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Abstract

Approximations can aim at having close to optimal value or, alternatively, they can aim at
structurally resembling an optimal solution. Whereas value-approximation has been extensively
studied by complexity theorists over the last three decades, structural-approximation has not
yet been defined, let alone studied. However, structural-approximation is theoretically no less
interesting, and has important applications in cognitive science. Building on analogies with
existing value-approximation algorithms and classes, we develop a general framework for an-
alyzing structural (in)approximability. We identify dissociations between solution value and
solution structure, and generate a list of open problems that may stimulate future research.

1A preliminary version of this report was part of the discussion materials provided for an invited talk given by two
of authors (IvR and TW) at IBFI Dagstuhl Seminar no. 07281: Structure Theory and FPT Algorithmics for Graphs,

Digraphs, and Hypergraphs. Both the current version and our thoughts on structure-approximation in general have
benefited greatly from spirited discussions with and suggestions made by various of the participants of that seminar,
notably Erik Demaine, Daniel Marx, Luke Mathieson, Venkatesh Raman, and Saket Saurabh. We would therefore
like to thank these participants as well as the organizers of this seminar and the IBFI Dagstuhl staff.
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1 Introduction

When it is hard to compute a function exactly or optimally, one may be willing to settle for
an approximation instead. But what does it mean to approximate an optimal solution? One
possibility is that a candidate solution is considered an approximation to the extent that its value
is close to the optimal value. We refer to this notion of approximation as value-approximation.
This is the most common notion of approximation in computer science, and possibly the most
relevant one for many applications (see [1, 20] and references). There is another possibility, however,
according to which a candidate solution is considered an approximation of the optimal solution
to the extent that it resembles the optimal solution itself. This kind of approximation we call
structure-approximation and is the topic of this paper.

1.1 Motivation

The need for structural-approximation algorithms naturally arises in the domain of cognitive sci-
ence, where cognitive outcomes are often modeled as the outputs of intractable optimization prob-
lems. It seems implausible that human cognizers, given their limited computational resources, are
capable of computing such intractable problems [7, 19]. Because the outputs of optimization prob-
lems nevertheless seem to predict and explain human cognitive outcomes rather well, it has been
proposed that human cognizers may somehow approximate the optimal outcomes [4, 16, 17]. In
this context it is structural-approximation—and not value-approximation—that gives the relevant
notion of approximation, because an optimal output is taken be a good model of a cognitive output
to the extent that it structurally resembles the cognitive output.

The relevance of structural approximation for cognitive modeling was also noted by Millgram
[14] and it is his work that first inspired our research on structure-approximation. Millgram studied
a cognitive model proposed in [18], according to which (rational) belief fixation can be modeled as
the computation of the following function:

Foundational (F-) Coherence
Input: A set of propositions describing observations (or data) D and a set of propositions describing
hypotheses H. A set of constraints C = C− ∪C+ ⊆ H × (D ∪H), with C− ∩C+ = ∅ and for each
constraint (p, q) ∈ C a weight w(p, q) > 0.
Output: A belief assignment B : H ∪ D → {true, false}, with B(d) = true for all d ∈ D, such
that the coherence value COH(B) =

∑
(p,q)∈C+,B(p)=B(q) w(p, q) +

∑
(p,q)∈C−,B(p)6=B(q) w(p, q) is

maximized.

Because F-Coherence turns out to be NP-hard, [18] proposed several value-approximation al-
gorithms for computing F-Coherence approximately. Millgram criticized the approach on the
grounds that if one were to approximate the optimal solution to F-Coherence one would want
one’s beliefs to correspond approximately with the beliefs in the maximally coherent belief assign-
ment. In other words, structure-approximation is the more natural and useful notion in this set-
ting. Furthermore, so Millgram argued, value-approximations do not automatically yield structure-
approximations, because it is possible for two belief assignments to be arbitrarily close in coherence
value yet arbitrarily far from each other in terms of which beliefs are held “true” and which ones
“false” (see pp. 89 in [14]).

Certain aspects of structure-approximability have been treated within complexity theory, e.g.,
proving the existence or non-existence of efficient algorithms for (1) probabilistically checking
whether or not a given graph either has a certain property P or is structurally distant from any graph
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having property P [9] or (2) approximating the structural distance of a given sparse or bounded-
degree graph from any graph having a certain property P [12]. However, to our knowledge, the
precise type of structure-approximation envisioned by Millgram has not yet been considered by
complexity theorists and no general framework for assessing degrees of structure-approximability
exists so far. Because the concept of structure approximation seems to be a very natural one
and is likely to have wider application in cognitive science and other disciplines we develop here a
framework for quantifying and assessing structure-(in)approximability.

1.2 Aims of This Paper

Since value approximations do not generally yield structural approximations, it is currently unclear
if the many results of value-(in)approximability of optimization problems that can be found in
the computer science literature are of any use for purposes of approximate cognitive modeling.2 It
would benefit cognitive modeling if the relationship between value- and structure-approximation was
better understood and, where the relationship is weak, if there were tools for studying structural-
(in)approximability of optimization problems directly. With this paper we aim at stimulating
research to this end by:

1. proposing a definition of structural-approximation, based on the notion of distance, that we
believe applies to many optimization problems of practical interest;

2. defining structural-approximation classes and algorithms that are analogous to existing value-
approximation classes and algorithms;

3. showing that output value and output structure can be so dissociated that it is likely that
structural-approximation classes and their value-approximation analogues are distinct, while
at the same time noting that we do not yet know if the value- and structural-approximation
classes are all distinct (though we know that some are), nor whether the different structural-
approximation classes are distinct from each other in the same way as the value-approximation
classes are; and

4. posing many other interesting questions that naturally arise from the structural-approximation
framework that we propose.

We cannot possibly hope to settle all relevant problems in a single paper, nor do we try to do
so. Instead our aim is to trigger interest among complexity theorists in the concept of structural-
approximation, and to invite them to contribute new relevant theoretical results on structural-
(in)approximability, building in the end as rich a set of results for structural-approximation as
currently exist for value-approximation.

1.3 Organization of This Paper

This paper is organized as follows. In Section 2, after a brief introduction to the existing value-
approximation framework (Section 2.1), we describe a structural-approximation framework (Section
2.3), and show that value- and structural-approximability are distinct (Section 2.3). In Section 3,
we summarize all known structural (in)approximability results and techniques for proving such
results. Over the course of the paper, eleven open questions are proposed that we belive are
promising directions for future research.

