound, an interval in
luding this position is determined. This interval needs to be wideenough to ensure that every approximate mat
hing
ontaining the mat
hed subpatternis in
luded. Using the
he
king algorithm, all approximate mat
hings are found in thisinterval. These resulting hits are stored in a list
olle
ting all hits.All information of the
he
king (mat
hing subpattern, veri�ed area, results),
alledverify from now on, are stored in a list of veri�es for further use in the next step, wherethe prepro
essed rule information is evaluated. This step begins with updating the �rst(and
urrent) sear
h interval of the list of sear
h areas by setting the new interval startto the position right behind the position where the exa
t mat
hig was found. Then threeimportant
al
ulations are performed to gain bene�ts from the rule information. First,it is
he
ked whether a rule (at the position of the �rst appearan
e of this rule)
overs averi�ed area
ompletely. If so, all the hits found for this verify are dupli
ated to everyposition of the rule (see Figure 2) and inserted into the list of hits. Se
ond, if a veri�edarea wasn't
overed
ompletely, it is
he
ked whether a rule
overs the subpattern thattriggered the veri�
ation. If so, the veri�ed area is dupli
ated to every position of the rule(see Figure 3) and is stored in a list
ontaining intervals, that need further
he
king. And�nally the third
al
ulation takes the rules that are not a�e
ted by future veri�
ationareas and removes for every rule position the area from the list of sear
h areas, thatde�nitively
an be ex
luded from further sear
h (see Figure 4).With the modi�ed list of sear
h areas the sear
h is started anew as long as the listof sear
h areas is not empty.Finally, to
omplete the list of hits, every element in the list of intervals that neededfurther
he
king is veri�ed.In the following the di�erent parts of the algorithm are des
ribed more formally toenable a better understanding of some details.3.2 Prepro
essing TextUsing the Sequitur algorithm [42℄, a grammar is
onstru
ted from the text. Based on thegrammar, a few additional features that are essential for the algorithm are
al
ulated:

PSfrag repla
ements1 nPi| {z }neighborh. | {z }| {z } RR a
tual positionFigure 2: Dupli
ation of
he
king results. In a former
omputational step a pattern pie
ePi triggered a
he
king of a neighborhood. The neighborhood is
overed by therule R. All hits found in the neighborhood
an be reprodu
ed for every futureo

urren
e of the rule R.PSfrag repla
ements1 nPi| {z } | {z }neighborhood | {z }| {z } RR a
tual positionneeds further
he
kingFigure 3: Dupli
ation of
he
king information. The rule R
overs only the pattern pie
ePi
ompletely, but not the neighborhood. For every future o

urren
e of therule R, a neighborhood is marked to be
he
ked later.PSfrag repla
ements1 n| {z } | {z }| {z } R RR a
tual positionFigure 4: Preventing sear
h on pro
essed rules. For every future o

urren
e of the ruleR a text aera (marked gray)
an be ex
luded from further sear
h.

� For ea
h rule R the length R:length of the rule, i. e. the number of text symbols
overed by the rule, is determined.� For ea
h rule R, a sorted list PositionList
ontaining all positions of this rule inthe text is build.� An array SR
ontaining all rules is
onstru
ted. In this array the rules are sortedregarding the position of the �rst appearan
e in the text (SR = sorted rules).� For ea
h rule R, the number in
lNumber of the rule a level above, i. e. the rule
ompletely in
luding this rule during the �rst appearan
e in the text, is determined.The number is set to �1 if there is no su
h rule.� An array TR is build,
ontaining for ea
h text position the number of the last rule,that is
ompletely in
luded in the text up to this text position. For every ruleonly the end position of the �rst appearan
e is relevant. The number of the rules
orresponds to the numbers in the SR-Array (TR = text-rule).� An array TL is
onstru
ted,
ontaining for ea
h text position either the highestnumber of the rule, whi
h
overs this position or, if this position isn't
overed by arule, the number of the position before (TL = top level).3.3 Prepro
essing PatternThe pattern is divided into k + 1 subpatterns P1 : : :Pk+1. The length of the longestsubpattern is Pmax.3.4 Pro
essingThe pro
essing
an be divided into the three phases initialization, sear
h and verify and
he
king, whi
h will be explained in the following.3.4.1 InitializationIn the initialization phase, a well-de�ned initial state for the other parts of the algorithmis
reated:� List of sear
h areas SL = f[1; n℄g� List of all �nal hits Hitlist = ;� List of veri�es (veri�
ation areas) VL = ;A verify
ontains the following information: the subpattern that mat
hed exa
tly;the position in the text, where the subpattern mat
hed; the start and the endposition of the veri�
ation in the text; the number of true veri�ed positions in thisarea; a pointer to the �rst of this true veri�ed positions in the Hitlist.

