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Abstract

Web services have become popular in recent years as a vehicle for the design, in-
tegration, composition, and deployment of distributed and heterogeneous software.
However, while industry standards for the description, composition, and orchestra-
tion of Web services have been under discussion (and development) for quite some
time already, their conceptual underpinnings are still not well-understood. Indeed,
conceptual models for service specification are rare so far, as are investigations
based on them. This paper presents and studies a multi-level service composition
model that perceives service specification as going through several levels of abstrac-
tion: It starts from transactional operations at the lowest level, and then abstracts
into activities at higher levels that are close to the service provider or even the end
user. We believe that service composition should be treated from a specification
and execution point of view at the same time, where the former is about the com-
position logic and the latter about transactional guarantees. Consequently, our
model allows for the specification of a number of transactional properties such as
atomicity and guaranteed termination at all levels. Different ways of achieving the
composition properties as well as implications of the model are addressed.

1 Introduction

Web services [2, 7| have become popular as a vehicle for the design, integration, composi-
tion, and deployment of distributed and heterogeneous software, based on the hope that

*A perliminary version of this paper appeared in Proc. 3rd IEEE International Conference on Web
Services (ICWS) 2004, San Diego, USA, 462-469.

fWork partially done while visiting the University of Muenster, Spring 2006. This research is
supported in part by the Natural Sciences and Engineering Research Council of Canada Discovery
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fWork partially done while visiting The University of Waikato, Hamilton, New Zealand, Summer
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distributed computing can now be made a reality easier than with previous approaches
such as RPC, object-orientation, or static middleware. However, while industry stan-
dards for the description, composition, and orchestration of Web services have been
under development for quite some time already, their conceptual underpinnings are still
not well-understood. Indeed, conceptual models for service specification are still rare,
as are investigations based on them. This paper tries to make a contribution in this
direction. In particular, it presents a multi-level service composition model that per-
ceives service specification as a process that goes through several levels of abstraction:
It starts from transactional concepts at the lowest level, and then gradually abstracts
into activities at higher levels that are close to the service provider or even the end user.
Importantly, the model allows for a specification of desirable composition properties
such as atomicity and guaranteed termination at all levels.

Web services and service-oriented architectures (SOAs) are currently seen by software
vendors and application developers as a new way of coming across both application and
data integration problems. The general vision is twofold: First, software services can be
described in an implementation-independent and “semantic” fashion; such descriptions
are published in generally accessible repositories which can be queried in standardized
ways, and users, customers, or clients can hence find service descriptions, compose them
into new services fitting their needs, and finally execute the new services by referring
back to the service providers behind their selection. To achieve these goals, a variety of
industry standards has been made available in recent years, among them SOAP (Simple
Object Access Protocol) for transportation purposes [17|, UDDI (Universal Description,
Discovery and Integration)! for building and querying service repositories, WSDL ( Web
Services Description Language) for service descriptions [17|, and BPEL4AWS Business
Process Ezecution Language for Web Services ? for the description of service composi-
tions in the form of graph-based process models.

Second, Web services represent an important way of realizing a so-called service-
oriented architecture (SOA) [13, 22]. A SOA tries to answer the question of which
services are available (within, say, a given enterprise) already, which ones need to be
newly implemented, and which ones need to be obtained from a suitable provider. To
this end, it is reasonable to assume that, from a top-down development perspective, it
makes sense to come up with one or more process models that clarify and fix the goals
and procedures a client (or a collection of clients in an enterprise) wants to support
by appropriately chosen services. Such models will typically be tied to a particular
application domain, such as commerce, banking, the travel industry, etc. and will refer
to organizational structures and also incorporate objects as well as resources occurring
in processes. The next step would be to determine which portions of the overall "process
map" can be grouped together in such a way that they can jointly be supported by a
service. The result will then be an architecture fixing the composition and integration
details at a conceptual level and beyond service and departmental borders |25].

As has been noted, for example, by Hull et al. [14], the conceptual underpinnings
of Web services are still not completely understood. For example, in BPEL4AWS it is
possible to define choreographies (or service compositions) by defining a flow of control
using guarded links between the respective activities (which appear in <flow> tags);
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yet this is entirely syntactic, and there is no way to argue about the properties of the
resulting flow. On the other hand, studies such as those reported in [14] indicate that
service composition may be more intricate than what the standardization committees
assume. Using models such as Mealy automata, Hull and others have been able to show
that undesirable side effects may occur when certain types of services are composed (e.g.,
the result of composing “regular” services may all of a sudden be a “context-sensitive”
service).

The model we are proposing and studying in this paper is based on the perception
that service composition is not adequately described as long as flat models are used;
indeed, in a flat model, be it classical transactions, finite-state automata, or Petri nets,
the composition designer has to fix a particular level of abstraction and then will run into
difficulties when trying to argue about properties that relate to (lower-level) components
or to (higher-level) aggregations and that hence actually span several logical levels of
the composition. Opposed to this, our intention is to construct a “bridge” between a
low-level model that is based on classical transactions [27], a model that generalizes
transactional guarantees to an (intermediate) process level [23], and a high-level model
such as the ones used in PARIDE [15] that orchestrates e-services via Petri nets.

1.1 A Service Composition Example

As a motivating example, we consider an electronic shopping scenario, where a customer
is hunting for some specific goods (such as a a musical instrument). To this end, the
various services he or she plans to compose are the following (in the order given):

1. Initially, the customer starts a price comparison by turning to a service such as
dealtime.com. Individual actions are the inspection of various offers made for
the product in question, and comparing them based on price, delivery charge,
availability, delivery time, etc. Once the customer decides on the shop he wants
to buy from, he can turn to the next service.

2. The second service is provided by the shop. We assume that the product (e.g., a
digital piano) is available in various versions (e.g., dark or light wood), and that
the customer can pick one of these. If availability is not granted, he may change
his decision. Once committed, the transaction is handed over to a broker (e.g.,
PayPal) for collecting the payment.

3. The payment broker is actually a sub-service of the previous service. If payment
is transferred successfully, the supplier of the goods enters terminating actions, in
this case packaging and delivery. However, if payment transfer is not successful, a
different stream of terminating actions is entered: the customer may pay cash or
cancel the order.

4. The final service in this case, to be activated within the sequence of termination
actions that follow successful payment, is the delivery service, which can be an
ordinary furniture mover (who might take up to 10 days until delivery, yet is
cheap), an express service delivering within 3 to 4 days, or the customer may
decide to pick up the piece himself, so that delivery time is minimized.
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Figure 1: Shopping service composition.

An illustration of this service composition appears in Figure 1. What can be seen from
this figure are some of the main ingredients of a Web service: Various individually
described and implemented activities or services get combined into a new service. This
combination can involve sequencing (price comparison, purchase and delivery in this
example), concurrency (getting details from various shops in price comparison), nesting
(payment nested within purchase) and, in fact, any complex arrangement that needs to
be described using a more sophisticated specification language; we will later assume that
a user is capable of providing service compositions at the highest level of abstraction.

The various activities that get composed and combined are different in nature: Some
are as simple as a database ACID transaction [27] and can hence be easily undone (e.g.,
the result of a price comparison) or compensated for (e.g., overpayment), while others
(in our case the payment for the piano in Step 3) mark a decisive point in a service
execution which cannot be gone back beyond (at least not easily); following |23], we
call such activities “pivotal.” The occurrence of a pivotal activity has implications for
whatever follows in the service composition, since once the pivot has been executed,
there should be a guarantee that the “remainder” of the service is also executed and
terminated successfully; below we will call this the guaranteed termination property. In
particular, if a customer has decided on goods to purchase, he or she wants to finish the
deal.

1.2 Contributions

The points we are trying to make in this paper, and which extend those made in [26],
are the following:

1. An issue such as service composition should be treated from a specification and
an execution point of view at the same time, where the former is about the com-
position logic and the latter about transactional guarantees.

2. To remedy the current situation that all activities composed into a service are
treated at the same level of abstraction, we present a multi-level approach to
service composition in this paper: It starts from underlying transactions (in the
context of which activities ultimately get executed), and ends at a high level where
processes can be abstractly described.



Notice that the latter is in line with previous studies within a variety of contexts; for
example, multi-level transaction models 27| have been devised for being able to tolerate
non-serializable executions, given the availability of (higher-level) semantic information.

The organization of the remainder of this paper is as follows: In Section 2 we review
related work, in particular work on which our approach is built. Next, Section 3 presents
our service composition and execution model and discusses different ways of achieving
the relevant composition properties. In Section 4 we point out several service issues that
can be captured nicely in our model, among which are the sharing of responsibilities and
added value. In Section 5 we first generalize our basic path model from Section 3 to trees
of services, and then present our multi-level model. Section 6 puts our model framework
in perspective and concludes the paper.

