Memorial

University of Newfoundland

Technical Report #2008-01
Department of Computer Science
Memorial University of Newfoundland
St. John’s, NL, Canada

PATCHWORK VERIFICATION IN A FILTERING APPROACH
TO APPROXIMATE PATTERN MATCHING

by

Christoph J. Richter (1) and Wolfgang Banzhaf (2)

'Department of Computer Science, University of Dortmund, 44221 Dortmund,
Germany, Email: christoph.richter@cs.uni-dortmund.de

* Department of Computer Science, Memorial University of Newfoundland, St.
John’s, NL, Canada A1C 5S7, Email: banzhaf(@cs.mun.ca

Department of Computer Science
Memorial University of Newfoundland
St. John’s, NF, Canada A1B 3X5

January 2008

mailto:rosskopf@cs.uni-duesseldorf.de

Patchwork Verification in a Filtering
Approach to Approximate Pattern
Matching

Christoph J. Richter Wolfgang Banzhaf
University of Dortmund Memorial University of Newfoundland
Dept. of Computer Science Dept. of Computer Science
44221 Dortmund, Germany St. John’s, NL, Canada A1C 557
christoph.richter@cs.uni-dortmund.de banzhaf@cs.mun.ca

A verification method for the partitioning into exact search filtering ap-
proach in approximate pattern matching will be shown here. We will cal-
culate the limits of applicability and demonstrate the usefulness for longer
patterns and smaller alphabets (e.g. DNA), when searching with high error
levels.

Keywords: algorithms, approximate pattern matching, filtering, verification

1 Introduction

Approxvmate pattern matching is the problem of finding all positions in a text T, where
a pattern P matches with at most k& errors. In a more formal way, the problem of
approximate pattern matching can be defined as follows: Given a text T' =t¢; ...¢,, and
a pattern P = py1...p, (ti,p; € ¥), return the set {|aP|,T = aPy A d(P, P) < k},
where z, P and y are substrings of T, |.| returns the length of a string and d(P, P) gives
the edit distance between P and P. The edit distance between two strings characterizes
the number of transformation operations (insertion, deletion and replacement) that are
necessary to transform one string into an other one.

Since this problem has a great variety of applications in different areas like computa-
tional biology, text retrieval, and others [4, 6, 10], a lot of algorithm have been designed
to solve this problem. Good overviews are given in [6] and [9].

The general solution principle for this problem utilizes dynamic programming and
takes O(nm) time [12, 13]. Based on this principle, many improved algorithms have
been developed achieving up to O(kn) in the worst case and O(kn/+/0) in the average
case, where o is the size of the alphabet ¥ (like the algorithm of Chang and Lampe [2]).

A more advanced class of algorithms for approximate pattern matching solves the
problem in two phases. The idea of the first phase, the filtering or search phase, is to

identify areas in the text, where an approximate matching possibly may occur (this may
happen via discarding areas, where no approximate matching can appear at all). The
second phase, the checking or verification phase, then checks all these areas separately
with one of the basic algorithms for approximate pattern matching. While first phase
can be done in O(n), the verification cost of every area is basically quadratic during the
second phase. Thus, the applicability of a filtering algorithm depends on the domination
of the first phase. Naturally, for higher error levels @ = k/m more verification in the
second phase is expected. To be more robust to higher error levels, it is necessary to
reduce the amount of verification.

There are a few approaches that deal with the issue of lowering the share of verifica-
tion. Besides these approaches, in section 2 the specific kind of filtering used in this paper
is discussed briefly also. In section 3 we present the approach of patchwork verification,
which basically tries to avoid checking of overlapping areas. This approach is general in
the sense that every approximate matching of the pattern within the given interval is
found, but it is easily extendable to return new hits only, if the text is processed linearly.
Patchwork verification is analyzed in section 4, before we draw conclusions in the last
section.

2 Related Work

To improve filtering algorithms with lowering the share of the verification phase, different
ideas has been presented. Giegerich et al. [3] mixed both phases of the filtering algorithm.
With the information of the search phase about the maximal number of errors left, the
checking phase can be stopped prematurely if in the progress of checking the actual
number of errors shows that an approximate matching is not possible anymore.