2This is not generally recognized and appreciated by cognitive scientists, as we see many citations in the cognitive
science literature of value-approximation results when structural-approximability is actually at stake.
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2 A Framework for Solution Structure Approximation

In this section, we will lay out the basic definitions for a theory of structural-approximability.
Many of these definitions are variants of those underlying the theory of value-approximability of
optimization problems; to highlight these relationships as well as the differences, we have where
possible re-used much of the notation and language of this theory as given in Ausiello et al. [1].

2.1 Background: Optimization Problems and Solution Value Approximation
Algorithms

In this section we review the basics of value-approximability, starting with the type of problem
being approximated.

Definition 2.1 (Adapted from [1, Definition 1.1.6] and [13, Section 2]) An optimization problem
Π is characterized by the quadruple of objects (I, cansol, val, goal) where:

1. I is the set of instances of Π;

2. cansol is a function that associates to any input instance x ∈ I the set of candidate solu-
tions of x;

3. val is the value function, defined for pairs (x, y) such that x ∈ I and y ∈ cansol(x). For
each such pair (x, y), val(x, y) provides a positive integer which is the value of the candidate
solution; and

4. goal ∈ {MIN,MAX} specifies whether Π is a maximization or a minimization problem,
respectively.

Given an input instance x of an optimization problem, let optval(x) = goal{val(x, y) | y ∈
cansol(x)} and optsol(x) = {y | y ∈ cansol(x) and val(x, y) = optval(x)}. In this paper, we
will focus on NP optimization problems, in which the length of each candidate solution y is
polynomially bounded in the length of x, it can be decided if x ∈ I and y ∈ cansol(x) in polynomial
time, and val(x, y) can be computed in polynomial time. These are the problems in problem class
NPO defined in [1, Section 1.4.2].

Example 2.2 In this paper, we will use the following optimization problems as running examples:

Maximum Clique (Max Clique) [8, Problem GT19]
Input: Graph G = (V,E).
Candidate Solutions: All subsets V ′ ⊆ V that are cliques, i.e, for all v, v′ ∈ V ′, (v, v′) ∈ E.
Value to be Maximized: The number of vertices in the solution vertex-subset, i.e., |V ′|.

Weighted Max Cut [8, Problem ND16]
Input: Edge-weighted graph G = (V,E,w).
Candidate Solutions: All bipartitions of V .
Value to be Maximized: The sum of the weights of the edges in E with endpoints on different sides
of the solution vertex-partition.
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Comment: Note that Weighted Max Cut is a special case of F-Coherence (i.e., the prob-
lems are equivalent when D = ∅ and C = C− in F-Coherence)

Maximum k-Satisfiability (Max k-Sat, k ≥ 2) [8, Problem L05]
Input: A formula F from propositional logic consisting of a conjunction of |C| disjunctive clauses
over n Boolean variables, where each clause contains exactly k negated or unnegated variables.
Candidate Solutions: All truth assignments over n Boolean variables.
Value to be Maximized: The maximum number of clauses in F satisfied by the solution truth-
assignment.

Longest Common Subsequence (LCS) [8, Problem SR10]
Input: An alphabet Σ and a set S of m strings over Σ such that the length of the longest string in
S is n.
Candidate Solutions: All strings that are subsequences of all strings in S.
Value to be Maximized: The number of symbols in the solution-string.

Unless otherwise specified, any reference to one of these problems will be to the problem and solution
value function as defined above.

We distinguish between exact and approximation algorithms for optimization problems:

Definition 2.3 [1, Adapted from Definition 3.1] Given an optimization problem Π, an algorithm A
is an exact algorithm for Π if, for any given instance x ∈ I, it returns a solution A(x) ∈ optsol(x).

Definition 2.4 [1, Definition 3.1] Given an optimization problem Π = (I, cansol, val, goal), an
algorithm A is an approximation algorithm for Π if, for any given instance x ∈ I, it returns a
solution A(x) ∈ cansol(x).

Many types of approximation algorithms have been defined such that val(x,A(x)) is within some
absolute or relative factor of optval(x) (see Chapter 3 of Ausiello et al. [1] for details); we refer to
such algorithms as value-approximation (v-approx) algorithms. Several important classes of
v-approx algorithms are defined below.

Definition 2.5 Given an optimization problem Π and a non-decreasing function h : N → N ,
an algorithm A is a polynomial-time h(|x|) additive value-approximation (v-a-approx)
algorithm for Π if for every instance x of Π, |optval(x) − val(x,A(x))| ≤ h(|x|) and A runs in
time polynomial in |x|.

Definition 2.6 Given an optimization problem Π = (I, cansol, val, goal) and a non-decreasing
function h : N → N , an algorithm A is a polynomial-time h(|x|) ratio value-approximation
(v-r-approx) algorithm for Π if for every instance x ∈ I, R(x,A(x)) ≤ h(|x|), where R(x,A(x)) =

optval(x)
val(x,A(x)) (if goal = MAX) or val(x,A(x))

optval(x) (if goal = MIN), and A runs in time polynomial in |x|.

Definition 2.7 Given an optimization problem Π, Π has a polynomial-time
value-approximation scheme (v-PTAS) if there is an algorithm A that takes as inputs pairs
(x, k) ∈ Σ∗×N , k ≥ 1, such that for every fixed k, A is a 1

k
v-r-approx algorithm that runs in time

polynomial in |x|.

5



Definition 2.8 Given an optimization problem Π, Π has a fully polynomial-time
value-approximation scheme (v-FPTAS) if there is an algorithm A that takes as inputs pairs
(x, k) ∈ Σ∗ × N , k ≥ 1, such that A is a 1

k
v-r-approx algorithm that runs in time polynomial in

|x| and k.

2.2 Solution Structure Approximation Algorithms

Although value-approximation algorithms find natural application in many situations, some situa-
tions require a type of approximability that is based on the degree of similarity of the structures of
candidate solutions to optimal solutions (see Section 1.1). We can capture this notion of solution
similarity using the concept of a distance function. Let d : Σ∗ × Σ∗ → N be a solution distance
(sd) function associated with an optimization problem Π such that for an instance x of Π and
y, y′ ∈ cansol(x), d(y, y′) is the distance between these solutions. As it will occasionally be conve-
nient to define the minimum distance of y to a set X of solutions, let d(y,X) = miny′∈X d(y, y′).
Note that each sd-function assumes a particular representation for the candidate solutions of its
associated optimization problem. We will assume that each sd-function d is a metric, and hence
satisfies the following four properties:

1. For all x, d(x, x) = 0.

2. For all distinct x and y, d(x, y) > 0.

3. For all x and y, d(x, y) = d(y, x) (symmetry)

4. For all x, y, and z, d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

Note that for a problem Π, there may be many such sd-functions. In certain situations, we may
wish to use versions of sd-functions that have been normalized by their maximum possible values.

