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aA veri�
ation method for the partitioning into exa
t sear
h �ltering ap-proa
h in approximate pattern mat
hing will be shown here. We will 
al-
ulate the limits of appli
ability and demonstrate the usefulness for longerpatterns and smaller alphabets (e. g. DNA), when sear
hing with high errorlevels.Keywords: algorithms, approximate pattern mat
hing, �ltering, veri�
ation1 Introdu
tionApproximate pattern mat
hing is the problem of �nding all positions in a text T , wherea pattern P mat
hes with at most k errors. In a more formal way, the problem ofapproximate pattern mat
hing 
an be de�ned as follows: Given a text T = t1 : : : tn, anda pattern P = p1 : : : pm (ti; pj 2 �), return the set fjx �P j; T = x �Py ^ d(P; �P ) � kg,where x; �P and y are substrings of T , j:j returns the length of a string and d(P; �P) givesthe edit distan
e between P and �P . The edit distan
e between two strings 
hara
terizesthe number of transformation operations (insertion, deletion and repla
ement) that arene
essary to transform one string into an other one.Sin
e this problem has a great variety of appli
ations in di�erent areas like 
omputa-tional biology, text retrieval, and others [4, 6, 10℄, a lot of algorithm have been designedto solve this problem. Good overviews are given in [6℄ and [9℄.The general solution prin
iple for this problem utilizes dynami
 programming andtakes O(nm) time [12, 13℄. Based on this prin
iple, many improved algorithms havebeen developed a
hieving up to O(kn) in the worst 
ase and O(kn=p�) in the average
ase, where � is the size of the alphabet � (like the algorithm of Chang and Lampe [2℄).A more advan
ed 
lass of algorithms for approximate pattern mat
hing solves theproblem in two phases. The idea of the �rst phase, the �ltering or sear
h phase, is to1



identify areas in the text, where an approximate mat
hing possibly may o

ur (this mayhappen via dis
arding areas, where no approximate mat
hing 
an appear at all). These
ond phase, the 
he
king or veri�
ation phase, then 
he
ks all these areas separatelywith one of the basi
 algorithms for approximate pattern mat
hing. While �rst phase
an be done in O(n), the veri�
ation 
ost of every area is basi
ally quadrati
 during these
ond phase. Thus, the appli
ability of a �ltering algorithm depends on the dominationof the �rst phase. Naturally, for higher error levels � = k=m more veri�
ation in these
ond phase is expe
ted. To be more robust to higher error levels, it is ne
essary toredu
e the amount of veri�
ation.There are a few approa
hes that deal with the issue of lowering the share of veri�
a-tion. Besides these approa
hes, in se
tion 2 the spe
i�
 kind of �ltering used in this paperis dis
ussed brie�y also. In se
tion 3 we present the approa
h of pat
hwork veri�
ation,whi
h basi
ally tries to avoid 
he
king of overlapping areas. This approa
h is general inthe sense that every approximate mat
hing of the pattern within the given interval isfound, but it is easily extendable to return new hits only, if the text is pro
essed linearly.Pat
hwork veri�
ation is analyzed in se
tion 4, before we draw 
on
lusions in the lastse
tion.2 Related WorkTo improve �ltering algorithms with lowering the share of the veri�
ation phase, di�erentideas has been presented. Giegeri
h et al. [3℄ mixed both phases of the �ltering algorithm.With the information of the sear
h phase about the maximal number of errors left, the
he
king phase 
an be stopped prematurely if in the progress of 
he
king the a
tualnumber of errors shows that an approximate mat
hing is not possible anymore.With hierar
hi
al veri�
ation another idea was presented by Navarro and Baeza-Yates[5, 7, 8℄. The basis of this method is a simple fa
t: If a pattern of length m mat
heswith k errors and the pattern is split into j pie
es, at least one of these pie
es mat
heswith bk=j
 errors. For hierar
hi
al veri�
ation, the pattern is re
ursively halved and thussplit into 2j pie
es until the pie
es are small enough to be sear
hed with bk=2j
 errors
onveniently. If one of the pie
es is found, for 
omplete veri�
ation the pro
ess of halvingis reverted and level by level two pie
es are united and 
he
ked for an o

urren
e withtwi
e as many errors as before. If on every level the veri�
ation is positive, the o

urren
eof the whole pattern is veri�ed on the last level. In 
ase of a negative veri�
ation on anylevel, the whole veri�
ation pro
ess is stopped, be
ause it is sure that the pattern doesnot o