� List of intervals, that need to be
he
ked later CL = ;� Number of the last rule pro
essed Rl = �13.4.2 Sear
h and VerifyThis phase
ontains the exa
t sear
h �lter and the evaluation of the sear
h results. Thealgorithm Pro
essRules (
alled in line 9) uses the rule information to dupli
ate sear
hresults if possible.Algorithm Sear
hAndVerify1. while SL 6= ; do2. (Exa
t) linear multi pattern sear
h of P1; : : : ; Pk+1 in [tb; te℄3. if Pi found at tx then4. posb = tx � (m+ k � 1)5. pose = tx + (m+ k � 1)6. Verify [posb; pose℄7. Insert the positions of the h resulting hits into the Hitlist.8. Append the verify (tx; i; posb; pose; h; hPos) to VL (where hPos is a pointer tothe �rst element inserted into the Hitlist)9. Pro
essRules10. else11. Remove [tb; te℄ from SLAs the pro
essing of rules in line 9 is a very
ru
ial part of the algorithm, it's nowdes
ribed into more detail:Algorithm Pro
essRules(� pro
esses the rules: inferring hits and areas of no further interest �)1. Substitute the �rst area [tb; te℄ in SL with [tx + 1; te℄2. for i = Rl + 1 to TR[tx℄ (� only rules, whi
h appeared at least on
e until tx �)3. R = SR[i℄ (� get the rule �)4. if ((R is long enough) and (R:in
lNumber > TR[tx℄)) then5. Che
kVL(R; i)6. A
tualizeSL(R)7. Rl = TR[tx℄ (� no rule needs to be
onsidered twi
e �)Algorithm Che
kVLInput: rule R, number i of R(� tries to infer further hits from position of R and the elements of VL �)1. for (tx; i; posb; pose; h; hPos) 2 VL2. if TL[pose℄ < i then (� this verify is not important anymore �)

3. Remove this verify from VL4. else5. if R:Positionlist:first < tx then (� this and none of the following veri�esis
overed by the R �)6. return7. else8. if R
overs [posb; pose℄
ompletely then9. Reprodu
e the hits of this veri�
ation to all positions in R:Positionlist10. elseif R
overs the subpattern Pi in this verify then11. Reprodu
e this verify area to all positions in R:Positionlist and insertthese intervals in CL.Algorithm A
tualizeSLInput: rule R(� using positions of R to ex
lude intervals from SL, whi
h are of no further interest �)1. for tr 2 R:PositionList2. Ex
lude [tr + Pmax � 1; tr + R:length� Pmax℄ from SL3.4.3 Che
kingIn the phases of �nal
he
king, all intervals
olle
ted in CL are veri�ed. The positions ofpositive veri�
ations are inserted into the Hitlist.3.5 Improvements of the basi
 AlgorithmIn the following some minor variations of the algorithms will be dis
ussed.3.5.1 Minimal Length of RuleIn line 2 of A
tualizeSL the area is determined, whi
h does not need to be examinedfurther for exa
t ma
hings of subpatterns. The size of this area depends on Pmax, thesize of the longest subpattern, and on R:length, the length of the rule. In order to ex-
lude at least one symbol from further examination, the di�eren
e between both intervalboundaries must be greater or equal to zero, i. e.(tr + R:length� Pmax)� (tr + Pmax � 1) � 0:Transforming this inequation results inR:length � 2Pmax � 1;what is exa
tly one of the
onditions inspe
ted in line 4 of Pro
essRules . It is obviousthat it is better to skip larger areas and furthermore that it is worth to skip shorter areas

espe
ially if positions are ex
luded, that trigger a veri�
ation (i. e.
onsidering only theprobabilities of the o