2 Related Work

In this section, we review work that is related to ours, where we restrict our attention to
those approaches on which we build, or which we target for extension. Our emphasis in
this section is in showing that most conceptual models discussed up to now in the litera-
ture have been flat models which are limited in their ability to properly describe service
compositions. We mention that industry standards such as WSFL can easily establish
complex models, by providing the possibility to deliver highly nested XML documents.
However, such a form of nesting is purely syntactic, and is unable to associate distinct
properties with individual levels of nesting.

An excellent survey of work on modeling individual as well as composite services has
recently been delivered by Hull et al. [14]|. As far as individual services are concerned,
formal models that have been employed include method signatures as known from object-
oriented programming and finite-state automata, mostly in the form of Mealy machines.
The former approach typically considers a service as a black-box from which only input
and output can be seen, whereas the Mealy machine approach considers a service as a
“white-box” whose inner structure is visible.

It turns out that such models are not too far from what is happening in industry
consortia at the moment. For example, WSDL, the Web Service Definition Language,
knows I/0 signatures and in particular has two categories of message types, reactive
(where a message is input to a service and can be one-way or of type “request-response”)
and proactive (where a message is output from a service and can be notification or of
type “solicit-response”). On the other hand, simple Mealy machines, although capable
of reading input and producing output, are hardly suited for handling data as well. To
this end, they have been enhanced, for example, by storage capabilities in the style of
relational transducers [1].

A major emphasis has recently been put on the specification of service conversations,
which denote single enactments of a global process. Standards such as WSCL (the Web
Service Conversation Language) use automata to this end, which from a conceptual
perspective are compositions of the Mealy-type of automata mentioned earlier. Indeed,
such a composition can proceed in the style common for finite state machines, i.e.,
they can be composed serially or in parallel, and they can be composed to form loops
(corresponding to concatenation, alternatives, and Kleene star in regular expressions,
resp.). Compositions are presently formed as peer-to-peer systems with distributed



control |11, 5|, as hub-and-spoke systems that employ publish-and-subscribe techniques
[24], or as systems using mediators like in the WebTransact Architecture [18]| or in
BPEL4WS.

Our interest is in service compositions and conversations for which certain proper-
ties can be specified at design time and verified at run time. Work in this direction
is gradually evolving, for example in the verification technique described in [12] which
can check for deadlock avoidance or response times. More promising from our perspec-
tive are approaches that relate the service composition task to workflow specification,
in particular to the specification of workflows and processes that cross organizational
boundaries (since individual services typically have distinct providers). Work in this
direction has been reported by Colombo et al. [9] as well as in the service orchestration
approach used in PARIDE [15| which is based on Petri nets. Finally, Schuldt et al.
[23| extend concurrency control and recovery techniques from ordinary transactions to
processes and their composition; since this work is the most relevant to ours, we review
it in more detail next.

In the model of Schuldt, Alonso, Beeri, and Schek [23], an activity corresponds to a
conventional (database) transaction or a transaction program executed in a transactional
application. A transactional process is specified in a process program which is a set of
partially ordered activities. All activities have the atomicity (all-or-nothing) property,
that is, every execution will either commit, with the intended non-null effect, or abort,
with the null effect. Next, three important properties of activities are defined in [23]:

1. An activity a is compensatable if there exists a compensating activity (that can be
executed after a) which semantically undoes the effects of a.

2. An activity a is assured or retriable if its commit is guaranteed, perhaps after
repeated trials (i.e., aborts and restarts).

3. An activity is a pivot if it is not compensatable.

Note that compensatability and retriability are orthogonal properties: a compensat-
able transaction may or may not be retriable, and vice versa. The following is a brief
description of a process program:

e A process program is a (rooted) directed tree whose nodes may be of one of
the following two types: singleton nodes, each corresponding to one activity, or
multi-activity nodes, each corresponding to a partially ordered set of activities.
Two different order constraints may be associated with the activities of a multi-
activity node: a partial strong order and a partial weak order. Activities related
by weak order can be executed concurrently but the result of the execution must
be equivalent to one where the order is preserved. Those related by strong order
must be executed in the given order.

e The edges of the tree correspond to the strong order constraints between the
activities of the end nodes.

e Each pivot must be a singleton node. This captures the fact that no other activity
of a process may be executed in parallel to a pivotal activity.



Figure 2: A sample process model.

e A total order, called preference order, is defined on the children of a pivot. The last
child must be the root of an assured termination tree, consisting only of retriable
activities.

e The execution of the program starts at the root. A (possibly empty) sequence
of nodes with compensatable activities are executed. If any of these activities
abort, then all activities executed thus far are compensated. Then a pivot will be
executed. Ifit aborts, again all the activities executed thus far will be compensated
and the execution terminates.

e If the pivot commits, the subtree rooted at the first child of the pivot is executed.
If that execution terminates with abort, the subtree rooted at the second child
will be executed, and so on. As a last resort, the assured termination tree, rooted
at the last child of the pivot, will be executed.

e Finally, a process program may not have any pivot. In that case, it has the same
properties as a regular transaction, that is, it can be aborted any time prior to its
commit.

We illustrate the model just described in the following figures, where we use (green)
circles to indicate compensatable activities, (pink) squares for pivots, and (blue) trian-
gles for retriable activities, resp., as shown in Figure 2. Figure 3 shows an execution
where something goes wrong in the part of the process that is still compensatable; the
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Figure 3: A sample execution with failure and compensation.

necessary compensations are executed, and the process terminates. Figure 4 shows a
sample successful termination, where a first pivot is followed by a second one, which
then is followed by the first sequence of retriable activities. Next, Figure 5 shows an
execution ending somehow in one of possible branches of retriable acitivites.

A process program conforming to the properties listed above will in the sequel be said
to have the guaranteed termination property. Figure 6 shows four distinct guaranteed
terminations. A process is an execution of a process program. The execution may
contain aborted activities, compensated and compensating activities, aborted activities
of sub-processes, etc. However, the actual (net) effects of a process are represented by a
path in the tree; this path will contain zero or more pivots. Notice that the guaranteed
termination property of processes is a generalization of the atomicity property of the
traditional transactions.

The emphasis in [23] is put on defining a unified model for process concurrency
control and recovery, which essentially extends earlier work by some of the authors
|21, 3]; beyond this, they present a dynamic scheduling protocol for the execution of
transactional processes that achieves correct executions in the sense defined. Opposed
to this, our work considers a model of Web services where processes have services or
activities and components, yet we preserve the distinction between compensatable, pivot,
and retriable ones. This extension of the model just described is the subject of the next
section.



Figure 4: A sample successful termination.
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Figure 5: Another sample execution.




Figure 6: The various guaranteed terminations.

3 A Multi-Level Composition Model

In this section, we present our multi-level model of service composition; in particular,
we consider the properties defined for activities in [23], which we have reviewed in the
previous section, and extend them to composite activities.

We will consider a process program as a composition, denoted C, and an execution
of the program, that is, a process, as a composite activity, denoted C. We will refer
to the activities of the process (that is, the transactions) as basic activities. In the
following, we extend the transactional properties of the basic activities to composite
activities; in other words, we will extend what has above been illustrated in Figures 3 6
to multiple levels of abstraction. We have considered atomicity, and compensatability,
pivotal, and retriability properties; we will use the abbreviation ¢, p, r to denote the
last three properties, resp.

3.1 Atomicity of Basic Activities

As stated in the previous section, every execution of a basic activity will either commit,
with the intended non-null effect, or abort, with the null effect. In the sequel, we will
call the former case the non-null termination and the latter case the null termination
of the activity; we will also denote the two cases as the successful termination, called s-
termination, and the failed termination, called f-termination, resp. We use the following
definition for atomicity.
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Definition 3.1 (Atomicity of a basic activity) A basic activity is atomic if its ex-
ecution is guaranteed to result in either the null termination or the s-termination. O

We also assume that the termination properties and hence the atomicity, and the c,
p, T properties are relative to the composition (and therefore every execution of that
composition). Hence, if a is a basic activity of a composite activity C, then the last
three properties are denoted ¢[C], p[C] and r[C].

3.2 Pivot Graphs

As indicated in the previous section, the guaranteed termination property of a given
process program facilitates focussing only on the pivots in the program. We define pivot
graphs for compositions and composite activities as follows. We denote the pivots as
p; for some index i. For convenience, we define a (dummy) root pivot p, as an empty
activity that is executed first and always successfully. For the process programs (and
each such subprocess program) which do not have a pivot, we will associate a (distinct)
dummy pivot; this is different from the root pivot.