ur with at most k errors in the text a this position.A di�erent approa
h to redu
e the overall amount of 
he
king was presented in [?℄.There, a grammar of the text is used to identify repetitions that only needs to be 
he
kedon
e. The same grammar is also used to skip sear
hing in some areas of the text.Though it may be di�
ult in some 
ases, in general all these approa
hes 
ould be2




ombined with any �ltering method. Here, we work with a partitioning into exa
t sear
h�lter. The �ltering phase is determined by the same fa
t that builds the basis for hi-erar
hi
al veri�
ation. The pattern is split into k + s pie
es and ea
h of the pie
es 
anbe sear
hed with b kk+s 
 errors. For s � 1, exa
t sear
h of ea
h pie
e is possible. Thiskind of �lter was proposed by Wu and Manber [15℄ with s = 1 and is taken in this paperalso. Other than Wu and Manber, who used an extension of shift-or [1℄, we use a multipattern variant of the Boyer�Moore�Sunday algorithm [14℄ for exa
t sear
hing. Here,the algorithm of Chang and Lampe [2℄ is applied in the veri�
ation phase, though inprin
iple any approximate pattern mat
hing algorithm 
ould be used.3 Pat
hwork Veri�
ationThe general idea of pat
hwork veri�
ation is to extend the veri�
ation algorithm for abetter handling of overlapping 
alls. Whenever an exa
t mat
hing subpattern 
ould belo
alized in the �ltering phase, the veri�
ation algorithm is 
alled to 
he
k a 
ertain area.Naturally, when the exa
t mat
hings of two subpatterns are too 
lose to ea
h other, theveri�
ation areas may overlap. In the following, with pat
hwork veri�
ation a method isdes
ribed that 
onsiders these overlaps.Assuming the subpattern Pi of P mat
hes at position t in T . Without any additionalknowledge, the area [posb; pose℄ that is ne
essary to be veri�ed 
an be determined asfollows. It 
ould be possible that Pi is lo
ated at the very beginning of P and thuspose = t + k +m� 1 (3.1)it is obtained. On the other hand, Pi 
ould be the last symbol of P and thus it is:posb = t � k � (m� 1) (3.2)Considering additionally the length jPij of the mat
hed subpattern, the start of theinterval 
an be de�ned more pre
ise as at least the symbols of Pi follow t. This resultsin: posb = t � k � (m� jPij) (3.3)If a veri�
ation algorithm is 
alled frequently with overlapping areas, 
he
king thegiven interval [posb; pose℄ 
ompletely results in multiple veri�
ation of some positions. Toavoid this, here, the idea is to remember the 
al
ulation state and the results of the last
all of the veri�
ation algorithm and to reuse this information to redu
e the 
al
ulatione�ort if possible.During the 
al
ulation of an approximate mat
hing with a pattern of length m, everystate loses its in�uen
e after m � 1 positions. For a seamless 
ontinuation of the lastveri�
ation this in�uen
e must not exists anymore during the a
tual veri�
ation at the3



end position of the last veri�
ation. Assuming the last veri�ed area was [oldposb; oldpose℄,the 
ondition for the possibility of taking advantage of overlappings with 
opying hits is(oldposb � posb) ^ (posb � oldpose �m+ 1) ^ (oldpose < pose): (3.4)Considering this situation, there are four di�erent areas (
f. Figure 1):� [oldposb; posb � 1℄: This area is not of interest for the a
tual veri�
ation.� [posb; posb + m � 2℄: If hits were found in this area during the last veri�
ation,the in�uen
e of former positions may be the reason and so this area needs to beveri�ed separately (without 
onsidering overlaps). If no hits were found during thelast veri�
ation, this area 
an be ignored.� [posb +m� 1; oldpose℄: If hits were found in this area during the last veri�
ation,these hits 
an be 
opied for the a
tual veri�
ation.� [oldpose + 1; pose℄: Nothing is known about this area, so the veri�
ation 
an be
ontinued here using the �nal state of the last veri�
ation.PSfrag repla
ementsoldposb posb posb +m� 1 oldpose posem�1 positionsz }| {Figure 1: Pat
hwork veri�
ation. The in�uen
e areas of the previous veri�
ation are
olored in gray. In the light gray area, hits from the previous veri�
ation 
anbe 
opied. If there are hits in the dark gray area, this area needs to be veri�edseparately again.Integrating the distin
tion of these areas into a basi
 approximate pattern mat
hingalgorithm, a new veri�
ation algorithm is obtained, whi
h 
onsiders overlapped 
he
kingareas. This resulting algorithm provides exa
tly all approximate mat
hings between thepattern and the text in the given area.4 AnalysisIn this se
tion, pat
hwork veri�
ation will be evaluated. First, we estimate where pat
h-work is better than plain veri�
ation with the basi
 algorithm and we analyze its per-forman
e. Then, the slightly modi�ed version of hierar
hi
al veri�
ation is explained,whi
h �nally is used for the 
omparison with pat
hwork veri�
ation.4