We denote the normalized version of sd-function d(y, y′) by dN (y, y′) = d(y,y′)
dmax(x) where dmax(x) =

maxy,y′∈cansol(x) d(y, y′).

Example 2.9 Consider the following candidate solution representations for the optimization prob-
lems defined in Example 2.2:

• Max Clique: A |V |-length binary vector such that a 1 (0) at position i means that vertex vi

is (is not) in the solution vertex-subset.

• Weighted Max Cut: A |V |-length binary vector such that a 1 (0) at position i means that
vertex vi is on side 1 (2) of the solution vertex-bipartition.

• Max k-Sat: An n-length binary vector such that a 1 (0) at position i means that Boolean
variable vi is set to True (False) in the solution truth-assignment.

• LCS: A string over Σ of length less than or equal to the length of the shortest string in S.

For Max Clique, Weighted Max Cut, and Max k-Sat, d will be the Hamming distance
(dH) between the given solution-vectors, i.e., the number of positions at which these vectors differ.
For LCS, d will be the Edit distance (dE) between the two given solution strings, i.e., the minimum
number of single-symbol insertion, deletion, or substitution operations required to transform one
string into the other. Both Hamming and Edit distance are metrics; moreover, Hamming distance
can be computed in linear time and Edit distance can be computed in quadratic time [10, Section
11.3].

6



By analogy with the v-approx algorithms described in Section 2.1, we distinguish several classes
of structural-approximation algorithms. As we do not compute ratios in structural-approximation,
the first algorithm-type below corresponds to both v-a- and v-r-approx algorithms when (when d is
unnormalized and h(|x|) is arbitrary and when d is normalized and h(|x|) = ǫ for some ǫ, 0 < ǫ < 1,
respectively).

Definition 2.10 Given an optimization problem Π, a sd-function d, and a non-decreasing func-
tion h : N → N , an algorithm A is a polynomial-time h(|x|)/d structure-approximation
(s-approx) algorithm if for every instance x of Π, d(A(x), optsol(x)) ≤ h(|x|) and A runs in
time polynomial in |x|.

Definition 2.11 Given an optimization problem Π and a normalized sd-function dN , Π has a
polynomial-time dN -structure-approximation scheme (dN -s-PTAS) if there is an algorithm
A that takes as inputs pairs (x, k) ∈ Σ∗×N , k ≥ 1, such that for every fixed k, A is a 1

k
/dN s-approx

algorithm that runs in time polynomial in |x|.

Definition 2.12 Given an optimization problem Π and a normalized sd-function dN , Π has a
fully polynomial-time dN -structure-approximation scheme (dN -s-FPTAS) if there is an
algorithm A that takes as inputs pairs (x, k) ∈ Σ∗ × N , k ≥ 1, such that A is a 1

k
/dN s-approx

algorithm that runs in time polynomial in |x| and k.

Two useful extensions of this framework are as follows:

1. By slightly reformulating basic definitions, we can also investigate the approximability of
search problems, in which candidate solutions either are or are not solutions.

This can be done either by reformulating structure-approximability to handle both and op-
timization problems or by reformulating search problems as optimization problems and re-
use the framework as stated above. In the interests of simplicity, we do the latter as fol-
lows: Transform a given search problem Π with instance-set I, candidate-solution function
cansol(x), solution-function, and solution-function sol(x) to an optimization problem Π′ =
(I, cansol, val, goal) in which val(x, y) = 1 if y ∈ sol(x) and 0 otherwise and goal = MAX.
This reformulation has the interesting side effect that if the given instance x of Π has no
solution, all candidate solutions are considered optimal in Π′ and hence may be returned by
an exact algorithm. However, as we are focusing on NP search problems (whose solutions
can be verified in polynomial time), observe that Π and Π′ reduce to each other, and the
existence of a polynomial-time exact algorithm for Π′ is hence equivalent to the existence of
a polynomial-time exact algorithm for Π.

2. By choice of an appropriate candidate-solution set and associated sd-function, we can inves-
tigate the approximability of optimization and search problems relative to partial solutions.
For example, an approximate solution for k-Sat (see below) might be a ternary vector that
has the option of specifying a particular variable as true (1), false (0), or unspecified (*).

Example 2.13 In this paper, we will use the following search problem as a running example:

k-Satisfiability (k-Sat) [8, Problem L02]
Input: A formula F from propositional logic consisting of a conjunction of |C| disjunctive clauses
over n Boolean variables, where each clause contains exactly k negated or unnegated variables.
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Candidate Solutions: All truth assignments over n Boolean variables.
Output: A truth-assignment over the n Boolean variables that satisfies all clauses in F , and the
symbol ⊥ if no such truth-assignment exists.

The transformation described in extension (1) above creates the following optimization problem:

k-Satisfiability-I (k ≥ 2)
Input: A formula F from propositional logic consisting of a conjunction of |C| disjunctive clauses
over n Boolean variables, where each clause contains exactly k negated or unnegated variables.
Candidate Solutions: All truth assignments over n Boolean variables.
Value to be maximized: The value assigned to the solution truth-assignment (1 if the truth-
assignment satisfies F and 0 otherwise).

We will assume the same solution representation and d as for Max k-Sat. Unless otherwise
specified, any reference to k-Sat will be to the problem, value function, and sd-function as described
above.

Despite all these possibilities and potentials, it can be argued that our proposed framework is ulti-
mately unnecessary, as all types of structural approximability described in this section (including
both extensions described above) can be simulated within the value-approximability framework
by using appropriately-defined (albeit significantly more complex) solution-value functions and/or
candidate-solution sets. We believe that for now, given the difficulties likely to arise in dealing with
such solution-value functions in the value-approximability framework, it may be more productive
to do the initial investigations into structure-approximability within a specifically-tailored frame-
work such as that given above. Even if this work is eventually folded into and continued within
the value-approximability framework, it should eventually lead to a broader interpretation of this
framework to encompass and encourage exploration of the different ways in which optimal solutions
for combinatorial optimization problems can be approximated, as well as the relationships between
these different notions of approximation. A first step in this direction is given in the next section.

2.3 The Relationship Between Solution Value and Structure

For some classic optimization problems, structural approximations directly imply value approxi-
mations. Consider, for example, Max Clique, where all solutions that are close to optimal in
structure are also at least that close in value, i.e., optval(x) − val(x, y) ≤ dH(y, optsol(x)). This
fact will be of use several times in Section 3. However, as illustrated in Example 2.14 the reverse
is not necessarily the case: solutions which are close in value can yet be distant in structure.