Definition 3.2 (Pivot graph) A pivot graph of a composition C, denoted pg(C), is a
directed tree rooted at p, such that

(i) it has at least one node in addition to the root,

)
(ii) its non-root nodes correspond to the pivots in C,
(iii) the edges correspond to the precedence relation among the pivots in C, and
)

(iv) the children of each pivot are totally ordered according to the preference order of
the subtrees containing them in C. O

Essentially, each node p; in pg(C) represents the corresponding (real or dummy) pivot p;
in C together with the compensatable activities preceding p; in C; the retriable activities
in the assured termination path of p; are ignored. Technically, a different notation, for
example p;, should be used in the pivot graph to distinguish this node from p; in C; but,
for easy readability, we will use p; itself.

Example 3.1 Figure 7 shows the pivot graph of a composition. We use this as the
running example in this section. The preference order of the children of p; is (pa, p3),
and the order of the children of ps is (p4, ps, ps)- O

A pivot graph of a composite activity C, that is, an execution of C, will be denoted
pg(C). Recall that an execution of a process program contains effectively all the nodes
from the root to a leaf. Since the assured termination trees of C that do not contain any
pivots will not be represented in pg(C), pg(C') will correspond to a (directed) path from
the root to some node in the tree pg(C). We will continue using simply C' to denote
an arbitrary execution of C. To denote a particular execution, we will use the sequence
of pivots that have been executed in C as a subscript of C: if (p., p;, pj, px) is the
sequence, then we will denote C' as Cjjj, omitting L; if (p) ) is the sequence, then we will
use C'; . We will also use the notation C ,,,; to denote an execution where all the pivots
from the root to p,, in pg(C) have been executed. In this notation, the above two cases

11
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Figure 7: Pivot graph of a composition.

will be represented as C[y ) and C[; ). As a concrete example, the execution of Figure
7 where only p,, p1 and p3 have been successfully executed will be denoted as C;3 and
as C[y 3.

We note that, by our convention, pg(C') will always contain p,. If it contains only
p1, then C has the null effect and we will call C' the null termination of C. In all other
cases, pg(C') will contain one or more pivots in addition to p;, and C' will be called a
non-null termination of C.

3.3 Termination Properties of Composite Activities

Given a composition C, we next consider a higher-level composition U that contains C,
and let U be an execution of U that contains C'. We will associate the transactional
properties, namely, atomicity as well as the ¢, p, r properties, to C relative to (U and)
U. Since we have categorized the termination possibilities of C' as null and non-null, we
will assume that the application semantics of the composition U will determine whether
a non-null termination of C' is a successful termination or a failed termination relative
to U. That is, we assume that, based on the application semantics, each non-null
termination of C' can be mapped to either an f-termination or an s-termination relative
to the composition U; and each null termination of C' will be an f-termination relative
to U.

Example 3.2 Let us consider the example of Figure 7 again (cf. Example 3.1). We
will first associate semantics to the activities. We assume that this composition is
for planning a trip from St. John’s (Newfoundland) to London (England) to attend a

12



conference. We assume the following details:

1. Air Canada is the only carrier offering direct service between these two cities.
(Pivot p; is for the purchase of flight tickets with Air Canada.)

2. The conference has arranged special rates with (a hypothetical) Ideal Hotel.
3. The hotel has two locations, called Ideal-A and Ideal-B.

4. The conference will be held in Ideal-A. A small number of rooms in Ideal-A and a
substantially large number of rooms in Ideal-B are available at a special conference
rate. (Pivot py corresponds to making a reservation in Ideal-A, and pivot ps to
making one in Ideal-B.)

5. Ideal-B is quite far from Ideal-A.

(a) The conference organizers have arranged a shuttle bus from Ideal-B to Ideal-
A, but the capacity of the bus is limited and so reservation is absolutely
essential. (Pivot py is for shuttle bus reservation.)

(b) Those who could not get a reservation for the shuttle bus can rent a car to
go from Ideal-B to Ideal-A. (Pivot ps is for car rental.)

¢) Public transportation can also be used, but it is time-consuming. A special
g
pass can be purchased to use the public transportation. (Pivot ps is for the
purchase of a pass.)

An execution of this process program will first try to get the flight tickets (p;), then try
hotel reservation in Ideal-A (p,), and, if unsuccessful, try reservation in Ideal-B (p3). If
successful in the latter case, it will first try for reservation in the shuttle bus (p,). If
that fails, then a car rental will be tried (ps). If that also fails, then a pass for the public
transportation will be purchased (pg). Thus different executions may have different
outcomes. For example, C}, refers to (successful) flight ticket purchase and reservation
in Ideal-A, whereas (35 refers to flight ticket purchase, reservation in Ideal-B and a car
rental. O

Notice in the previous example that different users may have different requirements
and therefore accept different sets of outcomes as s-terminated executions. For instance:

e User; may not accept anything other than C'y;

e Users may accept Cig, Ci3q, Ci35, but not Cizs; (We ignore preferences in this
paper;)

L] USGI‘3 may accept Clg, 0134, 0135, and 0136; and

e Usery may accept successful execution of p; (flight tickets purchase) and any out-
come of the remaining activities (namely, C;,Cia, Ci3, Chaq, Ci3s, Ci36), that is,
every non-null execution.

13



It is reasonable to assume that a given composition C can be “tailored” to various user
requirements. Indeed, consider the users just mentioned: For User;, option ps (and the
subtree rooted at p3) should not be provided and pg(C) should contain only p,, p; and
po; for Usery, option pg should not be provided.

The requirement for Users suggests the following notion for s-termination: Any
execution of C where all the pivots in some path from the root to a leaf of pg(C) have
been executed successfully is an s-termination relative to . With User, in mind, we
will generalize this notion as follows:

Definition 3.3 (s-termination) An s-termination of a composition C is an execution
where, for some path from the root to a leaf, the pivots of some specified prefix of that
path have been executed successfully. O

For example, execution C} in the previous example is an f-termination for Users, but
it is an s-termination for Usery. Thus, depending on given user requirements, a non-
null execution will be mapped to either an s-termination or an f-termination. The set
of executions that are mapped to s-terminations will form the s-termination set of C,
relative to U.

3.4 Transactional Properties of Composite Activities

We consider the transactional properties next. First we note that the ¢, p, r properties
of C' relative to U are independent of the properties of the basic activities of C' relative
to C'. We illustrate this with the following examples.

Example 3.3 In the composition of Figure 7, the purchase of the flight tickets p; may
be a pivot to the travel agency in the sense that the airlines will not refund the money.
However, the travel agency may not treat it as a pivot for the customer for whom the
ticket is intended, if the agency is able to use the ticket for another customer. (Sometimes
travel agencies buy seats in bulk from airlines and then sell them to customers on their
own.) That is, C; may be compensatable for the customer. O

Example 3.4 Suppose that, in a composition U like the one shown in Figure 1, C'
refers to the composite activity purchase of an article and has (among others) an activity
payment denoted as a. Then C' may be compensatable relative to U, c[U], (with the
compensating composite activity being the refund) if the purchased item is returnable;
otherwise (for example, if the store policy is “no exchange, no return”) it will be pivotal,
p[U]. Also, even if the refund policy dictates some penalty (for example, 10% of the
cost), if the penalty is acceptable for the composition U then, in that case also, the
purchase activity may be considered to be compensatable relative to U. Note that in
the composition level C, the payment activity may always be pivotal relative to C, p[C],
and similarly the refund activity C’ may contain a refund-payment activity a’ which is
also pivotal relative to C”, p[C"]. O

We now define the atomicity and the ¢, p, r properties for a composition C, that is,
for any execution C' of C. Again, all these properties are relative to the composition Y.
For brevity, we will not state this in the following definitions. The atomicity definition
is similar to that for a basic activity:

14
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Definition 3.4 (Atomicity of a composition) A composition is atomic if its execu-
tion is guaranteed to result in either the null termination or an s-termination. a

The ¢, p, r properties can be extended to atomic compositions in a straight-forward
manner.

Definition 3.5 (i) A composite activity C' is compensatable if there exists a com-
pensating activity (relative to ) which semantically undoes the effects of C'. An
atomic composition C is compensatable if each of its s-terminations is compensat-
able.

(ii) An atomic composition C is retriable if one of its s-terminations can be guaranteed
perhaps after a few attempts.

(iii) A composite activity C'is a pivot if it is not compensatable. An atomic composition
C is pivot if some of its s-terminations are pivots. a

The underlying assumption is that we would like the composition U to consist of (basic
or composite) atomic activities. The above definitions state the requirements for the c,
p, T properties in addition to atomicity. Atomicity itself can be described in terms of
compensatability and retriability. We first introduce some terminology needed below.
For a pivot p; in C, we define the suffir of C from p;, denoted Cp;), as the subtree of C
rooted at p;, with p; replaced by p,. Clearly, Cy is a (sub) process program. Note that
Cj1 is the same as C. For example, for the pivot graph pg(C) of Figure 7, pg(Cpy)) and
pg(Cpa)) are given in Figure 8. For various reasons, a suffix Cj;) of C may not be executable
(independent of C). In the following, any property stated for Cj; is applicable only when
Cpy) is executable.