urren
e of symbols, it is easy to see, that the ex
lusion of shorterareas is more useful for smaller alphabets).To be able to
ontrol the in�uen
e at this point, a parameter was introdu
ed, that isalso inspe
ted in line 4 of Pro
essRules and that de�nes the minimal length of rules tobe pro
essed at all.3.5.2 Optimizing Che
klistIt is possible, that in the list CL of intervals that need further veri�
ation (Se
tion 3.4.3)some intervals are in
luded, whi
h are already veri�ed in the end when it
omes tothe �nal veri�
ation. To avoid unne
essary
he
king, veri�es
an be stored instead ofremoving them in line 3 in Che
kVL and thus it is possible to remove intervals that arealready treated from CL right before the list is pro
essed (Se
tion 3.4.3).3.5.3 Veri�
ationThough the algorithm of Chang and Lampe [9℄ was implemented here, in general anyapproximate string mat
hing algorithm (like [14, 24, 47, 54℄ or any other)
ould serve asveri�
ation algorithm.Intuitively, it is better to sele
t the area [posb; pose℄, that is going to be veri�ed (line 6in Sear
hAndVerify), as small as possible. To determine posb and pose, �rst it is assumed,that the only knowledge is that Pi is a subpattern of P that mat
hes at position tx in T .With this, it
ould be possible that Pi is lo
ated at the very beginning of P and thuspose = tx +m+ k � 1 (3.1)is obtained. On the other hand, Pi
ould be the last symbol of P and thus it is:posb = tx �m� k + 1 (3.2)Adding the additional information of the position px (0 � px � m � 1) of Pi in Pand the length Pi:length of subpattern Pi, a smaller interval
an be obtained. For thatit is also important to know, whether the subpattern Pi is unique in P or not. In the�rst
ase, still all k errors
ould follow after tx, but only a maximum of m� px symbolsof Pi
ould follow (in
luding the position tx). Also, all k errors
ould be before tx andthe �rst symbols of the pattern should be taken into a

ount also. This results in:pose = tx + k +m� px � 1 (3.3)posb = tx � k � px (3.4)In the se
ond
ase (the subpattern Pi is not unique in P), nothing
an be improvedex
ept
onsidering that Pi is lo
ated at tx and thus at least the symbols of Pi are not

before tx. This
ase results in: pose = tx + k +m� 1 (3.5)posb = tx � k � px (3.6)If a verify algorithm now
ompletely pro
esses the given interval [posb; pose℄, it is forsure better to
hoose the shortest interval (i. e. equations 3.3-3.6).4 Analyti
al ExperimentsIn this se
tion, the algorithm of Se
tion 3 is evaluated. For a better handling, thisalgorithm will be
alled GraI (Grammar based Index) here. As GraI was intended toredu
e the amount of
he
king needed with a partitioning into exa
t sear
h �lter, thebasi
 �ltering algorithm of this kind (following the algorithm of Wu and Manber [58℄)was also implemented. This algorithm will be
alled Pk1 (Partitioning into k+1 pie
es)here and uses the same algorithms for exa
t sear
hing (multi pattern extension of Boyer�Moore�Sunday [48℄) and for
he
king (Chang and Lampe [9℄) like GraI. Furthermore, theSLEQ (stati
 lo
ations of exa
t q-grams) algorithm of Sutinen and Tarhio [51℄ serves as
omparative indexed algorithm here, whereas the sample stepsize was
hosen as h = 3and the size of q-grams was q = 3. All algorithms were implemented in Java and allexperiments were done on a 2.4 GHz Linux PC with 1 GB RAM. Within the experimentsat least 20 repetitions were done, building a basis for the standard deviation bars in the�gures.During all experiments, the sear
h pattern were randomly sele
ted from the text.The text was either random with varying alphabet sizes � or in English language (KingJames Bible
onverted to upper
ase, seperators ex
ept line breaks
onverted into spa
e)with an alphabet size of 28.In
omparison to Pk1, GraI is intended to do less
he
king. As all algorithms sharethe same veri�
ation algorithm, it is su�
ient to
ount the number of a

esses to eithertext or pattern symbols in this algorithm. Figure 5 shows this number for a random text.It is obvious that for a very small alphabet (see Figure 5(a)) the e�e
t of saving symbola

esses during
he
king with GraI is bigger than for larger alphabets (see Figure 5(b)).The reason for this is the grammar
on
ept, whi
h generates more rules (this is, wherethe algorithms starts working on), the more redundan
y
an be found in the text. Of
ourse, a random text of a small alphabet
ontains more repeated areas than a randomtext of a larger alphabet.Less usage of the veri�
ation algorithm has also a dire
t impa
t on the �ltratione�
ien
y f , whi
h is a qualitative better measure. Basi
ally, there are two possible waysto
al
ulate the e�e
tive �ltration e�
ien
y.� Filtration e�
ien
y regarding the text length: fn = (n� np)=n, where np denotes