With hierarchical verification another idea was presented by Navarro and Baeza-Yates
[5, 7, 8]. The basis of this method is a simple fact: If a pattern of length m matches
with k errors and the pattern is split into j pieces, at least one of these pieces matches
with [k/j| errors. For hierarchical verification, the pattern is recursively halved and thus
split into 27 pieces until the pieces are small enough to be searched with Lk/QjJ errors
conveniently. If one of the pieces is found, for complete verification the process of halving
is reverted and level by level two pieces are united and checked for an occurrence with
twice as many errors as before. If on every level the verification is positive, the occurrence
of the whole pattern is verified on the last level. In case of a negative verification on any
level, the whole verification process is stopped, because it is sure that the pattern does
not occur with at most & errors in the text a this position.

A different approach to reduce the overall amount of checking was presented in [?].
There, a grammar of the text is used to identify repetitions that only needs to be checked
once. The same grammar is also used to skip searching in some areas of the text.

Though it may be difficult in some cases, in general all these approaches could be

combined with any filtering method. Here, we work with a partitioning into exact search
filter. The filtering phase is determined by the same fact that builds the basis for hi-
erarchical verification. The pattern is split into k£ + s pieces and each of the pieces can
be searched with kaﬂj errors. For s > 1, exact search of each piece is possible. This
kind of filter was proposed by Wu and Manber [15] with s = 1 and is taken in this paper
also. Other than Wu and Manber, who used an extension of shift-or [1], we use a multi
pattern variant of the Boyer—-Moore—Sunday algorithm [14] for exact searching. Here,
the algorithm of Chang and Lampe [2]| is applied in the verification phase, though in
principle any approximate pattern matching algorithm could be used.

3 Patchwork Verification

The general idea of patchwork verification is to extend the verification algorithm for a
better handling of overlapping calls. Whenever an exact matching subpattern could be
localized in the filtering phase, the verification algorithm is called to check a certain area.
Naturally, when the exact matchings of two subpatterns are too close to each other, the
verification areas may overlap. In the following, with patchwork verification a method is
described that considers these overlaps.

Assuming the subpattern P; of P matches at position ¢ in 7. Without any additional
knowledge, the area [posy, pos.] that is necessary to be verified can be determined as
follows. It could be possible that F; is located at the very beginning of P and thus

pos. =t+k+m—1 (3.1)
it is obtained. On the other hand, F; could be the last symbol of P and thus it is:
posy =t —k—(m—1) (3.2)

Considering additionally the length |P;| of the matched subpattern, the start of the
interval can be defined more precise as at least the symbols of P, follow ¢. This results
in:

posy =t —k— (m—|P) (3.3)

If a verification algorithm is called frequently with overlapping areas, checking the
given interval [posy, pos.] completely results in multiple verification of some positions. To
avoid this, here, the idea is to remember the calculation state and the results of the last
call of the verification algorithm and to reuse this information to reduce the calculation
effort if possible.

During the calculation of an approximate matching with a pattern of length m, every
state loses its influence after m — 1 positions. For a seamless continuation of the last
verification this influence must not exists anymore during the actual verification at the

end position of the last verification. Assuming the last verified area was [oldposy, oldpos.],
the condition for the possibility of taking advantage of overlappings with copying hits is

(oldposy < posy) A (posy < oldpos. — m + 1) A (oldpos. < pos.). (3.4)
Considering this situation, there are four different areas (cf. Figure 1):

e [oldposy, posy — 1]: This area is not of interest for the actual verification.

e [posy, posy, + m — 2]: If hits were found in this area during the last verification,
the influence of former positions may be the reason and so this area needs to be
verified separately (without considering overlaps). If no hits were found during the
last verification, this area can be ignored.

e [posy +m — 1,oldpos.]: If hits were found in this area during the last verification,
these hits can be copied for the actual verification.

e [oldpos. + 1,pos.]: Nothing is known about this area, so the verification can be
continued here using the final state of the last verification.

m—1 positions

.

oldposy posy, posy, +m — 1 oldpos. POS,

Figure 1: Patchwork verification. The influence areas of the previous verification are
colored in gray. In the light gray area, hits from the previous verification can
be copied. If there are hits in the dark gray area, this area needs to be verified
separately again.