In general, any approximate string mat
hing algorithm 
ould serve as basi
 veri�
a-tion algorithm. Here, the algorithm of Chang and Lampe [2℄ was implemented. Both,hierar
hi
al and pat
hwork veri�
ation were implemented as exhaustive 
he
king algo-rithms, i. e. every approximate mat
hing between the given text interval and the patternis reported.The algorithms were implemented in Java and all experiments were done on a 2.4 GHzLinux PC with 1 GB RAM. Within the experiments at least 20 repetitions were done,building a basis for the standard deviation bars in the �gures. The sear
h patterns weresele
ted randomly from the text. The text was either random with varying alphabetsizes �, or DNA (the 
omplete genome of Haemophilus in�uenzae Rd, 1.77 MB in size,70 
hara
ters per line) with an alphabet size of four, save for a few ex
eptions.Compared to just plain veri�
ation of the given interval [posb; pose℄, pat
hwork veri-�
ation is of advantage, if overlappings o

ur, i. e. if it is posb � oldpose with regard tothe last interval 
he
ked [oldposb; oldpose℄. Using the interval limits of equations 3.1 and3.2, we a
hieve tnew � told + 2m+ 2k� 2: (4.1)In prin
iple, for pat
hwork veri�
ation to outstand plain veri�
ation, only two 
onse
-utive 
alls of the veri�
ation algorithm on intervals ful�lling 
ondition 4.1 are ne
essary.If the average distan
e of two exa
t mat
hing subpatterns falls below 2m+ 2k � 2, ad-vantage 
an be taken from the overlappings about every time, the veri�
ation algorithmis 
alled. Assuming an equal distribution of text 
hara
ters and with a subpattern lengthof m=(k+ 1), the average distan
e between two of the k+ 1 exa
t mat
hing subpatternsis tnew � told = � mk+1k + 1 : (4.2)Thus, 
ondition 4.1 
an be transformed to� mk+1 � (2m+ 2k � 2)(k+ 1): (4.3)Figure 2 shows random text examples illustrating this 
ondition. In the examples, itis obvious that pat
hwork veri�
ation outstands plain veri�
ation even before the limitgiven with 
ondition 4.3 is rea
hed for k.If two 
onse
utive veri�
ation intervals [oldposb; oldpose℄ and [posb; pose℄ are 
losetogether, some results of the �rst interval also hold for the se
ond interval and thus 
anbe 
opied (
f. Figure 1). This happens forposb +m� 1 � oldpose: (4.4)Using the interval limits of equations 3.1 and 3.2 and the average exa
t mat
hing distan
eof equation 4.2, we a
hieve � mk+1k + 1 � m+ 2k � 1 (4.5)5
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(b) � = 5; n = 1000000; m = 30Figure 2: Condition 4.3 in di�erent random text sear
hes. The 
ondition is ful�lled fork � 4:1342 in (a) and for k � 7:2154 in (b).as the 
ondition for reusing of results.Furthermore, the most restri
ting limit is rea
hed, when the interval [posb; posb+m�1℄ needs to be 
he
ked everytime. This interval is 
he
ked only, if a hit was already foundwithin this interval, otherwise it is skipped. A hit exists in this interval, if the patternmat
hes in [oldposb; posb + m � 1℄ with at most k errors. The average edit distan
ebetween two patterns of length m is between m(1� e=p�) and 2m(1� 1=p�) [6℄ and itis 
onje
tured that the true value is m(1� 1=p�) for large � [11℄. Sin
e the interval isapproximately of size m (for large error levels k=m it be
omes m� 1), there is a hit inthe interval approximately if it is m(1� 1=p�) � k: (4.6)Figure 3 shows exemplarily the general runtime performan
e of pat
hwork veri�
ationand the 
al
ulated limits. Obviously, the impa
t of 
ondition 4.5 
an not be noti
ed,be
ause only hits are 
opied for the 
onsidered interval. Sin
e the number of hits in
reaseswith the error level, no 
lear in�uen
e at a 
ertain point 
an be expe
ted.To a
hieve expe
ted linear time, for a �ltering algorithm it is important that theveri�
ation phase does not dominate, i. e. the overall veri�
ation 
osts are O(n). Pat
h-work veri�
ation is 
alled for every of the k + 1 exa
t mat
hing subpatterns of lengthmk+1 . At every text position, the probability for this to happen is (k + 1)=� mk+1 . Assum-ing pat
hwork veri�
ation is used (i. e. 
ondition 4.3 holds), assuming further interval[posb; posb +m� 1℄ does not need 
he
king (i. e. 
ondition 4.6 holds) and negle
ting the
osts for 
opying hits in the interval [posb +m� 1; oldpose℄ (
f. Figure 1) the 
osts per6
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all are quadrati
 in the length of the veri�ed area and thus they are (� mk+1 =(k + 1))2.To a
hieve linear expe
ted time, we should havenk + 1� mk+1 � � mk+1k + 1�2 � 
n (4.7)whi
h is equivalent to � mk+1k + 1 � 
: (4.8)With m=(k+ 1) � 1=� it is � 1�k + 1 � 
: (4.9)To solve for �, the following weaker inequality is used (repla
ing k by m� 1):� 1�m � 
: (4.10)Together with equation 4.6 this results in a gross approximation of the interval wherelinearity is expe
ted (for any 
onstant 
):1log� 
m � � < 1� 1p� : (4.11)7