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1 1.5 2 2.5 3 3.5 4 4.5 5

nu
m

be
r

of
 s

ym
bo

ls
 v

er
if

ie
d

k

GraI
Pk1

SLEQ

(a) � = 2 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1 1.5 2 2.5 3 3.5 4 4.5 5

nu
m

be
r

of
 s

ym
bo

ls
 v

er
if

ie
d

k

GraI
Pk1

SLEQ

(b) � = 30Figure 5: Number of symbol a

esses. n = 100000, m = 10the number of text symbols
onsidered during veri�
ation [51℄. fn des
ribes theproportion of veri�ed symbols.� Filtration e�
ien
y regarding the number of mat
hes: f = matr=matp, wherematrdenotes the number of real mat
hings found and matp the number of potentialmat
hings dete
ted by the algorithm [49℄. f des
ribes the quota of real mat
hingsper potential mat
hing.During the experiments, only f was
al
ulated. A potential mat
hing was
ountedevery time when the veri�
ation algorithm was started. With this, f was
al
ulated whenthe
omplete text was pro
essed (and thus all mat
hings were found).Note that even if f will be less then 1 mostly, it
an be a greater than 1. This isthe
ase, if the veri�
ation following after dete
ting a potential mat
hing identi�es morethan one real mat
hing and further this real ma
hing does not trigger another potentialmat
hing later.When
omparing the algorithm to the basi
 partition into k + 1 pie
es �lter, the
onditions for a
hieving a better �ltration e�
ien
y
an be
al
ulated very roughly. Asthe �ltering prin
iple is exa
tly the same, it is only ne
essary to
onsider the
ases, whena potential mat
hing may lead to further potential or real mat
hings. This
an onlyhappen, if the
ondition R:length � 2Pmax � 1holds (see Se
tion 3.5.1). Not that but not every mat
hing is ne
essarily part of a rule.For a noti
eable e�e
t it is ne
essary that this
ondition holds for the average rule.

Considering Pmax = m=(k+ 1) and the average rule length lav, the
ondition islav � 2 mk + 1 � 1:Sharpening this a little bit, lav � 2mk � 1is a
hieved. With the error level � de�ned as � = k=m, this
an be transformed to� � 2lav + 1 : (4.1)Figure 6(a) shows the �ltration e�
ien
y when sear
hing random patterns of lengthm = 10 in a random text of length n = 100000 (alphabet size � = 4). The averagelength of the rules is lav := 6:63. Using equation 4.1 results in error levels � � 0; 262,where the �ltration e�
ien
y is greater than that of Pk1. In Figure 6(a) the
onformityof this
al
ulated result and the measured value
an be seen, as with an error level of� � k=m = 3=10 the �ltration e�
ien
y is greater than that of Pk1 and also of theindexed algorithm SLEQ. Figure 6(b) illustrates the same e�e
t in another
ase, butalso that the analysis is really very roughly. Here the average length of rules is 3:67 andwith equation 4.1 it is � � 0; 428. Thus, with m = 10 the e�e
t of the better �ltratione�
ien
y should start around k = 4.
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

fi
ltr

at
io

n
ef

fi
ci

en
cy

k

GraI
Pk1

SLEQ

(a) � = 4; n = 100000; m = 10 0

 0.05

 0.1

 0.15

 0.2

 1 1.5 2 2.5 3 3.5 4 4.5 5

fi
ltr

at
io

n
ef

fi
ci

en
cy

k

GraI
Pk1

SLEQ

(b) � = 30; n = 20000; m = 10Figure 6: Filtration e�
ien
y. A very
rude analysis (equation 4.1)
al
ulates roughlythe point, where the �ltration e�
ien
y of GraI diverges from that of Pk1.Considering equation 4.1 it is obvious that GraI performs better for higher error levels�. For low error levels and longer patterns SLEQ a
hieves a better �ltering e�
ien
ythen GraI or Pk1. Figure 7 shows examples of this
ase.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

fi
ltr

at
io

n
ef

fi
ci

en
cy

k

GraI
Pk1

SLEQ

(a) � = 30; n = 100000; m = 30, random text 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16

fi
ltr

at
io

n
ef

fi
ci

en
cy

k

GraI
Pk1

SLEQ

(b) � = 28; n = 20000; m = 30, English textFigure 7: Filtration e�
ien
y. GraI does not a
hieve a better �ltration e�
ien
y thanPk1 for low error levels and longer pattern. In fa
t, both algorithms
an not
ompete with SLEQ in this
ase.Not only the �ltration e�
ien
y is of interest, but also the sear
h time. Figure 8shows that GraI performs
omparatively good for higher error levels (a higher numberof errors k for a �xed m).A better �ltration e�
ien
y does not always mean a better sear
h performan
e. Usu-ally, the pri
e for this better �ltration e�
ien
y are higher expenses in other parts ofthe algorithm. Of
ourse, in GraI the text is prepro
essed, but this takes only lineartime and is done on
e before performing several sear
hes. Other expenses result fromthe management of additional information.If there is a lot of additional information to manage, the sear
h pro
ess is sloweddown. This is the main drawba
k with GraI that for longer texts this e�e
t of slowingdown o