Definition 3.6 (Recoverability) An f-termination Cp, 4 of C is:
o backward-recoverable if C, ; is compensatable;

o forward-recoverable if Cp;) or a (sub)composition Cp;r semantically equivalent to Cy
is retriable; and
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e recoverable if it is either backward-recoverable or forward-recoverable. O

We are now able to state a sufficient condition for the atomicity of a composition:

Theorem 3.1 A composition C is atomic if each of its f-terminations is recoverable.

Proof: Suppose an execution of C results in an f~termination C[, ;. If C|y ;) is backward-
recoverable, the execution can be compensated to get the null termination; if it is
forward-recoverable, then Cp;) or an equivalent Cj;r can be retried to get an s-termination.
Thus an atomic execution of C can be guaranteed. O

We can now derive the requirements for the ¢, p, r properties for an arbitrary com-
position, incorporating those required for atomicity explicitly. By doing so, we get
additional flexibility in obtaining these properties in an execution.

Corollary 3.2 Let C be an arbitrary composition.
1. If C has only one non-root pivot, then

e ( is compensatable if its s-termination can be compensated;

e C is retriable if its s-termination can be guaranteed (possibly after several
attempts); and

e C is pivot if it is not compensatable.
2. If C has more than one non-root pivot, then

e C is compensatable if all its non-null (f- and s-) terminations are compensa-
table;

e C is retriable if one of its s-terminations can be guaranteed (possibly after
several attempts) and each of its f-terminations is recoverable; and

e C is pivot if some of its s-terminations are not compensatable and each of its
f-terminations is recoverable. O

Compensatability is straight-forward. Retriability allows for an f-termination to be
compensated and the entire composite activity to be restarted, or the suffix following
the f-termination having the retriable property. It is possible that some f-terminations
have one option, some others have the other option, and some have both options. The
pivot definition implies that if the execution has proceeded far enough that it cannot
be compensated any more, then the execution can be carried further towards an s-
termination perhaps after a few attempts.

We also note that the atomicity and the ¢, p, r properties do not require any suffix
of C to be executable. The executability of the suffixes simply adds flexibility to the
execution of the entire composite activity.

Example 3.5 Let us consider these properties for the composition C in our running
Example 3.1 for Users. Recall that the s-terminations are Cia, Ci34, Ci35, and Cisg.

(i) As mentioned, the compensatability notion is straight-forward.
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(ii) For retriability, first we need the property that an s-termination of C can be guar-
anteed in a finite number of attempts. Next, ('} and C}3 are two f-terminations.
For U, we need the property that C; is compensatable, or Cjy) is retriable, or both.
Similarly, for Ci3 we need the property that C}3 is compensatable, or Cj3) is retri-
able, or both. As stated earlier, it is possible that different options are available
for the two f-terminations. For example, (a) C} may be compensatable and Cp
may not be retriable (or even executable), and (b) C}3 may not be compensatable
but Cj3 is retriable. This would mean that every execution of C resulting in C)
must be compensated and retried, and if C}3 is obtained in some attempt then Cp
is executed a few times until an s-termination is obtained.

(iii) Similarly, for a pivot, if C} is not compensatable, then Cj;j must be retriable. If C,
is compensatable and Cpyj is retriable, then Cjj can be tried. If C is compensatable
and Cpy) is not retriable, then C; will be compensated. The options with (3 are
similar. O

3.5 Higher Level Compositions

After these preparations, it is possible to compose U as a process program of [23] where
basic activities are replaced by any (basic or composite) activities. Each basic activity
will be executed by its transaction program and each composite activity will be executed
by its own process program; these programs are independent of the process program U.
With the atomicity and the ¢, p, r properties established for each of the constituent
activities, null and non-null terminations can be established for ¢/. Now U can be an
end-user level composition or can be used in a higher level composition. In either case,
denoting the composition as G, depending on the application semantics, the termina-
tions of U can be mapped into f-terminations and s-terminations relative to G, and the
atomicity and the ¢, p, r properties can be defined for U relative to G, exactly as they
were defined for C relative to 4. Thus, atomicity and the ¢, p, r properties can be carried
to any activity in any level of the composition. As will be seen below, this allows for an
adequate description of a variety of service issues that has not been possible before.

4 Service Issues

In this section, we consider various issues in connection with Web services that can be
made precise in our framework. To this end, we first look at different ways of achieving
the atomicity and the ¢, p, r properties for composite activities, in the context of Web
services. Then we consider the “added value” aspect in service composition.

As before, we consider a composition U consisting of (basic or composite) atomic
activities. Let U/ contain a composition C whose execution yields a composite activity
C. As stated earlier, f-termination, s-termination, atomicity and the ¢, p, r properties
of C are relative to U. Since we have assumed the process program model of |23| for U,
the intended (c, p or r) property of C is known to U.
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4.1 Sharing of Responsibilities

We now assume that each (basic or composite) activity will be executed by a Web
service. (We will simply use the term “service” to also mean “service provider.”) Thus,
let a service SU execute process program U, and let a service SC execute composition
C. (We do not exclude the possibility that service SC is using some other (sub) services
to execute some of its activities, nor the possibility that SC is SU itself. Also, SC may
execute some other compositions of ¢ in addition to C.)

Our premise is the following:

e Basic activities correspond to atomic transactions, and their atomicity is guaran-
teed by the database management systems executing them.

e For composite activities, we have distinguished two properties, namely, guaranteed
termination and atomicity.

e We expect that a service provider executing a composite activity assures at least
its guaranteed termination.

e Atomicity of composite activities is assumed in higher level compositions. Here,
atomicity of C is assumed in Y.

e If the provider does not assure atomicity of the composite activity, then the service
requestor must be responsible for its atomicity. Thus, if SC does not assure atomic
execution of C, then SU takes the responsibility.

e Whether backward- or forward-recovery is done to achieve atomicity of C may
depend upon the ¢, p, r properties of C (relative to U).

e We assume that compensation of both f-terminations and s-terminations of C is
the responsibility of SU. In some cases, SC may also do these. We allow for this
possibility in the following.

In the following, we look into different ways of SU and SC sharing the responsibil-
ities for achieving the atomicity and the ¢, p, r properties of C. By executability of a
composition, we mean the availability of a service provider to execute that composition.

I. SC guarantees atomicity of C. In this case, for compensatability, any s-termination
of C must be compensatable by SC or SU (perhaps by delegating the compensation to
some other service provider). For retriability, if SC returns the null termination, then SU
must delegate C to another service provider, and keep doing so until an s-termination is
obtained. For pivot, SU may simply accept the outcome of SC and proceed appropriately.

IT. SC does not guarantee atomicity of C. In this case, SC may return non-null f-
terminations. With such an f-termination C} ;, (i) for obtaining the null termination SU
must execute an appropriate compensating activity, and (ii) for getting an s-termination,
when it is possible and desirable, either C, ; can be compensated and C retried, or Cp
or an equivalent Cp retried by SU, perhaps by delegating the task to another service
provider.

We illustrate some options with our running example (trip planning from Newfound-
land to England) from the previous section.
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Example 4.1 Consider an f-termination C, i.e., only the flight tickets have been pur-
chased, but hotel accommodation has not been reserved.

1. C} is compensatable and Cpj is not retriable. The travel agency is willing to
treat the flight tickets purchase as compensatable for a customer. In addition,
that travel agency might only be allowed to sell the entire package, not a part of
it. There may be several travel agencies delegated to this conference each given a
quota of reservations. If one does not succeed, another may succeed. Then C may
be compensated and C tried with another travel agent (another service provider).

2. () is not compensatable and Cjy) is retriable. That particular travel agency might
not succeed in hotel reservation (due to a limited quota it has been given), but
the conference organizers (another service provider) may step in and guarantee
the reservation to the customer directly. O

There may exist other sophisticated ways too, for achieving an atomic execution of
C. We illustrate two possibilities next.

(a) Partial forward-recovery: C;) may be retried by SC or another provider even if
its s-termination cannot be guaranteed, but the effective execution can be ‘extended’
from Cp, 4 to Cpy ), for a node p; which is a descendant of p; in pg(C), in case another
service provider can take over from C, ; but not from C, ;.

Example 4.2 After C, SC may try and guarantee up to C'i3. The customer may decide
to buy a public transportation pass by himself. O

(b) Partial backward-recovery and retry: It may be possible to do partial compen-
sation in some cases (irrespective of whether full compensation is possible or not). In
other words, with a termination C[, ;, a compensating activity may yield effectively
Cl1,» for some node py which is an ancestor of p; in the path pg(Cj ;). Then Cpy
may be retried. This will help in the situation where Cj is retriable but Cp; is not, for
example, if a service provider is available for the first but not the second, etc. Partial
compensation may also result when a compensating activity is also a composite activity
and its execution results in an f-termination.