Of 
ourse, the limit for linearity of the partitioning into k + 1 pie
es �lter still holdsadditionally and thus [6℄, linearity is also expe
ted for� < 1=(3 log� m): (4.12)Considering equation 4.11, for pat
hwork veri�
ation reasonable values of � arerea
hed for small alphabets and longer patterns.To integrate hierar
hi
al veri�
ation (se
tion 2) into the general �ltering approa
h, aslight modi�
ation was ne
essary. Originally, hierar
hi
al veri�
ation su

essively halvesthe pattern until the subpatterns are small enough to be sear
hed with an appropriatenumber of errors. Sin
e the smallest subpatterns are already given here with splitting thepattern into k+1 pie
es, these subpatterns are su

essively melted until the whole patternis reassembled. For melting, the idea of su

essive halving is reverted, i. e. in every stepthe subpattern results from a 
al
ulation, dividing the whole pattern into a power of 2pie
es, where ea
h pie
e 
onsists of a number of smallest subpatterns, originating fromthe k + 1 partitioning.A pra
ti
al problem with hierar
hi
al veri�
ation that needs to be 
onsidered, is thepossible ambiguity of basi
 subpatterns. If a basi
 subpattern exists more than on
e inthe pattern, hierar
hi
al veri�
ation 
an not be stopped as long as not every possibleo

urren
e is 
he
ked. If, for instan
e, the pattern aaxxaaaa was split into 4 pie
es(k = 3) and aa was found without error, it is not only ne
essary to 
he
k for aaxx withb3=2
 = 1 errors, but also aaaa.For hierar
hi
al veri�
ation linear time is expe
ted for� < 1=log�m (4.13)when used with the partitioning into k + 1 pie
es �lter [6, 5, 7℄. This limit equals thelower bound of the interval given in equation 4.11, when setting 
 = 1.Figure 4 shows pat
hwork and hierar
hi
al veri�
ation on DNA data with a sear
h-pattern of length m = 300. The linear time limits given in equations 4.12 and 4.11 easily
an be identi�ed in the run of the 
urves. Moreover, this example 
learly shows the goodperforman
e of pat
hwork veri�
ation on longer patterns and smaller alphabets.5 Con
lusionsA veri�
ation method making the partitioning into exa
t sear
h �ltering approa
h inapproximate pattern mat
hing appli
able for higher error levels � was presented. Further,we have 
al
ulated and demonstrated the limits of linearity when using this method. Themethod of pat
hwork veri�
ation is espe
ially useful for longer patterns and basi
allysmall alphabets like it is in DNA data.We have seen that the linearity when using pat
hwork veri�
ation for higher errorlevels starts where linearity for hierar
hi
al veri�
ation ends. Thus, it is an obvious idea,8
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Figure 4: Pat
hwork and hierar
hi
al veri�
ation on DNA data with a longer pattern(m = 300). (a) The leftmost plumb line gives the limit for � for normal �ltering(equation 4.12). The middle line marks the limit given in equation 4.13 whi
hequals the lower bound of the interval in 
ondition 4.11. The upper border ofthis interval is marked with the rightmost line. (b) Zoom in on the �rst partof the graph shown in (a).to swit
h at least between these methods depending on the a
tual error level to a
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