urs. Figure 9 shows the same sear
hes in the same English text, but restri
tedto di�erent text lengths. For the longer text (Figure 9(b)) GraI performs worse than forthe shorter text.This leads to the bene�ts of the parameter introdu
ed in Se
tion 3.5.1 to allow skip-ping of shorter rules during the pro
ess of evaluation. The minimal length needed fora rule to be used for dupli
ating information (see Se
tion 3.1) also
ontrols dire
tly theamount of additional information that is managed. Figure 10 illustrated the e�e
t whenthe minimal length of rules is varied. Of
ourse, the performan
e depends on the averagelength of rules in the grammar. If the minimal length of rules sele
ted is a lot greaterthan the average length of rules in the grammar, not mu
h
an be gained, as only a veryfew rules will in�uen
e the
al
ulation. In Figure 10 it
an be seen that the overall bestperforman
e
an be rea
hed with a minimal rule length
lose to the average length of

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16

tim
e

(m
s)

k

GraI
Pk1

SLEQ

(a) m = 30 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30

tim
e

(m
s)

k

GraI
Pk1

SLEQ

(b) m = 60Figure 8: Sear
h time. Time needed for sear
hing pattern of di�erent lengths in a partof the King James Bible of length n = 20000.
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8 9

tim
e

(m
s)

k

GraI
Pk1

SLEQ

(a) n = 20000 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9

tim
e

(m
s)

k

GraI
Pk1

SLEQ

(b) n = 100000Figure 9: Expenses for management of additional information. In the longer English text,sear
hing the same pattern (m = 10) takes more time.

rules in the grammar.
 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9

tim
e

(m
s)

k

4
6
8

10
12
14

Figure 10: E�e
t of di�erent minimal rule lengths. Approximate mat
hing of short pat-tern (m = 10) in English text of length n = 50000. The average length ofrules in the grammar of the text is 7.37.5 Con
lusions and OutlookIn this paper a �ltering algorithm for approximate string mat
hing is presented. Thealgorithms is based on the prin
iple of partitioning into exa
t exa
t sear
h with the in-tention to redu
e the overall amount of
he
king. Using the Sequitur grammar, this aimwas a
hieved for the �ltering approa
h with partitioning the pattern into k + 1 pie
es.It was also shown that
ompared to the basi
 approa
h a better �ltration e�
ien
y isrea
hed for higher error levels. The algorithms perform
omparatively good for a highernumber of errors, but for long texts the expenses for the management of additional infor-mation dominate. Within small limits, this in�uen
e
an be
ontrolled with a parameterof the algorithm.To remove the in�uen
e of management
osts in longer text, the text
ould be devidedin blo
ks that are pro
essed seperately. Then, rule information should be dupli
ated onlywhen pro
essing of a blo
k is �nished.

A Sequitur grammar
an be extended online for a growing text. Here, the additionalfeatures needed by the algorithm (Se
tion 3.2) are
al
ulated separately, but the
al
u-lation
ould be integrated into the Sequitur algorithm to a
hieve a better appli
ability.Combining this algorithm with other methods to redu
e the overall
he
king amountlike hierar
hi
al veri�
ation or pat
hwork veri�
a
tion (Se
tion 2) is still possible andmay lead to an enhan
ed overall performan
e.A
knowledgementsThanks to André Leier for numerous dis
ussions and produ
tive notes.Referen
es[1℄ Pro
eedings of the 11th IEEE Data Compression Conferen
e (DCC '01), IEEE Com-puter So
iety Press, Mar
h 2001.[2℄ A. V. Aho and M. J. Corasi
k, E�
ient string mat
hing: An aid to bibliographi
sear
h, Communi
ations of the ACM, 16 (1975), pp. 333�340.[3℄ A. Apostoli
o, M. Cro
hemore, Z. Galil, and U. Manber, eds., Pro
eed-ings of the 3rd Annual Symposium on Combinatorial Pattern Mat
hing (CPM'92),vol. 644 of LNCS, Springer, April/May 1992.[4℄ R. A. Baeza-Yates and G. H. Gonnet, A new appora
h to text sear
hing,Communi
ations of the ACM, 35 (1992), pp. 74�82. Preliminary version in ACMSIGR'89.[5℄ R. A. Baeza-Yates and G. Navarro, Faster approximate string mat
hing, Al-gorithmi
a, 23 (1999), pp. 127�158. Preliminary versions in Pro
eedings of CPM'96(LNCS, vol. 1075, 1996) and in Pro
eedings of WSP'96, Carleton Uni. Press, 1996.[6℄ R. A. Baeza-Yates and C. H. Perleberg, Fast and pra
ti
al approximate stringmat
hing, in Apostoli
o et al. [3℄, pp. 185�192.[7℄ R. S. Boyer and J. S. Moore, A fast string sear
hing algorithm, Communi
ationsof the ACM, 20 (1977), pp. 762�772.[8℄ S. Burkhardt and J. Kärkkäinen, One-gapped q-gram �lters for Levenshteindistan
e, in Pro
eedings of the 13th Annual Symposium on Combinatorial Pat-tern Mat
hing (CPM'02), A. Apostoli
o and M. Takeda, eds., vol. 2373 of LNCS,Fukuoka, Japan, July 2002, Springer, pp. 225�234.