Example 4.3 Suppose Cpy is retriable, but Cjg is not. Then, after the f-termination
C13, the hotel reservation part p3 might be compensated and Cjj tried again. O

We can summarize the characteristics as follows.

1. The atomicity and the ¢, p, r properties are those of the activity C, and not
necessarily of a service provider of C. SU is ultimately responsible for achieving
these properties.

2. The ¢, p, r properties of C need not be known to SC. Of course, the retriability
requirement of C should be known to SC when it is capable, and is required, to guar-
antee retriability. Also, SC needs to know which terminations are s-terminations
relative to U, whenever it is expected to yield an s-termination.
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3. When SC does not guarantee atomicity, SU has to perform the forward or backward
recovery of f-terminations, perhaps using other service providers. Thus SC may
not know which f-terminations are recoverable. Therefore, it can only specify the
f-terminations it can provide, and it is up to SU to figure out whether they all are
recoverable.

There are two issues which are related to the above. The first is that there may exist
distinct views in a service composition. While a service provider SC needs to have the
complete process program C, the “view” of C known to SU may be limited to the pivot
graph pg(C). In fact, depending on the guarantee provided by SC, some of the pivots
may be combined into ‘higher level’ pivots and a more abstract view may be given to
SU. In our running example, if atomicity of Cj3 is guaranteed by the travel agent, then
the subtree rooted at p3 may be represented as a single pivot pj to SU.

The second related issue is the role of subservices. Indeed, service provider SC may
employ subservices to execute some of the activities of C. As mentioned before, SC
is expected, at the very least, to provide (to SU) a guaranteed termination of C. SC
may delegate part of this responsibility to its subservices. For example, the execution
of activities related to the atomicity of one or more pivots of C can be delegated to a
subservice.

4.2 Framework for Sharing Responsibilities

In this subsection, we propose a framework for SU and SC to share responsibilities
for achieving the transactional properties for C. Our framework is different from the
mechanisms proposed in BPEL4AWS for the transactional properties. We first describe
our framework below and then compare with that of BPEL4WS. We take C as a
composite activity consisting of some basic or composite activities.

1. Fault handlers. We have assumed so far that guaranteed termination of C is
the responsibility of SC. In this section, we allow for SU taking that responsibility, if
SC does not provide guaranteed termination. To achieve guaranteed termination, some
backward- or forward-recovery may be needed, as per our process program model. We
recall the recovery procedure below for the simple case where C has only one pivot. Note
that, in this case, guaranteed termination property is the same as atomicity.

An execution of C can be denoted as x1, o, ..., 2, Y, 21, 22, - . ., Zm, Where each x; is
compensatable, y is pivot, and each z; is retriable.

e When some z; fails, then the backward-recovery, namely, the compensation of the
part x;...xz;—; will be done. The recovery may consist of compensating z;, for
each 7 between 1 and ¢ — 1, starting from x;_; in the reverse order, or by some
other means, for example, compensating some z;’s together. The important point
is that the recovery may depend on the extent of the compensatable activities that
have been executed before the failure occurred.

e When the pivot y fails, the compensation has to be performed for zy, zo, ..., x;.

e When some z; fails, then the forward-recovery will be done. This might typically
involve retrying z; and then continuing the execution of the rest of the retriable
activities of C.
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To coordinate such recovery and obtain a guaranteed termination, we assign a fault
handler fhe(C) to C. We also assign a fault handler for C in U, fhy(C). If fhe(C) is
unable to get a guaranteed termination of C, then fhy(C) will try. If that also fails,
then it is taken as an unguaranteed termination of U, and fhy(U) tries for guaranteed
termination of U. If that also fails, then the responsibility falls on the fault handlers
associated with the parent G of U, and so on.

2. Recovery handlers. Next, we consider achieving atomicity from guaranteed ter-
mination. This amounts to getting the null termination or an s-termination from an
f-termination. As we argued above, this can be done by SC or SU. For this, we asso-
ciate two recovery handlers: rhe(C) associated with SC and rhy(C) associated with SU.
On a (guaranteed) f-termination of C, rhe(C) will do backward-recovery consisting of
compensating the activities executed thus far to get the null termination, or attempt
forward-recovery trying to execute the appropriate suffix. Both backward- and forward-
recovery may even be partial, as illustrated in the last subsection. Either SC completes
the recovery, or it forwards the resulting f-termination to SU and then rhy(C) will take
over the recovery. By the assumption in our model that C is atomic relative to U,
if rhe(C) does not succeed, then rhy(C) will definitely succeed in getting an atomic
execution of C.

3. Compensating activity. An s-termination of C may have to be compensated due
to an f-termination of an activity subsequent to C in &/.  The compensation might
be done by SC or SU. Compensation will be triggered by SU. Since compensation can
be considered as a backward recovery, we delegate it to rh¢e(C), and if it fails then to
rhy(C). The compensation might involve executing an activity C’. Then SU will execute
this, perhaps by delegating it to a service provider SC' (which could be the same as SC).
Again, SC’ may assure atomicity or just guaranteed termination. The fault handlers
fhe(C) and fhy(C") will be responsible for the guaranteed termination. Any non-null
(guaranteed) f-termination will be handled by rhe/(C’) and then, if needed, by rhy(C’).

To summarize:

e the fault handlers fh¢(C) and fhy(C) are responsible for achieving a guaranteed
termination of C;

e the recovery handler rhe(C) in C tries to achieve the atomicity of C; and

e the recovery handler 7y, (C) in U achieves the atomicity of C in case rhe(C) does
not.

We note that fhe(C) and fhy(C) deal with compensation at the “lower” level, that is,
compensation of the constituent activities of C, whereas rh¢(C) and rhy(C) deal with
compensation of the “pivotal components” of C.

In the next higher level, assuming G to be the parent composition of U, the fault
handlers fhy(U) and fhg(U) will be responsible for obtaining a guaranteed termination
of U, and the recovery handlers rhy (U) and rhg(U) will be responsible for obtaining the
atomicity of U relative to G.

We now compare our proposal with the BPELAWS proposal. The BPEL4WS mech-
anisms are described below briefly.
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e Two kinds of activities, basic and structured, are defined. A structured activity is
a partially ordered set of activities. It corresponds to a composite activity in our
model.

e Each activity implicitly defines a scope.

e The activities of a structured activity in a scope either all complete or are all
compensated. An execution of the structured activity that does not accomplish
this, that is, a non-null f~termination, in our terminology, is taken as a fault.

e Scopes can be nested.
e Fuault handlers and compensation handlers are associated with a scope.

e Fault handlers “catch” the faults, that is, f-terminations of the structured activity,
and take care of their compensation, either within that scope or by “throwing”
them to the enclosing scope.

e Compensation handlers undo already completed activities, that is, s-terminations.
Compensation handlers are defined within the scope.

e A compensating activity may also fail, in which case the fault handler will com-
pensate this compensating activity. When compensation is not possible within a
scope, the fault is thrown to the enclosing scope.

Thus, identifying a scope for C and treating U as its enclosing scope, fault handlers and
compensation handlers can be used to define the responsibility for atomicity of C.

We can observe the following main differences between our approach and the BPEL4WS
proposal.

1. Fault handlers are used in BPEL4WS for achieving atomicity. They are used in
our model to get guaranteed termination. We use recovery handlers additionally
to achieve atomicity.

2. The fault handler associated with a scope is expected to handle any fault: (i)
that may occur in the execution of the normal activities in that scope; (ii) that
may be thrown from the compensation handler of that scope; or (iii) that may be
thrown from the fault handlers of the enclosed (children) scopes. In our model,
fault handlers are used only for the first category above.

3. A fault in a scope can be thrown to any ancestral scope, one scope at a time,
in BPELAWS. In our model, unsuccessful recovery (to atomicity) in one level is
thrown to its parent level only where the recovery is expected to be completed.

We note that our framework is simple, modular, and applicable to compositions of
any number of levels.
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4.3 Added Value

As observed above, we have defined a composition U as consisting of atomic activities.
Consider a composition C in U having several pivots. It may be possible to replace C
by a set of (appropriately ordered) subcompositions each consisting of a subset of those
pivots, and each such subcomposition executed by a (perhaps different) service. We
will call the resulting composition ¢4’. Then, with respect to functionality, &/ and U’
will be equivalent. However, &/ may have some added value compared to ¢’. That is,
an atomic execution of C by a single service may be more desirable than the atomic
executions of the individual subcompositions of C by different services. We explain this
in the following.