Integrating the distinction of these areas into a basic approximate pattern matching
algorithm, a new verification algorithm is obtained, which considers overlapped checking
areas. This resulting algorithm provides exactly all approximate matchings between the
pattern and the text in the given area.

4 Analysis

In this section, patchwork verification will be evaluated. First, we estimate where patch-
work is better than plain verification with the basic algorithm and we analyze its per-
formance. Then, the slightly modified version of hierarchical verification is explained,
which finally is used for the comparison with patchwork verification.

In general, any approximate string matching algorithm could serve as basic verifica-
tion algorithm. Here, the algorithm of Chang and Lampe [2] was implemented. Both,
hierarchical and patchwork verification were implemented as exhaustive checking algo-
rithms, i. e. every approximate matching between the given text interval and the pattern
is reported.

The algorithms were implemented in Java and all experiments were done on a 2.4 GHz
Linux PC with 1 GB RAM. Within the experiments at least 20 repetitions were done,
building a basis for the standard deviation bars in the figures. The search patterns were
selected randomly from the text. The text was either random with varying alphabet
sizes o, or DNA (the complete genome of Haemophilus influenzae Rd, 1.77 MB in size,
70 characters per line) with an alphabet size of four, save for a few exceptions.

Compared to just plain verification of the given interval [posy, pos.], patchwork veri-
fication is of advantage, if overlappings occur, i.e. if it is pos, < oldpos. with regard to
the last interval checked [oldposy, oldpos.]. Using the interval limits of equations 3.1 and
3.2, we achieve

thew < toig +2m + 2k — 2. (4.1)

In principle, for patchwork verification to outstand plain verification, only two consec-
utive calls of the verification algorithm on intervals fulfilling condition 4.1 are necessary.
If the average distance of two exact matching subpatterns falls below 2m + 2k — 2, ad-
vantage can be taken from the overlappings about every time, the verification algorithm
is called. Assuming an equal distribution of text characters and with a subpattern length
of m/(k+ 1), the average distance between two of the k 4+ 1 exact matching subpatterns
is

oA
thew — told = . 4.2
= (1.2
Thus, condition 4.1 can be transformed to
R < (2m+ 2k — 2)(k+ 1). (4.3)

Figure 2 shows random text examples illustrating this condition. In the examples, it
is obvious that patchwork verification outstands plain verification even before the limit
given with condition 4.3 is reached for k.

If two consecutive verification intervals [oldposy, oldpos.] and [posy, pos.] are close
together, some results of the first interval also hold for the second interval and thus can
be copied (cf. Figure 1). This happens for

posy +m — 1 < oldpos.. (4.4)

Using the interval limits of equations 3.1 and 3.2 and the average exact matching distance
of equation 4.2, we achieve
=

k+1

<m+2k-1 (4.5)

2000 45000

—_— pétchwoyk — pat(fhwo_rk ‘
1800 | plain 4 40000 F T plain
1600 ¢ 35000 | v
1400 ¢ I 30000 | ¥

1200 | |

1000
800 r
600

25000 |- Vo

time (ms)
time (ms)

20000 |
15000 - A

10000

400 | B
200 b »/’ / 5000 A

0 4 5 0 2 4 6 8 10 12 14 16
k k
(a) o = 10, n = 1000000, m = 10 (b) ¢ = 5,n = 1000000, m = 30

Figure 2: Condition 4.3 in different random text searches. The condition is fulfilled for
k> 4.1342 in (a) and for k > 7.2154 in (b).

as the condition for reusing of results.

Furthermore, the most restricting limit is reached, when the interval [pos;, posy+m —
1] needs to be checked everytime. This interval is checked only, if a hit was already found
within this interval, otherwise it is skipped. A hit exists in this interval, if the pattern
matches in [oldposy, pos, + m — 1] with at most k errors. The average edit distance
between two patterns of length m is between m(1 — e¢/\/o) and 2m(1 —1/4/0) [6] and it
is conjectured that the true value is m(1 — 1/y/0) for large o [11]. Since the interval is
approximately of size m (for large error levels k/m it becomes m — 1), there is a hit in
the interval approximately if it is

m(1—1/va) < k. (4.6)

Figure 3 shows exemplarily the general runtime performance of patchwork verification
and the calculated limits. Obviously, the impact of condition 4.5 can not be noticed,
because only hits are copied for the considered interval. Since the number of hits increases
with the error level, no clear influence at a certain point can be expected.