[9℄ W. I. Chang and J. Lampe, Theoreti
al and empiri
al
omparisons of approximatestring mat
hing algorithms, in Apostoli
o et al. [3℄, pp. 175�184.[10℄ W. I. Chang and E. L. Lawler, Sublinear approximate string mat
hing andbiologi
al appli
ations, Algorithmi
a, 12 (1994), pp. 327�344. Preliminary version inFOCS'90.[11℄ W. I. Chang and T. G. Marr, Approximate string mat
hing and lo
al similarity,in Pro
eedings of the 5th Annual Symposium on Combinatorial Pattern Mat
h-ing (CPM'94), M. Cro
hemore and D. Gus�eld, eds., vol. 807 of LNCS, Asilomar,California, USA, June 1994, Springer, pp. 259�273.[12℄ A. L. Cobbs, Fast approximate mat
hing using su�x trees, in Pro
eedings of the6th Annual Symposium on Combinatorial Pattern Mat
hing (CPM'95), Z. Galil andE. Ukkonen, eds., vol. 937 of LNCS, Espoo, Finland, July 1995, Springer, pp. 41�54.[13℄ P. Gage, A new algorithm for data
ompression, The C Users Journal, 12 (1994),pp. 23�38.[14℄ Z. Galil and K. Park, An improved algorithm for approximate string mat
h-ing, SIAM Journal on Computing, 19 (1990), pp. 989�999. Preliminary version inICALP'89 (LNCS, vol. 372, 1989).[15℄ R. Gian
arlo and D. Sankoff, eds., Pro
eedings of the 11th Annual Symposiumon Combinatorial Pattern Mat
hing (CPM'00), vol. 1848 of LNCS, Springer, June2000.[16℄ R. Giegeri
h, F. His
hke, S. Kurtz, and E. Ohlebus
h, A general te
hniqueto improve �lter algorithms for approximate string mat
hing, in Pro
eedings of theFourth South Ameri
an Workshop on String Pro
essing (WSP'97), R. Baeza-Yates,ed., Valparaiso, Chile, November 1997, Carleton University Press, pp. 38�52.[17℄ D. Gusfield, Algorithms on Strings, Trees, and Sequen
es: Computer S
ien
e andComputational Biology, Cambridge University Press, 1997.[18℄ P. Jokinen, J. Tarhio, and E. Ukkonen, A
omparison of approximate stringmat
hing algorithms, Software�Pra
ti
e and Experien
e, 26 (1996), pp. 1439�1458.[19℄ P. Jokinen and E. Ukkonen, Two algorithms for approximate string mat
hingin stati
 texts, in Pro
eedings of 16th International Symposium on Mathemati
alFoundations of Computer S
ien
e (MFCS'91), A. Tarle
ki, ed., vol. 520 of LNCS,Kazimierz Dolny, Poland, September 1991, Springer-Verlag, Berlin, pp. 240�248.[20℄ T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa, A unifyingframework for
ompressed pattern mat
hing, in Pro
eedings of the 6th international