For simple exposition, we will confine our attention to the case of C decomposed into
a sequence Cy;Cs.

1. Reduction in the total cost. It may be cheaper to execute C by the same service
compared to executing C; and Cy by different services. Some examples are:

(a) If printing and binding of a document are done in the same place, the cost of
transporting the printed material for binding can be avoided.

(b) With electronic documents, the two activities executed at two different sites
may necessitate preparing an XML document from the output of one activity,
sending that XML file to the second site, and extracting the information from
that document for input to the second activity in that site. This intermedi-
ate XML document preparation and transportation can be avoided if both
activities are executed at the same site.

(c) A furniture store might be able to deliver the purchased items cheaply through
a company contracted for all its deliveries.

- may be that certain common resources are needed to both activities, an
d) It may be that certai ded to both activiti d
so it will be cheaper for a service provider to do them together.

2. Quality of service. There may be implicit dependencies between the activities af-
fecting the quality of the end product. For example, in an e-learning environment,
an intermediate test on the materials of a learning session might be easier and
better prepared, and administered, by the same service provider who designs and
supervises that session, than a different service provider.

3. Atomicity guarantee. It is possible that an s-termination of C; cannot be com-
pensated (and Cs is not retriable), but a service provider (only if executing both
C; and Cs) can keep C; in a prepared-to-commit state until the execution of Co
reaches the commit stage and then commit both C; and Cs together.

We note that the facility of keeping an execution of an activity in a prepared-
to-commit or “pending” state, and later committing or aborting based on the
execution of subsequent activities is called virtual compensatability in [18]. We
do not distinguish virtual compensatability from real compensatability, where a
committed activity can be undone by executing a compensating activity, in our
model.
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4. Increased security and autonomy. For service providers, this may amount to, for
example, not letting out trade, contract, or service secrets.

Note that in many such examples, a non-null f-termination (which necessitates the
execution of a suffix of the composition) might imply “loosing” the added value. This,
in practice, may prompt some penalty to the service provider who is expected to deliver
an s-termination. The penalty may be determined depending on the f-terminations.

5 From Path to Graph Composition Models

We will call the process model introduced in section 2 the path model, for the obvious
reason that completion of a process execution always follows a path through the under-
lying process model. As will be shown in this section, we can generalize this model, still
retaining the properties we have established so far.

In order to clearly state the generalizations, we briefly review the path model and
highlight some of its main characteristics in the following. We refer only to pivot graphs
in this section, and use C to refer to pg(C) also, and similarly C' to refer to pg(C) also.

5.1 Path Model

A. Composition

e Composition C is a tree, as described in Section 2. C is part of a higher level
composition U.

e In C, the children of each non-leaf node are totally ordered. Exactly one child needs
to be executed in an execution of C. The order indicates execution preference
among the children. We will call this children execution logic, abbreviated as
ce-logic, at that node. We take the ce-logic at the leaves of C as null.

B. Execution

e A composite activity C' is a path in C, from the root to a leaf node. C contains all
possible composite activities and only those. That is, any path in C from the root
to a leaf refers to a composite activity. (Note that, in Definition 3.3, we allowed for
some of the paths from the root to some non-leaf nodes also to be s-terminations
and hence to be composite activities. For simplicity, we ignore this generalization
in this section.)

e Partial execution is represented by a path from the root to some node p; in the
tree, denoted Cp, ;. The part that is yet to be executed (for an s-termination) is
the subcomposition of C from p;, called the suffix of C from p;, denoted Cj;. The
subcomposition will contain the subtree of C rooted at p;, all nodes in the subtree
will have the same ce-logic as in C, and the node label of p; will be replaced by L.

C. Transactional Properties
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e First, a guaranteed termination of C is desired. Then, the entire composition C
is intended to be atomic in /. In addition, C is compensatable, pivot or retriable
relative to U.

e For atomicity, every f-termination of C should be forward- or backward-recoverable.

e Backward-recovery of an f-termination C|, ; amounts to rolling back the entire
execution to a null execution. Partial backward-recovery refers to rolling back
some pivots in C[y ], in reverse order.

e All roll backs are logical. To roll back from p; to p;, a compensating subcomposi-
tion, denoted C[;é}, rooted at p; is to be executed. This will facilitate different com-
pensation options. (Again, the compensation may be delegated to some provider.)
After the compensating subcomposition has been executed successfully, normal
processing can continue with Cj;. The pivots in the compensating part need not
correspond to those in the compensated part.

e For forward-recovery from p;, the suffix C;), or an equivalent Cp;y, is to be executed
from p;.

e Whether forward- and/or backward-recovery is possible depends on the ¢, p, r prop-
erties of C relative to U.

D. Service Issues

e SC and SU are service providers for C and U repectively.

e Two fault handlers fhe(C) and fhy(C) are associated with SC and SU respectively,
for obtaining a guaranteed termination of C. On an unguaranteed termination of
C, first, fhe(C) tries for guaranteed termination of C, and if it fails, then fhy,(C)
tries. If that also fails, it is taken as an unguaranteed termination of .

e Two recovery handlers rhe(C) and rhy(C) are associated with SC and SU re-
spectively, for obtaining an atomic execution of C relative to U/. For atomicity,
as stated earlier, every (guaranteed) f-termination of C should be forward- or
backward-recoverable. Such recovery is first attempted by rh¢(C), and if that is
not successful, then by rhy(C).

e Compensation of an s-termination is also delegated to rhe(C) first, and to rhy(C)
later.

5.2 Tree Model

First, we present an extension, called tree model, that allows for getting a tree as a pivot
graph of a composite activity. All the features of the path model are applicable here
also. We describe the additional features in the following.

A. Composition

e Here also, a composition C is a tree and it is a part of a higher level composition

U.
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e Again, a ce-logic is associated with each node, and the ce-logic is null for all leaves
of C. However, the ce-logic at non-leaf nodes may be sophisticated:

— More than one child may be required to be executed.

— In general, several sets of children may be specified with the requirement that
one of those sets be executed.

— These sets may be prioritized in an arbitrary way.

— Execution of children within a set may also be prioritized in an arbitrary way.

Example 5.1 We consider an elaborate electronic shopping example, Shopping for Bed-
room set, denoted SB. We use this a a running example in this subsection. It consists
of the purchase followed by the delivery of a set of furnitures from among the following:
bed, dresser (D), night table (N), and armoire (A). For bed, a bed frame and a mattress
(M) need to be purchased. Two types of bed frames are available, called F1 and F2.
For F1, a box spring (B) is also needed.

Denoting the purchase of item I as PI, the preferred purchase options are described
by the following ce-logic:

e for the bed, the preference order is {PF1,PB,PM}, {PF2,PM};

e for the bedroom set, any bed and dresser and night table, or any bed and armoire,
in that order, that is, ({PF1,PB,PM},{PF2,PM}), and ({PD,PN} PA).

Each of the purchased items has to be shipped. Some items need to be packed for
shipping whereas some others are already in a packed form. We denote the packaging
and delivery of an item I as XI and DI, respectively. When there are several options
for delivery, they are denoted as DI1, DI2, etc. For shipping, we use a simple ce-logic
of packaging where needed and choosing any delivery option. The activities involved in
SB are shown in Figure 9. a

B. Execution
e A composite activity C is a subtree of C such that

— it includes the root, some leaves of C, and all nodes and edges in the paths
from the root to those leaves in C, and

— the children of each non-leaf node of the subtree satisfy the ce-logic specified
in C for that node.

Then, C is the union of trees corresponding to the composite activities, and any
composite activity C' is a subtree of C. However, not every subtree of C would
correspond to a composite activity.

e A partial execution E of C will be represented by a subtree of C, called execution-
tree, consisting of all the nodes of C that have been executed and edges between
them. If L is the set of leaves in this subtree, then the execution is denoted as
Cri,r)- (We use the following notation. For a given C, Cp 1, will denote the
subtree of C' from node p; to the set of descendents Ly of pp in C. For a set of
nodes X, Cixy] will refer to the forest which is the union of Cy, 1) for py in X
and Y is the union of Ly for py in X.)
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Figure 9: Activities involved in SB shopping.
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e In general, the ce-logic would have been completely satisfied for some of the nodes
in E. That is, a set of children corresponding to an execution choice of the ce-logic
at their nodes would have been executed (successfully). These nodes are called
finished nodes. Others are called unfinished nodes. For some unfinished nodes, one
execution choice of the ce-logic would have been satisfied partially; we call them
partially unfinished nodes. Other unfinished nodes are totally unfinished ones.
"Finishing’ is with respect to the current execution E. We also note that since the
ce-logic is null for the leaves of C, all these nodes, if any, in the execution-tree are
trivially finished nodes.

e We define the adjusted ce-logic for (the nodes in) E as follows:

— null for the finished nodes;
— same as in C for totally unfinished nodes; and

— for each partially unfinished node, the part of the ce-logic of the set of yet-
to-be-executed children in the execution choice chosen for that node in F.

e For p; in E, the suffix of C from p;, denoted again as C, is defined as the sub-
composition that contains the subtree of C with (i) root p;, (ii) all the children of
p; which have not been executed, and the subtrees rooted at them, and (iii) all
nodes in the subtree having the ce-logic adjusted for F.

e The suffix of the execution E' is the set of suffixes C}; for each unfinished node p;
in F.