To achieve expected linear time, for a filtering algorithm it is important that the
verification phase does not dominate, i.e. the overall verification costs are O(n). Patch-
work verification is called for every of the k + 1 exact matching subpatterns of length
ma7- At every text position, the probability for this to happen is (k + 1)/0%. Assum-
ing patchwork verification is used (i.e. condition 4.3 holds), assuming further interval
[posy, pos, + m — 1] does not need checking (i. e. condition 4.6 holds) and neglecting the

costs for copying hits in the interval [pos, + m — 1, oldpos.] (cf. Figure 1) the costs per

50000

1000 T T T T T T T T T T
—— patchwork ——— patchwork
45000
800 40000
35000 [
5 600 % 30000 -
£ £
= = 25000 -
S S
= 400 = 20000 [
15000 -
200 t M | 10000 -
5000
0 M 0 , . e
0 5 100 15 20 25 30 35 40 45 50 0 50 100 150 200 250 300
k k
(a) ¢ = 4,m = 100,n = 100000, maximum (b) ¢ = 100, rn = 300, n = 100000

time restriced to 1000ms

Figure 3: In (a) the limit for & fulfilling condition 4.3 is marked with the left plumb line,
while the right plumb line marks condition 4.5. Condition 4.6 is fulfilled for
k > 50. In (b) only condition 4.6 is marked showing the general conformity
with the measured result.

call are quadratic in the length of the verified area and thus they are (U%/(k + 1))%
To achieve linear expected time, we should have

<cn (4.7)

which is equivalent to

With m/(k+ 1) =~ 1/a it is

<e 4.
kr1 = (4.9)

To solve for a, the following weaker inequality is used (replacing k by m — 1):

Q=

—~ <. 4.1
— < (4.10)

Together with equation 4.6 this results in a gross approximation of the interval where
linearity is expected (for any constant ¢):
1 1

< 1-—. 4.11
log, em — @< ()

B

Of course, the limit for linearity of the partitioning into k + 1 pieces filter still holds
additionally and thus [6], linearity is also expected for

a < 1/(3log, m). (4.12)

Considering equation 4.11, for patchwork verification reasonable values of o are
reached for small alphabets and longer patterns.

To integrate hierarchical verification (section 2) into the general filtering approach, a
slight modification was necessary. Originally, hierarchical verification successively halves
the pattern until the subpatterns are small enough to be searched with an appropriate
number of errors. Since the smallest subpatterns are already given here with splitting the
pattern into k+1 pieces, these subpatterns are successively melted until the whole pattern
is reassembled. For melting, the idea of successive halving is reverted, i.e. in every step
the subpattern results from a calculation, dividing the whole pattern into a power of 2
pieces, where each piece consists of a number of smallest subpatterns, originating from
the k& + 1 partitioning.

A practical problem with hierarchical verification that needs to be considered, is the
possible ambiguity of basic subpatterns. If a basic subpattern exists more than once in
the pattern, hierarchical verification can not be stopped as long as not every possible
occurrence is checked. If, for instance, the pattern aaxxaaaa was split into 4 pieces
(k = 3) and aa was found without error, it is not only necessary to check for aaxx with
|3/2] = 1 errors, but also aaaa.

For hierarchical verification linear time is expected for

a < 1/logzm (4.13)

when used with the partitioning into & + 1 pieces filter [6, 5, 7]. This limit equals the
lower bound of the interval given in equation 4.11, when setting ¢ = 1.

Figure 4 shows patchwork and hierarchical verification on DNA data with a search-
pattern of length m = 300. The linear time limits given in equations 4.12 and 4.11 easily
can be identified in the run of the curves. Moreover, this example clearly shows the good
performance of patchwork verification on longer patterns and smaller alphabets.

5 Conclusions

A verification method making the partitioning into exact search filtering approach in
approximate pattern matching applicable for higher error levels o was presented. Further,
we have calculated and demonstrated the limits of linearity when using this method. The
method of patchwork verification is especially useful for longer patterns and basically
small alphabets like it is in DNA data.