Symposium on String Pro
essing and Information Retrieval (SPIRE'99), Can
un,Mexi
o, September 1999, IEEE CS Press, pp. 89�96.[21℄ D. E. Knuth, J. H. Morris, jr., and V. R. Pratt, Fast pattern mat
hing instrings, SIAM Journal on Computing, 6 (1977), pp. 323�350.[22℄ J. Kärkkäinen, G. Navarro, and E. Ukkonen, Approximate string mat
hingover ziv-lempel
ompressed text, in Gian
arlo and Sanko� [15℄, pp. 195�209.[23℄ K. Kuki
h, Te
hniques for automati
ally
orre
ting words in text, ACM ComputingSurveys, 24 (1992), pp. 377�439.[24℄ G. M. Landau and U. Vishkin, Fast parallel and serial approximate string mat
h-ing, Journal of Algorithms, 10 (1989), pp. 157�169. Preliminary version in ACMSTOC'85.[25℄ N. J. Larsson and A. Moffat, O�ine di
tionary-based
ompression, in Pro
eed-ings of the IEEE Data Compression Conferen
e (DCC '99), Snowbird, Utah, USA,Mar
h 1999, IEEE Computer So
iety Press, pp. 296�305.[26℄ V. I. Levenshtein, Binary
odes
apable of
orre
ting deletions, insertions andreversals, Soviet Physi
s - Doklady, 10 (1966), pp. 707�710. Original in Russian inDoklady Akademii Nauk SSSR, 163, 4, 845�848, 1965.[27℄ T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa, Bit-parallel approa
h to approximate string mat
hing in
ompressed texts, in Pro
eedingsof the 7th international Symposium on String Pro
essing and Information Retrieval(SPIRE'00), A Coruña, Spain, September 2000, IEEE CS Press, pp. 221�228. Pre-liminary version as Te
h. Rep. DOI-TR-174, Dept. of Informati
s, Kyushu Univer-sity, 2000.[28℄ V. Mäkinen, G. Navarro, and E. Ukkonen, Approximate mat
hing of run-length
ompressed strings, Algorithmi
a, 35 (2003), pp. 347�369.[29℄ E. W. Myers, A sublinear algorithm for approximate keyword sear
hing, Algorith-mi
a, 12 (1994), pp. 345�374. Earlier version in Te
h. Rep. TR-90-25, Dept. ofComputer S
ien
e, Univ. of Arizona, 1990.[30℄ G. Navarro, Approximate Text Sear
hing, PhD thesis, Department of ComputerS
ien
e, University of Chile, Santiago, Chile, De
ember 1998.[31℄ G. Navarro, A guided tour to approximate string mat
hing, ACM Computing Sur-veys, 33 (2001), pp. 31�88.

[32℄ G. Navarro and R. Baeza-Yates, A pra
ti
al q-gram index for text retrievalallowing errors, CLEI Ele
troni
 Journal, 1 (1998). Previous version in Pro
eedingsof the XXII Latin Ameri
an Conferen
e on Informati
s (CLEI'97).[33℄ G. Navarro and R. Baeza-Yates, Very fast and simple approximate stringmat
hing, Information Pro
essing Letters (IPL), (1999), pp. 65�70.[34℄ G. Navarro and R. Baeza-Yates, A hybrid indexing method for approximatestring mat
hing, Journal of Dis
rete Algorithms, 1 (2000), pp. 205�239. Previousversion in CPM'99.[35℄ G. Navarro and R. Baeza-Yates, Improving an algorithm for approximate pat-tern mat
hing, Algorithmi
a, 30 (2001), pp. 473�502. Previous version: Te
h. Rep.TR/DCC-98-5, Dept. of Computer S
ien
e, University of Chile.[36℄ G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio, Indexing methodsfor approximate string mat
hing, IEEE Data Engineering Bulletin, 24 (2001), pp. 19�27. Spe
ial issue on Managing Text Natively and in DBMSs. Invited paper.[37℄ G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa, Fasterapproximate string mat
hing over
ompressed text, in Pro
eedings of the 11th IEEEData Compression Conferen
e (DCC '01) [1℄, pp. 459�468.[38℄ G. Navarro and M. Raffinot, Fast and �exible string mat
hing by
ombining bit-parallelism and su�x automata, ACM Journal of Experimental Algorithmi
s (JEA),5 (2000). Previous version in Pro
eeedings of CPM'98. LNCS, Springer Verlag, NewYork.[39℄ G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio, Indexing text withapproximate q-grams, in Gian
arlo and Sanko� [15℄, pp. 350�363.[40℄ S. B. Needleman and C. D. Wuns
h, A general method appli
able to the sear
hfor similarities in the amino a
id sequen
e of two proteins, Journal of Mole
ularBiology, 48 (1970), pp. 443�453.[41℄ C. G. Nevill-Manning and I. H. Witten, Compression and explanation usinghierar
hi
al grammars, Computer Journal, 40 (1997), pp. 103�116.[42℄ C. G. Nevill-Manning and I. H. Witten, Identifying hierar
hial stru
tures insequen
es: A linear-time algorithm, Journal of Arti�
ial Intelligen
e Resear
h, 7(1997), pp. 67�82.[43℄ D. Sankoff and J. B. Kruskal, eds., Time Warps, String Edits, and Ma
ro-mole
ules: The Theory and Pra
ti
e of Sequen
e Comparison, Addison-Wesley,Reading, Massa
husetts, 1983.