Example 2.14 Consider the Max Clique problem. For n ≥ 1, let Gn be a graph on 2n + 1
vertices consisting of two cliques C1 and C2 on n and n + 1 vertices, respectively (see part (a) of
Figure 1 for G3). Observe that the optimal solution s∗ for Gn is the subset of vertices corresponding
to C2. Consider the solution s consisting of the vertices in C1. Though s and s∗ differ in value by
1, they are as far apart in structure as possible, i.e., d(s, s∗) = |V |.

For other classic problems the dissociation between value- and structure-approximation is even
more complete, with neither closeness in structure implying closeness in value, nor closeness in
value implying closeness in structure.
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Example 2.15 Consider the Weighted Max Cut problem:

• For n > 2, let Xn be a graph with central vertex a that is connected by an edge of weight
c > 0 to each of the peripheral vertices b1, b2, . . . , b(n−1), e.g., G = (V,E,w) such that V =
{a, b1, b2, . . . , b(n−1)} , E = {(a, bi) | 1 ≤ i ≤ n − 1}, and w(e) = c for all e ∈ E (see part
(b) of Figure 1 for X5). Observe that s∗ is such that a is on one side of the bipartition and
all other vertices are on the other side; without loss of generality, let a be on side 1 and all
other vertices be on side 2. Let s be the solution in which all vertices (including a) are on
side 2. Note that though d(s, s∗) = 1, val(x, s) = 0 and val(x, s∗) = (n− 1)c, i.e., though s is
structurally close to s∗, it is far (indeed, as far as possible) from s∗ in terms of value.

• For n > 2, let Yn be as above with the addition of an edge between each pair of peripheral
vertices; moreover, let c+ be the weight of each central-peripheral edge and c− be the weight of
every peripheral-peripheral edge (see part (c) of Figure 1 for Y5). Without loss of generality,
assume that a is on side 1 of the bipartition. If we let n′, 0 ≤ n′ ≤ n − 1, be the number of
peripheral vertices that are on side 2 of the bipartition in some solution s, then val(x, s) =
n′c+ + n′((n− 1) − n′))c−. If c+ < c−, val(x, s) is maximized (and hence s is optimal) when

n′ = (n−1)
2 . To see this, note that val(x, s) increases as n′ increases from 0. When n′ = (n−1)

2 ,

val(x, s) =
(n − 1)

2
c+ +

(n − 1)

2
((n − 1) −

(n − 1)

2
)c−

=
(n − 1)

2
c+ +

(n − 1)

2
(
(n − 1)

2
)c−

=
(n − 1)

2
c+ + (

(n − 1)

2
)2c−

However, when n′ = (n−1)
2 + 1,

val(x, s) = (
(n − 1)

2
+ 1)c+ + (

(n − 1)

2
+ 1)((n − 1) − (

(n − 1)

2
+ 1))c−

= (
(n − 1)

2
+ 1)c+ + (

(n − 1)

2
+ 1)(

(n − 1)

2
− 1)c−

= (
(n − 1)

2
+ 1)c+ + ((

(n − 1)

2
)2 − 1)c−

which is less when c+ < c− and will continue to drop in value as n′ increases to n − 1.

Given the above, let s be the solution in which all vertices are on side 1 and s∗ be any optimal
solution in which a and exactly half of the bi are on side 1 and the remaining half of the bi

are one side 2. As val(x, s) = (n − 1)c+, val(x, s∗) = (n−1)
2 c+ + (n−1)(n−1)

4 c−, and

(n − 1)c+ =
(n − 1)

2
c+ +

(n − 1)(n − 1)

4
c−

(n − 1)

2
c+ =

(n − 1)(n − 1)

4
c−

c+ =
(n − 1)

2
c−,
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Figure 1: Near-Optimal Solution Value Does Not Imply Near-Optimal Solution Structure. (a)
Graph G3. (b) Graph X5. (c) Graph Y5. See main text for details.

we know that by setting c+ = (n−1)
2 c− − ǫ for an appropriate ǫ > 0, val(x, s) can be made

to be arbitrarily close to val(x, s∗); however, dH(s, s∗) = n/2, i.e., though s′ is close to s∗ in
terms of value, it is structurally far away.

Moreover, v-approximability is not necessarily correlated with s-approximability.

Example 2.16 Consider the version of the Max Clique problem in which the solution-representation
and value function are standard but the sd-function d is such that d(y, y′) = 0 if y = y′ and 1

otherwise. Observe that this problem is not v-r-approximable within a factor of |V |
1

2
−ǫ for any

epsilon > 0 unless P = NP [11, Theorem 5.3], but it is 1-s-approximable (by the trivial algorithm
that returns an arbitrary solution y ∈ cansol(x)).

Example 2.17 Consider the version of the Max Clique problem in which the solution-representation
and sd-function are standard but the the value function val(x, y) is 5 if y is a maximum clique, 4 if
y is the empty set, and 0 otherwise. Observe that this problem is 1-v-a-approximable (by the trivial

algorithm that returns the empty-set solution) but is not |x|
1

c s-approximable for c ≥ 10 unless
P = NP (see Corollary 3.6 below).

These examples are admittedly artificial but they do highlight the non-equivalence of value- and
structure-approximability in general. It is tempting to attribute this non-equivalence to the wildly-
varying complexity of computing d(y, optsol(x)) for different d, which is linear time for d as defined
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in Example 2.16 but NP -hard for Hamming distance relative to Max Clique (this follows from
the fact that for the solution y that is the empty set, |optval(x) − val(x, y)| = dH(y, optsol(x))).
However, such arguments are invalidated by the fact that value-functions themselves can show
similar complexity variations, from polynomial time in Examples 2.15 and 2.16 to NP -hard in
Example 2.17. The roots of this non-equivalence are left for now as an interesting research direction
within the approximation research program sketched at the end of Section 2.2. In any case, as we
will see in the remainder of this paper, there are nonetheless some relationships between solution
value and structure that can be exploited in certain cases.

3 Known Techniques and Results

In this section, we list all techniques known at this time for proving both polynomial-time and
fixed-parameter s-approximability and s-inapproximability, as well as sample results derived using
these techniques. The first set of techniques (Section 3.1.1) exploits relationships between solution
value and distance, and is hence only applicable to certain optimization problems; however, the
remaining techniques, discussed Sections 3.1.2–5, are applicable to all optimization and search
problems.