We have seen that the linearity when using patchwork verification for higher error
levels starts where linearity for hierarchical verification ends. Thus, it is an obvious idea,

500000 T T T 12000 T T
—— patchwork —— patchwork
450000 - hierarchica | ¢/ [i 4 | e hierarchical
400000 | 10000 |
350000
2 300000 - @
£ £
o 250000 - o
£ £
= 200000 =
150000 [
100000 -
50000 i
0 20 40 60 80 100 120 140 160
k k

Figure 4: Patchwork and hierarchical verification on DNA data with a longer pattern
(m = 300). (a) The leftmost plumb line gives the limit for o for normal filtering
(equation 4.12). The middle line marks the limit given in equation 4.13 which
equals the lower bound of the interval in condition 4.11. The upper border of
this interval is marked with the rightmost line. (b) Zoom in on the first part
of the graph shown in (a).

to switch at least between these methods depending on the actual error level to achieve
an overall good filtering algorithm.

References

[1] R. A. BAEZA-YATES AND G. H. GONNET, A new apporach to text searching,
Communications of the ACM, 35 (1992), pp. 74-82. Preliminary version in ACM
SIGR’89.

[2] W. 1. CHANG AND J. LAMPE, Theoretical and empirical comparisons of approxi-
mate string matching algorithms, in Proceedings of the 3rd Annual Symposium on
Combinatorial Pattern Matching (CPM’92), A. Apostolico, M. Crochemore, Z. Galil,
and U. Manber, eds., vol. 644 of LNCS, Tucson, Arizona, USA, April/May 1992,

Springer, pp. 175-184.

[3] R. GiEGERICH, F. HISCHKE, S. KURTZ, AND E. OHLEBUSCH, A general technique
to tmprove filter algorithms for approximate string matching, in Proceedings of the
Fourth South American Workshop on String Processing (WSP’97), R. Baeza-Yates,
ed., Valparaiso, Chile, November 1997, Carleton University Press, pp. 38-52.

[4] K. KukicH, Techniques for automatically correcting words in text, ACM Computing

Surveys, 24 (1992), pp. 377-439.

[6] G. NAavARRO, Approzimate Text Searching, PhD thesis, Department of Computer

Science, University of Chile, Santiago, Chile, December 1998.

[6] G. NAVARRO, A guided tour to approximate string matching, ACM Computing Sur-

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

veys, 33 (2001), pp. 31-88.

G. NAVARRO AND R. BAEzZA-YATES, Very fast and simple approximate string
matching, Information Processing Letters (IPL), (1999), pp. 65-70.

G. NAVARRO AND R. BAEZA-YATES, Improving an algorithm for approximate pat-
tern matching, Algorithmica, 30 (2001), pp. 473-502. Previous version: Tech. Rep.
TR/DCC-98-5, Dept. of Computer Science, University of Chile.

G. NAVARRO, R. BAEZA-YATES, E. SUTINEN, AND J. TARHIO, Indexing methods
for approximate string matching, IEEE Data Engineering Bulletin, 24 (2001), pp. 19—
27. Special issue on Managing Text Natively and in DBMSs. Invited paper.

D. SaANKOFF AND J. B. KRUSKAL, eds., Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison, Addison-Wesley,
Reading, Massachusetts, 1983.

D. SANKOFF AND S. MAINVILLE, Common Subsequences and Monotone Subse-
quences, in Sankoff and Kruskal [10], 1983, ch. 17, pp. 363-365.

P. H. SELLERS, The theory and computation of evolutionary distances: Pattern
recognition, Journal of Algorithms, 1 (1980), pp. 359-373.

T. F. SMITH AND M. S. WATERMAN, Identification of common molecular subse-
quences, Journal of Molecular Biology, 147 (1981), pp. 195-197.

D. M. SunDAY, A wvery fast substring search algorithm, Communications of the
ACM, 33 (1990), pp. 132-142.

S. Wu anD U. MANBER, Fast text searching allowing errors, Communications of
the ACM, 35 (1992), pp. 83-91.

10

	Technicalreport2008-01coverWB.pdf
	Page 1

	MUN-CS-2008-01.pdf