[44℄ P. H. Sellers, On the theory and
omputation of evolutionary distan
es, SIAMJournal on Applied Mathemati
s, 26 (1974), pp. 787�793.[45℄ P. H. Sellers, The theory and
omputation of evolutionary distan
es: Patternre
ognition, Journal of Algorithms, 1 (1980), pp. 359�373.[46℄ F. Shi, Fast approximate string mat
hing with q-blo
ks sequen
es, in Pro
eedings ofthe Third South Ameri
an Workshop on String Pro
essing (WSP'96), N. Ziviani,R. Baeza-Yates, and K. S. Guimarães, eds., Carleton University Press, pp. 257�271.[47℄ T. F. Smith and M. S. Waterman, Identi�
ation of
ommon mole
ular subse-quen
es, Journal of Mole
ular Biology, 147 (1981), pp. 195�197.[48℄ D. M. Sunday, A very fast substring sear
h algorithm, Communi
ations of theACM, 33 (1990), pp. 132�142.[49℄ E. Sutinen, Approximate Pattern Mat
hing with the q-gram Family, PhD thesis,Department of Computer S
ien
e, University of Helsinki, Finland, 1998. Te
h. Rep.TR A-1998-3.[50℄ E. Sutinen and J. Tarhio, On using q-gram lo
ations in approximate stringmat
hing, in Pro
eedings of Third Annual European Symposium on Algorithms(ESA'95), P. Spirakis, ed., vol. 979 of LNCS, Corfu, Gree
e, September 1995,Springer-Verlag, Berlin, pp. 327�340.[51℄ E. Sutinen and J. Tarhio, Filtration with q-samples in approximate string mat
h-ing, in Pro
eedings of the 7th Annual Symposium on Combinatorial Pattern Mat
h-ing (CPM'96), D. S. Hirs
hberg, ed., vol. 1075 of LNCS, Laguna Bea
h, California,USA, June 1996, Springer, pp. 50�63.[52℄ T. Takaoka, Approximate pattern mat
hing with samples, in Pro
eedings ofISAAC'94, D.-Z. Du and X.-S. Zhang, eds., vol. 834 of LNCS, Springer-Verlag,Berlin, 1994, pp. 234�242.[53℄ J. Tarhio and E. Ukkonen, Approximate boyer-moore string mat
hing, SIAMJournal on Computing, 22 (1993), pp. 243�260. Preliminary version in SWAT'90(LNCS, vol. 447, 1990).[54℄ E. Ukkonen, Algorithms for approximate string mat
hing, Information and Con-trol, 64 (1985), pp. 100�118. Preliminary version presented at the InternationalConferen
e on �Foundations of Computation Theory�, Sweden, Aug. 1983.[55℄ E. Ukkonen, Approximate string-mat
hing with q-grams and maximal mat
hes,Theoreti
al Computer S
ien
e, 92 (1992), pp. 191�211.

[56℄ E. Ukkonen, Approximate string-mat
hing over su�x trees, in Pro
eedings of the4th Annual Symposium on Combinatorial Pattern Mat
hing (CPM'93), A. Apos-toli
o, M. Cro
hemore, Z. Galil, and U. Manber, eds., vol. 684 of LNCS, Padova,Italy, June 1993, Springer, pp. 228�242.[57℄ T. A. Wel
h, A te
hnique for high performan
e data
ompression, IEEE ComputerMagazine, 17 (1984), pp. 8�19.[58℄ S. Wu and U. Manber, Fast text sear
hing allowing errors, Communi
ations ofthe ACM, 35 (1992), pp. 83�91.[59℄ J. Ziv and A. Lempel, A universal algorithm for sequential data
ompression,IEEE Transa
tions on Information Theory, 23 (1977), pp. 337�343.[60℄ J. Ziv and A. Lempel, Compression of individual sequen
es via variable-rate
od-ing, IEEE Transa
tions on Information Theory, 24 (1978), pp. 530�536.

	Technicalreport2008-02coverWB.pdf
	Page 1

	MUN-CS-2008-02.pdf