Many of the s-inapproximability techniques described in this section operate by showing that if
a particular type of s-approx algorithm exists for a given optimization problem Π then the standard
decision problem associated with Π can be solved in polynomial time. This decision problem is
defined as follows.

Definition 3.1 Given an optimization problem Π, the standard decision problem ΠD associ-
ated with Π is the decision problem that, given an instance x of Π, asks if asks if optval(x) ≤ k
(if goal = MIN) or optval(x) ≥ k (if goal = MAX).

3.1 Polynomial-Time Structure (In)approximability

3.1.1 Structure Approximability by Dumb Luck

In rare cases, the nature of the candidate-solution set of a problem allows the derivation of very
loose s-approximability results.

Theorem 3.2 Weighted Max Cut is 0.5|x|/dH s-approximable.

Proof: Given a solution s of Weighted Max Cut, let s be the solution corresponding to the
bitwise complement of s. Note that if s is optimal then so is s. The required algorithm is then
trivial – simply generate and return an arbitrary candidate solution s to the given input x. We
prove that dH(s, s∗) ≤ 0.5|V | ≤ 0.5|x| for some optimal solution s∗ for x by contradiction: Assume
there is a candidate solution s for x such that dH(s, s∗) > 0.5|V | for every optimal solution s∗ for
x. Let s∗c be the closest such optimal solution to s. As dH(s, s∗c) > 0.5|V |, this means that at least
half of the bits of s and s∗c are different. This means that at least 0.5|V | bits of s and s∗c are the
same, such that dH(s, s∗c) ≤ 0.5|V |. However, as s∗c is optimal, so is s∗c , which is a contradiction.

11



Corollary 3.3 Weighted Max Cut is 0.5/dN
H s-approximable.

Proof: Observe that the proof of Theorem 3.2 actually shows that Weighted Max Cut
is 0.5|V |/dH s-approximable; the result then follows from the fact that in the case of dH and
Weighted Max Cut, dmax(x) ≤ |V |.

Such dumb luck does not hold in general (nor does it typically give good approximation bounds).
Fortunately, as we will see in subsequent sections, we have other options.

3.1.2 Structure (In)approximability by Value (In)approximability

As noted in Section 2.3, we cannot have in general that solutions with close to optimal value also
have close to optimal structure, or vice versa. However, even loose or partial relations may still be
exploited in the design of approximation algorithms, as shown by the following lemmas. For the
purposes of this paper, we say that a function f : Σ∗ ×N → N is non-decreasing if for all x ∈ Σ∗

and y, z ∈ N , f(x, y) ≤ f(x, z) if and only if y ≤ z.

Lemma 3.4 Given an optimization problem Π, a sd-function d, and a non-decreasing function
f : Σ∗×N → N , if for every instance x of Π it is the case that for every candidate solution y of x,
|optval(x) − val(x, y)| ≤ f(x, d(y, optsol(x))), then any h(|x|)/d-s-approx algorithm for Π is also a
f(x, h(|x|)) v-a-approx and (f(x, h(|x|)) + 1) v-r-approx algorithm for Π.

Proof: Suppose Π is a maximization problem. By definition, the existence of a h(|x|)/d s-
approx algorithm A for Π implies that d(A(x), optsol(x)) ≤ h(|x|), which in turn implies that
f(x, d(A(x), optsol(x))) ≤ f(x, h(|x|)). However, as we also know that |optval(x) − val(x, y)| ≤
f(x, d(y, optsol(x))), it is the case for A that |optval(x) − val(x,A(x))| ≤ f(x, d(A(x), optsol(x))),
which implies that A is also a f(x, h(|x|)) v-a-approx algorithm for Π. In a maximization problem,
as optval(x) ≥ val(A(x)), |optval(x) − val(x,A(x))| = optval(x) − val(x,A(x)). Hence,

optval(x) − val(x,A(x)) ≤ f(x, h(|x|))

optval(x) − val(x,A(x))

val(x,A(x))
≤

f(x, h(|x|))

val(x,A(x))

optval(x)

val(x,A(x))
− 1 ≤

f(x, h(|x|))

val(x,A(x))

optval(x)

val(x,A(x))
≤

f(x, h(|x|))

val(x,A(x))
+ 1

optval(x)

val(x,A(x))
≤ f(x, h(|x|)) + 1

which implies that A is also a f(x, h(|x|)) + 1 v-r-approx algorithm for Π. Similar proofs also hold
with respect to minimization problems.

The use of Lemma 3.4 and v-r-inapproximability results to prove s-inapproximability requires v-r-
inapproximability for ratios that are polynomial of |x|.
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Corollary 3.5 Max Clique is not |x|
1

c /dH s-approximable for any c ≥ 6 unless P = NP .

Proof: We will show that the existence of a polynomial-time |x|
1

c /dH s-approx algorithm for

some c ≥ 6 implies the existence of a polynomial-time |V |(
1

2
−ǫ) v-r-approx algorithm for Max

Clique for some ǫ > 0. As optval(x)−val(x,A(x)) ≤ f(x, dH(A(x), optsol(x))) = dH(A(x), optsol(x))

for Max Clique, by Lemma 3.4, A is also a f(x, |x|
1

c )+1 = |x|
1

c +1 v-r-approx algorithm for Max
Clique. Recall that for Max Clique, in which the input graph can be represented as |V | × |V |

adjacency bit-matrix, |x| = |V |2; hence A is a (|V |2)
1

c + 1 = |V |
2

c + 1 s-approx algorithm for Max

Clique. Choose c′ = 2.6
c

; as c ≥ 6, c′ < 1
2 . Observe that |V |

2

c +1 ≤ |V |c
′

when |V | ≥ c
c

2 and c ≥ 6;

this is so because (c
c

2 )
2

c + 1 ≤ (c
c

2 )
2.6

c implies that c + 1 ≤ c1.3, which is true when c ≥ 6.

Given the above, consider the algorithm A′ for Max Clique which looks up the optimal
solution when |V | in the given instance is less than or equal to c

c

2 and calls A on the given instance

otherwise. By the above, A′ is a polynomial-time |V |(
1

2
−ǫ) v-r-approx algorithm for Max Clique

for some ǫ > 0; however, the existence of such an algorithm implies that P = NP [11, Theorem
5.3], completing the proof.

Corollary 3.6 The version of Max Clique in Example 2.17 is not |x|
1

c /dH s-approximable for
any c ≤ 10 unless P = NP .