Example 5.2 Figure 10 shows a partial execution of the composition in Example 5.1.
Here, the root node, PN, XN, DN and XD are finished nodes, PF2 and PM are totally
unfinished nodes, and PD is a partially unfinished node. Figure 11 shows another partial
execution where all nodes except XD are unfinished. PF2 and PM are totally unfinished.
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Figure 10: Partial execution.

PF2 PM PD

XD

Figure 11: Another partial execution.
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DF2 DM DD1 | | DD2 XN DN

Figure 12: Suffixes of the execution in Figure 11.

The others are partially unfinished. The adjusted ce-logics at SB and PD are {PN} and
one of DD1 and DD2, respectively. The adjusted ce-logics at all other nodes are the
same as the original ones. Figure 12 shows the suffixes of the execution in Figure 11. O

C. Transactional Properties

e Forward-recovery of an f-termination F will consist of execution of the suffix of
E. Again, either SU or some other provider(s) may execute the subcompositions.
There could be several subcompositions, each being a tree, and different providers
might be delegated for execution of different subcompositions. The subcomposi-
tions used in a forward-recovery may even be different from, but equivalent to,
those in the original composition.

e Partial backward-recovery of E will consist of (logically) rolling back some of the
pivots of the execution-tree. Let L’ denote the set of leaves of the tree obtained
after a partial backward-recovery. Clearly, L' will contain nodes in L or their
ancestors. Then the recovered part can be expressed as C[_L{L}, meaning that the
part between L' and L has been rolled back. The compensating subcomposition
that does this roll back will be denoted as C[_L{L}. Full backward-recovery should
roll back all the pivots in the execution-tree and yield the null execution. Thus
the recovered part will be C[ll’u.

e Backward-recovery can also be done as follows. For a given f-termination F, the
part intended to be recovered, in terms of the set L’ can be determined first. Again,
the nodes in L' are the ancestors of those in L. (We use the convention that a node
is an ancestor of itself.) Then the recovery C_L} can be carried out by means
of executing compensating subcompositions C[]L ) at nodes p; in L'. Here, L; is
the subset of L which are descendents of p;. This will roll back the descendents
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Figure 13: SB shopping execution along alternate routes.

of p; in E. (Note that the execution of the compensating subcomposition is also
according to the tree model.)

Example 5.3 In Example 5.1, starting with the partial execution in Figure 10, suppose
that none of the delivery options {DD1, DD2} are feasible. Then, forward recovery would
consist of finding some other option for delivering dresser D. A backward recovery of E
would essentially involve compensating all the activities in the subtrees of PD and PN.
Then, the next choice in the ce-logic of the root node (purchasing F2, M, and A) can
be tried. If this is successful, we will obtain the tree shown in Fig. 13. Note that a
compensating subtree, consisting of edges shown in thick lines, has been added to the
root node. Compensating the delivery DN is implemented by "return" RN, and XD and
XN are compensated by the null activities, meaning that the packagings are untouched.
The purchases PD and PN are compensated by -PD and -PN. a

Example 5.4 As another example, consider the electronic shopping scenario from Fig-
ure 1 once more, where we assume that a tree root called buying process has been added.
In the resulting tree, the non-leaf nodes include price comparison, purchase, payment
and delivery, and for each we may assume that more than one child need to be executed.
For example, the buyer might decide to buy an expensive piece, and the money needed
for that may have to come from several sources (e.g., a bank account, an investment
fund, stocks, etc.) in an order specified by the buyer. Thus, the ce-logic for the payment
activity may consist of (a) collecting the money from various sources and (b) making
the payment. Alternatively, it might consist of getting a loan first and then have the
seller agree to a number of, say, monthly payments. O

D. Service Issues

e Fault handlers fhe(C) and fhy(C), and recovery handlers rhe(C) and rhy(C) are
assigned, and have the same role, as in the path model. The fault handlers will be
responsible for obtaining a guaranteed termination of an f-termination (exactly as
in the path model), and the recovery handlers will do the forward- and backward-
recoveries, and also compensation of s-terminations.
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5.3 Multi-Level Model

So far, we have dealt with compositions at a single level. We described a composition C in
terms of a graph pg(C) containing the pivots of C. (Again, each node in pg(C) represents
the corresponding (real or dummy) pivot in C together with the compensatable activities
preceding that pivot in C. We continue keeping this distinction implicit.) An execution
of C yields a composite activity C' which is also described by means of a pivot graph
pg(C). This has the pivots of C which have been executed. It is a path in the path
model, and a tree in the tree model: we call this a composite activity sequence (c-seq in
short), and composite activity tree (c-tree in short), respectively, in the following. We
note that a c-seq is a c-tree also.

So far, for ease of exposition, a node in pg(C') was represented the same way as in
pg(C). To describe the multi-level model unambiguously, in the following, we will use
different representations in these graphs. Nodes in pg(C') will be represented as pq, po, ps3,
etc. as before. However, nodes in pg(C) will be represented as py, py, ps, etc. As we
have mentioned, each node p; in the pg(C') is a basic or composite activity. For a basic
activity, p,; refers to p; itself. However, for a composite activity, p, can be taken as the
composition whose execution yields p;.

Now, our multi-level model is the following:

A. Composition

e A composition C is a tree as in the tree model where activities p; are replaced by
compositions p,.

e p, is the same as p; for a basic activity.

e For a composite activity, p, is a composition C; which is, again, a tree in the tree
model.

We now describe a composite activity. As observed in the previous section, a com-
position in the tree model yields a composite activity which is a tree, that is, a c-tree.
Thus, a node p, in C that represents a composition C; yields a tree. In C, after p;, some
other node(s) may have to be executed. They may also yield trees. To be able to put
these trees together, we use the following notation.

A c-tree is converted to a one source one sink acyclic graph, by adding edges from the
leaves of the tree to a single (dummy) node. This is illustrated in Figure 14. (Labelling
notations are explained below.) We call this a closed c-tree. We consider a c-seq also as
a closed c-tree; the dummy sink node is not needed.

In an execution of a multi-level composition C, at the top level we will get a closed
c-tree with nodes p; corresponding to compositions p, in C. Each p; can be replaced by
a closed c-tree resulting in an execution of p;,. This can be done at every level, until all
c-trees are single nodes corresponding to basic activities. We call the resulting graph a
component activity graph, or simply a c-graph.

We illustrate, in the following example, a composite activity. We also illustrate how
the transactional properties can be carried over to the multi-level model.

Example 5.5 Figure 15 illustrates the c-graph of a composite activity:
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Figure 14: A c-tree for Cy 9 of Figure 15.
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Each activity is, again, either a basic activity or a composite activity. An activity
is represented, as before, as p, with appropriate subscript.

We use C,, where « is a string, to denote a (closed) c-tree of activities, pa.1, Pa.2,
etc. In p.,, « is a c-tree id, and 7 is the id of a node in that c-tree. At the
outermost level, we represent the composite activity as a c-tree Cy or simply C,
where ¢ is the empty string. Therefore, the activities will be py1,ps.2, etc., or

SlmplY: P1, P2, etc.

A composite activity p,.; will consist of a set of one or more closed c-trees, denoted
Cuit,Caio, etc. In the following, we consider c-seq’s in detail, for simplicity.
Treatment of c-trees is similar.

A particular c-seq Cy ;4 Will have activities pq g1, Paiq2, etc. If we denote a.i.q
as o, then the c-seq is C\/, and the activities in the sequence are py 1, par.2, etc.

In Figure 15, we have the following.

— The nodes of Cy are py 1, pp.1,Ps.2 and pgy.s.

— Pg.2 consists of two c-seq’s, Cy o1 and Cy o3, and a closed c-tree Cy 9.9 shown
in Figure 14.

— Cy2.1 consists of activities pyo11 and pgoio.
— Pg.2.1.2 consists of two c-seq’s Cy 2121 and Cy o122

— An example where a node consists of just one c-seq is py.2.3.2.

The composition for a c-seq C, will be denoted C,. The composition will be
described as in the path model, that is, the process model in Section 2. We use
the same notation as in Section 3 to denote an execution of a c-seq and its suffix
composition. We assume, as before, that each c-seq starts with a dummy root
pivot. An execution of the c-seq C,, from the root to some pivot p,., will be
denoted as C, (1 ), and its suffix will be the composition Cg ;).