Proof: This proof is similar to that for Corollary 3.5 above, but must be modified because of
the non-standard value function, for which optval(x) − val(x,A(x)) ≤ f(x, dH(A(x), optsol(x))) =

5dH(A(x), optsol(x)). Given this, Lemma 3.7 now implies that A is also a f(x, |x|
1

c )+1 = 5|x|
1

c +1 =

5|V |
2

c v-r-approx algorithm. Choose c′ = 4.8
c

; as c ≥ 10, c′ < 1
2 . Observe that 5|V |

1

c + 1 ≤ |V |c
′

when |V | ≥ c
c

2 and c ≥ 10; this is because 5(c
c

2 )
2

c + 1 ≤ (c
c

2 )
4.8

c implies that 5c + 1 ≤ c2.4, which is
true when c ≥ 10. The remainder of the proof is now as in Corollary 3.5.

A converse of Lemma 3.4 that may be useful for proving s-approximability also exists.

Lemma 3.7 Given an optimization problem Π, a sd-function d, and a non-decreasing function
f : Σ∗ ×N → N , if for every instance x of Π it is the case that for every candidate solution y of
x, d(y, optsol(x)) ≤ f(x, |optval(x) − val(x, y)|), then

1. any h(|x|) v-a-approx algorithm for Π is also a f(x, h(|x|))/d s-approx algorithm for Π; and

2. any h(|x|) v-r-approx algorithm for Π is also a f(x, optval(x)(h(|x|)−1))/d s-approx algorithm
for Π.

Proof: Suppose Π is a maximization problem. By definition, the existence of a h(|x|) v-a-
approx algorithm A for Π implies that |optval(x) − val(x,A(x))| ≤ h(|x|), which in turn implies
that f(x, |optval(x)−val(x,A(x))|) ≤ f(x, h(|x|)). However, as we also know that d(y, optsol(x)) ≤
f(x, |optval(x)−val(x, y)|), it is the case for A that d(A(x), optsol(x)) ≤ f(x, |optval(x)−val(x,A(x))|),
which implies that A is also a f(x, h(|x|))/d s-approx algorithm for Π. As for (2), note that by

definition, the existence of a h(|x|) v-r-approx algorithm A for Π implies that optval(x)
val(x,A(x)) ≤ h(|x|).

Hence,
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optval(x)

val(x,A(x))
≤ h(|x|)

optval(x)

val(x,A(x))
− 1 ≤ h(|x|) − 1

optval(x) − val(x,A(x))

val(x,A(x))
≤ h(|x|) − 1

optval(x) − val(x,A(x)) ≤ val(x,A(x))(h(|x|) − 1)

f(x, |optval(x) − val(x,A(x))|) ≤ f(x, val(x,A(x))(h(|x|) − 1))

d(y, optsol(x)) ≤ f(x, val(x,A(x))(h(|x|) − 1))

d(y, optsol(x)) ≤ f(x, optval(x)(h(|x|) − 1))

which implies that A is also a f(x, optval(x)(h(|x|)−1))/d s-approx algorithm for Π. Similar proofs
also hold with respect to minimization problems, modulo changes introduced by switching the ratio
from optval(x)

val(x,A(x)) to val(x,A(x))
optval(x) in the equations above.

Useful applications of Lemma 3.7 require v-r-approximability for ratios < 2 (and preferably << 2).
However, the restrictions placed on the form of f() by the requirement that d(y, optsol(x)) ≤
f(x, |optval(x)−val(x, y)|) significantly weaken achievable results. Better results would be possible
if the relationship between given and produced v-r- and s-approx ratios in the lemmas above was
tighter and the relationship between solution-to-optimal distance and value was less stringent.

Open Problem #1: Prove versions of Lemmas 3.4 and 3.7 with tighter rela-
tionships between v-r-approximability and s-approximability and looser solution-to-
optimal distance-value requirements.

3.1.3 Structure Inapproximability by Self-Paddability

Consider the following general way of proving s-inapproximability which is based on the “instance-
copy” strategy used to show certain types of polynomial-time v-a-inapproximability, e.g., [8, The-
orem 6.7]. We first define a property of an optimization problem which allows the instance-copy
strategy to be applied to that problem.

Definition 3.8 Given an optimization problem Π, a sd-function d, and a non-decreasing function
h : N → N that is computable in polynomial time, Π is (polynomial-time) h(|x|)-self-paddable
with respect to d if the following holds:

1. There exists a function f(x, h(|x|)) such that for any instance x of Π, f creates an instance
x′ of Π of size padsize(x, h(|x|)).

2. There exists a function g(f(x, h(|x|)), y) such that for any instance x of Π, g extracts from
a solution y ∈ cansol(f(x, h(|x|))) the set {y1, y2, . . . , yh(|x|)} such that for 1 ≤ i ≤ h(|x|),
yi ∈ cansol(x);

3. f and g run in time polynomial in |x| and h(|x|); and
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4. d(y, optsol(f(x, h(|x|)))) =
∑h(|x|)

i=1 d(yi, optsol(x)).

Self-paddability is an extension of paddability as defined in [5, Definition 4.2]. Note that the
instance x′ created by function f above effectively encodes h(|x|) instances of Π.

Theorem 3.9 Given an NP optimization problem Π that is h(|x|)-self-paddable for a function h
that is polynomially bounded, a sd-function d, and function g : N → N such that g(padsize(x, h(|x|)))
< h(|x|), if Π is g(|x|)/d-s-approximable and ΠD is NP -hard then P = NP .

Proof: Given an instance x of ΠD, we can run the following algorithm to solve x: Let x′ be
the instance of Π corresponding to x; observe that |x′| = |x|. Run the g(|x|)/d s-approx algo-
rithm on the instance f(x′, h(|x′|)) of Π to create solution y. Decompose y into {y1, y2 . . . , y(h(|x|))}
using g, and determine, for 1 ≤ i ≤ h(|x|), which yi ∈ optsol(x), i.e., compute all val(x, yi). As
d(y, optsol(f(x′, h(|x′|)))) ≤ g(|f(x′, h(|x′))|) = g(padsize(x, h(|x|))) < h(|x|) and

d(y, optsol(f(x′, h(|x′|)))) =
∑h(|x′|)

i=1 d(yi, optsol(x′)), at least one yi has d(yi, optsol(x′)) = 0, mean-
ing that yi ∈ optsol(x′). We can then use this yi to solve ΠD. As all steps of this algorithm run
in time polynomial in |x′| = |x|, this is a polynomial-time algorithm for ΠD; however, as ΠD is
NP -hard, this implies that P = NP , completing the proof.

This theorem is useful in proving s-inapproximability both in the case of “true” optimization prob-
lems (which have existing v-r-(in)approximability results) and optimization problems corresponding
to search problems (see Lemma 3.11 and 3.12 respectively).

Lemma 3.10 Given an NP optimization problem Π and a sd-function d, if ΠD is NP -hard and
Π is |x|α-self-paddable for all α ∈ N , α ≥ 1 such that padsize(x, |x|α) = |x|α+1, then Π is not
|x|(1−ǫ)/d s-approximable for any ǫ > 0 unless P = NP .

Proof: Suppose there is an algorithm A that is a |x|(1−ǫ)/d s-approx algorithm for Π for some
ǫ > 0. As Π is |x|α self-paddable for any integer α > 1 such that padsize(|x|, |x|α) = |x|α+1, then

(|x|(α+1))(1−ǫ) < |x|α

(α + 1)(1 − ǫ) log2 |x| < α log2 |x|

(α + 1)(1 − ǫ) < α

α + 1 − ǫ(α + 1) < α

−ǫ(α + 1) < −1

ǫ(α + 1) ≥ 1

holds for any ǫ > 0 when α = 1
ǫ
, the result follows by the NP -completeness of ΠD, and Theorem

3.9.

Lemma 3.11 For all α ∈ N , α ≥ 1, Weighted Max Cut is |x|α-self-paddable with respect to
dH such that padsize(|x|, |x|α) = |x|α+1.

Proof: Let f(x, |x|α) create an instance x′ of Weighted Max Cut consisting of |x|α copies
of x, and g(x′, y) return the |x|α candidate solutions {y1, y2, . . . , y|x|α} for the copies of x encoded
in x′. Both f and g obviously run in time polynomial in |x|; moreover, it is also obvious that

dH(y, optsol(x′)))) =
∑|x|α

i=1 dH(yi, optsol(x)).
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Lemma 3.12 For all α ∈ N , α ≥ 1, 3-Satisfiability is |x|α-self-paddable with respect to dH

such that padsize(|x|, |x|α) = |x|α+1.

Proof: Let f(x, |x|α) create an instance x′ of 3-Satisfiability consisting of a 3CNF formula
that is the conjunction of |x|α copies of the 3CNF formula in x, such that the variables in each copy
have been relabeled to be distinct and g(x′, y) return the |x|α candidate solutions {y1, y2, . . . , y|x|α}
for the copies of x encoded in x′. Both f and g obviously run in time polynomial in |x|; moreover,

it is also obvious that dH(y, optsol(x′)))) =
∑|x|α

i=1 dH(yi, optsol(x)).

Corollary 3.13 Weighted Max Cut and 3-Satisfiability are not |x|(1−ǫ)/dH s-approximable
for any ǫ > 0 unless P = NP .

Proof: Follows from the NP -hardness of Weighted Max CutD and 3-SatisfiabilityD and
Lemmas 3.10, 3.11, and 3.12.

Results derived using self-paddability as defined above, while good, are not totally satisfactory as
they cannot address issues of ǫ|x| s-inapproximability (this is so because ǫ(|x|cα) ≤ |x|α implies
that ǫ(|x|c) ≤ 1 which does not hold for any c, ǫ > 0).

Open Problem #2: Can instance-copy arguments be modified to prove ǫ|x|
s-inapproximability, 0 < ǫ < 1?

3.1.4 s-FPTAS Inapproximability

We can also extend other techniques for showing v-inapproximability to show corresponding kinds of
s-inapproximability, such as the use of Strong NP -completeness to show FPTAS-inapproximability
[8, Theorem 6.8].

Lemma 3.14 Given an optimization problem Π and a normalized sd-function dN such that the
sd-normalization factor dmax ≤ q(|x|) for some polynomially-computable function q, if Π has a
dN -s-FPTAS and ΠD is NP -hard then P = NP .

Proof: Given an instance x of ΠD, solve this instance by the following algorithm: Create the
instance x′ of Π corresponding to x and run the dN -s-FPTAS on x′ with k = q(|x|) + 1 to create

solution y. Observe that dN (y, optsol(x′)) ≤ 1
k

implies that d(y,opytsol(x′))
dmax

≤ 1
k
, which in turn implies

that d(y, optsol(x′)) ≤ dmax

k
≤ q(|x|)

q(|x|)+1 < 1. As errors are discrete, y is optimal and can be used to

solve x′ (and hence x) in polynomial time; however, as ΠD is NP -hard, this implies that P = NP ,
completing the proof.

Corollary 3.15 Neither Max Clique, Weighted Max Cut, Max k-Sat (k ≥ 2), LCS, or
k-Sat (k ≥ 3) have dN -s-FPTAS (relative to d = dN

H or dN
E as appropriate) unless P = NP .

Proof: These results follow from the NP -hardness of the standard decision problems associated
with these problems and Lemma 3.14.

This rules out the existence of s-FPTAS for NP -hard problems, cf. the existence of FPTAS for
several NP -hard optimization problems. It would be interesting to know if there is an optimization
problem that is neither polynomial-time solvable nor NP -hard and has a s-FPTAS.

Open Problem #3: Is there a natural non-polynomial-time-solvable optimization
problem (with associated normalized sd-function dN ) that has a dN -s-FPTAS?
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3.1.5 Structure (In)approximability by Reduction

Another way to show s-approximability and -inapproximability results would be to define an s-
approximability preserving reducibility and appropriate classes of problem/sd-function pairs, and
then define hardness and completeness results for those classes relative to that reducibility. Consider
the following classes, which, for the purposes of simplicity, are restricted to use Hamming distance
as the sd-function. Let PO and NPO be the classes of polynomial-time solvable and verifiable
optimization problems, respectively [1, Section 1.4.2].

Definition 3.16 sAPX is the class of all optimization problem-sd pairs (Π, dN
H) such that Π is

both in NPO and ǫ/dN
H s-approximable for some ǫ, 0 < ǫ < 1.

Definition 3.17 sPTAS is the class of all optimization problem-sd pairs (Π, dN
H ) such that Π is

both in NPO and has a dN
H-s-PTAS.

Definition 3.18 sFPTAS is the class of all optimization problem-sd pairs (Π, dN
H ) such that Π is

both in NPO and has a dN
H-s-FPTAS.

These classes are the s-approximability analogues of the v-r-approximability classes APX, FPTAS,
and PTAS defined in [1, Chapter 3]. By definition, we have the following class inclusions:

PO ⊆ sFPTAS ⊆ sPTAS ⊆ sAPX ⊆ NPO

At present, only one of these inclusions is known to be proper.

Corollary 3.19 If P 6= NP then sFPTAS ⊂ sAPX.

Proof: Follows from Corollaries 3.15 and 3.3.

Open Problem #4: Which of the following are true (assuming P 6= NP ):

• PO ⊂ sFPTAS?

• sFPTAS ⊂ sPTAS?

• sPTAS ⊂ sAPX?

• sAPX ⊂ NPO?

Open Problem #5: How are sAPX, sFPTAS, and sPTAS as defined above
related to the versions of those classes that allow arbitrary metric sd-functions?

Open Problem #6: How are the s- and v-r-approximability classes related?

To show hardness and completeness for these classes, we need an appropriate s-approximability
preserving reducibility. By analogy with the L-reducibility between optimization problems de-
fined by Papadimitriou and Yannakakis [15] for the purposes of investigating value-approximation,
consider the following.
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Definition 3.20 Given a pair of NPO problem-normalized sd function pairs A = (Π, dN
H ) and

B = (Π′, dN
H′) with sd-normalization factors dmax(x) and d′max(x

′), A structurally L-reduces to
B (A ≤s

L B) if there is a quadruple (f, g, α, β) such that the following hold:

1. Function f transforms an instance x of Π into an instance x′ of Π′ and is computable in time
polynomial in |x|;

2. Function g transforms a candidate solution for an instance of Π′ into a candidate solution
for an instance of Π, i.e., for all x ∈ IΠ and y′ ∈ consolΠ′(f(x)), g(f(x), y′) ∈ cansolΠ(x),
and is computable in time polynomial in |f(x)| and |y′|;

3. There is a constant α > 0 such that for all x ∈ IΠ and y′ ∈ cansolΠ′(f(x)),
αdN

H(g(f(x), y′), optsol(x)) ≤ dN
H′(y′, optsol(f(x)));

4. There is a constant β > 0 such that for all x ∈ IΠ, d′max(f(x)) ≤ βdmax(x); and

5. 0 < β
α
≤ 1

Lemma 3.21 Given a pair of NPO problem-normalized sd function pairs A = (Π, dN
H ) and B =

(Π′, dN
H′), if A ≤s

L B relative to (α, β) and Π′ is ǫ/dN
H′-approximable, then Π is βǫ

α
/dN

H -approximable.

Proof: Consider the algorithm for A that for any instance x ∈ IΠ, applies f to x, runs the ǫ/dN
H′

s-approx algorithm for Π′ to f(x) to produce y′, and applies g to y′ to produce an approximate
solution for Π. By the definitions of structural L-reducibility and ǫ/dN s-approximability, we have
the following:

dN
H′(y′, optsol(x′)) ≤ ǫ

dH′(y′, optsol(x′))

d′max(x
′)

≤ ǫ

dH′(y′, optsol(x′))

βdmax(x)
≤ ǫ

αdH(g(f(x), y′), optsol(x))

βdmax(x)
≤ ǫ

α

β
dN

H(g(f(x), y′), optsol(x)) ≤ ǫ

dN
H(g(f(x), y′), optsol(x)) ≤

βǫ

α

The result then follows from the definition ǫ/dN s-approximability.

Lemma 3.22 Reducibility ≤s
L is transitive.

Corollary 3.23 Given a pair of NPO problem-normalized sd function pairs A and B, if A ≤s
L B

and B ∈ X, X ∈ {sFPTAS, sPTAS, sAPX}, then A ∈ X.

Open Problem #7: Find complete problems for the s-approximability classes
under ≤s

L.
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3.1.6 Discussion

Many of the techniques for showing s-inapproximability given in this section have been based on
techniques for showing v-a- or v-r-inapproximability. There are many other such v-inapproximability
techniques that may yet be useful (see [1, 20] and references).

Open Problem #8: Can any other v-inapproximability techniques be modified to
show s-inapproximability? If so, which ones?

The glaring lack of techniques for showing non-trivial forms of s-approximability also begs the
question of whether v-approximability techniques can be modified (see [1, 20] and references) or
special-purpose s-approximability techniques can be developed.

Open Problem #9: Can any v-approximability algorithm design techniques be
modified to design efficient and effective s-approximation algorithms? If so, which
ones?

Open Problem #10: Develop a s-approximability algorithm design “toolkit”.

3.2 Parameterized Structure-Approximation

It is possible that problems that are not polynomial-time s-approximable may yet be s-approximable
in fixed-parameter time relative to some parameter. To this end, in a manner analogous to the way
in which polynomial-time value-approximation has been parameterized (see [13] and references),
the framework described in Section 2.2 for structure-approximation can be modified. Consider the
following first steps in this direction.

Definition 3.24 Given an optimization problem Π with non-value parameter p, i.e., a param-
eter that does not include the value or any bound on the value being optimized by Π, a sd-
function d, and a non-decreasing function h : N → N , an algorithm A is a 〈p〉-fixed-parameter
h(|x|)/d structure-approximation (s-〈p〉-fp-approx) algorithm if for every instance x of Π,
d(A(x), optsol(x)) ≤ h(|x|) and A runs in time f(p)|x|α for some function f() and constant α > 0.

Lemma 3.25 Given an optimization problem Π with parameter non-value p, a sd-function d, and
an integer constant c > 0, if Π is c/d s-〈p〉-fp-approximable then 〈p〉-ΠD is FPT.

Proof: Suppose there is a fixed-parameter c/d s-approx algorithm A for Π relative to parameter
p for some integer constant c. Consider the following algorithm for ΠD: Run A on the given
instance x of ΠD, generate all O(|y|c) solutions within distance c of y, and find the solution y′ with
lowest or highest value in this set, according to the goal of Π. By definition, as y was generated by
A, at least one optimal solution for x is within distance c of y, and hence y′ will be optimal for x.
Use y′ to solve x. This algorithm runs in time f(p)|x|α for some function f() and constant α > 0,
completing the proof.

Corollary 3.26 Given an optimization problem Π with non-value parameter p, a sd-function d,
and an integer constant c > 0, if 〈p〉-ΠD is W [1]-hard then Π is not c/d s-〈p〉-fp-approximable
unless FPT = W [1].
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Consider the Longest Common Subsequence (LCS) problem in which solutions are represented
as strings over the alphabet Σ. The standard value function is the length of the solution-string; let
the sd-function d be the edit distance between the given solution-strings.

Corollary 3.27 LCS is not c/dE s-〈m〉- or s-〈m, |Σ|〉- fp-approximable unless FPT = W [t], t ≥ 1.

Proof: Follows from the W [t]-hardness, t ≥ 1, of 〈m〉-LCSD [3] and 〈m, |Σ|〉-LCSD [2] and
Corollary 3.26.

Open Problem #11: Develop a parameterized s-(in)approximability theory and
“toolkit”.
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