We specify multi-level atomicity of C: Each activity p, at any level, must be exe-
cuted atomically, and each c-seq, again at any level, must be executed atomically.
For atomicity of C, any f-termination Cy [y ,,,) must be either forward-recoverable
or backward-recoverable. For forward-recoverability, Co [,) must be executed, to
achieve an s-termination of C,. For backward-recoverability, Ciuvm] is to be
executed, at po .. to achieve the null termination of C,. Partial forward- and
backward-recovery executions can also be specified as in Section 3.

Suppose ' is a.i.g. Then, on s-termination of C,;,, and on s-terminations of
other C,;,’s that constitute p,;, we get an s-termination of p,;. Then, further
forward-recovery would consist of execution of C, |, to get an s-termination of C,.
This has to be continued at every level higher up.

of Clg21.21.1,621.21.1], abbreviated as Cy2.1.2.1.1,1), forward-recovery would
consist of executing Cy.2.1.2.1.11) to get an s-termination of Cy21.2.1;
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Figure 15: A composite activity in the multi-level model.
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— An s-termination of Cy1.2.29, in forward-recovery or normal execution, will
result in an s-termination of py2.1.2; and so on.

e Again, suppose o' is a.i.q. On backward-recovery of Cy;q[1,m) getting the null
execution of C, 4, backward-recovery of other C,;,’s that constitute p,; can be
carried out, to achieve backward-recovery of p,;. Then, backward-recovery of
Ca.[L,i, where we assume that the node preceding p,.; is pa.», will result in the
null termination of C,. This can be carried out recursively at every level higher
up, to eventually achieve the null termination of C.

— Referring to Figure 15 again, backward-recovery of Cy21.2.1.(1,1) will result

in the null termination of Cy2.1.21. Then, backward-recovery of Cg42.1.2.2 will
result in the null termination of py.21.2, and so on.

B. Execution
e A composite activity C' of a multi-level composition C is a c-graph such that

— at the outermost level, it is a closed c-tree, with nodes p; corresponding to
compositions p, in C, and

— each composite activity p; is replaced by a closed c-tree resulting in an exe-
cution of p;, and

— this process carried out until all activities are basic.

e Partial execution is considered as in the tree model, level by level, in nested fashion
(as illustrated in the Example 5.5).

C. Transactional Properties

e As stated in Section 3.5, the transactional properties can be carried over from one
level to another.

e At any individual level, for each p,, the transactional properties (s-termination,
f-termination, compensation of s-termination, forward- and backward-recovery of
f-termination, etc.) discussed in Section 5.2 are applicable to the execution-tree
of p;.

e Then, as illustrated in Example 5.5, after the recovery of p,, the recovery efforts
at the parent level execution will continue.

D. Service Issues

e Again, fault and recovery handlers are employed, exactly as before, for every
parent-child pair.
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5.4 Top-Down Composition

Clearly, a service user would not be interested in composing complex services by starting
bottom-up from elementary ones, as we have done so far. Instead, a user would be
interested in obtaining a high-level description of each service he or she may need, and
then start composing at that level. We imagine that, typically, graphical interfaces
will be used to that end, for example an interface where the individual service can be
described as a Petri net [20]. What would then be needed is a way to map each task
represented by an activity or a process in a Petri net to a service appropriately, taking
availability, user preferences, timing, costs, etc. into account.

In this section, we show that our model facilitates top-down compositions also. Recall
that in the tree model we have:

e A composition C is a tree;

e At each node p;, several children may need to be executed, and the execution
preferences are described by ce-logic at p;; and

e After the execution of a set of children satisfying the ce-logic, execution continues
with the children of those children.

We now define descendent execution logic, abbreviated as de-logic, at p;, as the union
of the ce-logic of p; and all its descendents. Note that the de-logic describes not just
the individual children nodes but also (transitively) their subtrees which need to be
executed. The execution preferences in the ce-logics at various nodes become collectively
the execution preferences in the de-logic.

Then, the execution preferences at each node can be described by the more general
de-logic, instead of ce-logic. In fact, we can carry this idea further. If we take a choice of
children in the ce-logic at p;, for each child in that choice, select a choice in the ce-logic
of that child, and continue this recursively, we will get a c-graph that reflects the choices
made at every level. Different combinations will give rise to different c-graphs. Then,
execution preferences at p; can be stated, in a higher level, in terms of such c-graphs.

Though we defined de-logic from ce-logic, we can also start with de-logic or even
(perhaps an abstract description of) the desired c-graphs, and then derive the ce-logic
at various nodes. This would be a top-down approach.

6 Discussion

In this paper, we have extended the model originally proposed in [23] to a multi-level
model for Web service composition that enables description of desirable transactional
properties at each level of the composition. It has been widely accepted that the tradi-
tional ACID properties need to be relaxed for transactions in the Web service environ-
ment. A few relaxations have appeared in the literature. We discuss some of them in
the following and show that the relaxations can be explained neatly in our model.

1. The requirement of atomicity of a composition (with multiple pivots) has been
stated in the literature, for example, in [16, 18, 6].
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(a) In |16], Mikalsen, et al. introduce transactional attitudes “to explicitly describe
the otherwise implicit transactional semantic, capabilities, and requirements of individ-
ual applications”. They consider Client Transactional Attitudes (CTAs) and Provider
Transactional Attitudes (PTAs). One CTA, called flexible atom (FA), is given. Here,
“a set of client actions (provider transactions) are grouped into an atomic group that
can have one out of a set of defined group outcomes; that is to say, some actions are
declared critical to the success of the transaction, whereas others are part of the trans-
action though not pivotal to its success. The client specifies the acceptable outcomes
as an outcome condition, described in terms of the success or failure of the individual
actions, and when ready (i.e., after executing the forward operations of these actions),
requests the completion of the flexible atom according to that condition”. We note that
this CTA resembles the specification in our model, by SU to SC, of the s-terminations
of C relative to U and the requirement of atomicity. We can specify, in addition, the
retriability requirement also as a CTA. Three PTAs, pending-commit, group-pending-
commit, and commit-compensate, are described in [16]. The first two relate to providing
the prepared-to-commit states for single activity or a group of activities, resp., and the
last describes the facility for compensation after the commitment of an activity. Com-
pensatability of f-terminations and s-terminations, atomicity and retriability are some
possible additional PTAs. In fact, even the guaranteed termination property is a PTA.

(b) The s-termination set concept appears in [18] as follows. Here also a composite
task consists of several tasks each of which could be atomic or composite. Different
successful executions of a composite task are specified in terms of successful executions
of a set of (component) mandatory tasks and a set of desirable tasks.

(c) In |6], a set of activities that need to be executed atomically is grouped into a
transactional region.

2. The OASIS Business Transaction Protocol® (BTP) allows a type of composite ac-
tivity called cohesion. It contains a set of activities that can be performed autonomously
by different service providers. An s-termination of the composite activity is determined,
eventually, by the outcomes of the individual activities. As a result, some of the activi-
ties done successfully may have to be undone. It is also possible that some participants
“leave”, that is, some activities are eliminated from the cohesion. Thus the composition
is very dynamic. A coordinated termination, involving commit of certain activities and
abort of some activities, is facilitated.

The multi-activity node in our model can depict cohesion effectively. Potential con-
current execution can be described by weak order among the activities. The relaxed
atomicity of the cohesion can be translated to s-terminations and the atomicity of the
multi-activity composite node.

As illustrated above, our model accommodates many proposals in the literature. Fur-
thermore, our model can explain the context, for example, the purpose of compensation
across levels, for the transactional activities.

We note also that whereas compensatability and compensation have been considered
at some length in the literature, the concept of retriability has not been discussed, at
least explicitly. In our model, both compensatability and retriability are complementary

*http://www.oasis-open.org/committees/business-transactions/documents/primer/Primerhtml/
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towards achieving the atomicity of a composite activity. A related issue, namely, suffix
executability has also not been discussed in the literature.

We conclude by mentioning that a number of issues are related to what has been
discussed above, and that these issues can now be made precise in the framework of our
model:

e Atomicity of an activity will serve as a non-functional trait of a service provider.
Atomicity and suffix executability may be taken into account while dealing with
compatability and substitutability of services [10].

e In the design of business processes, responsibilities for the execution of business
activities (roles) must be specified |19]. Responsibility for atomicity or guaranteed
termination will also be a part of the specification.

e It is possible that a service provider offers different levels of atomicity to different
customers, and at different costs.

e Asstated earlier, SU does not need to know C, but does need pg(C) (especially when
SU takes responsibility for executing suffixes of f-terminations). Here, pg(C) can be
considered as containing information about what are done in C, without exposing
how they are done. Thus, pg(C) represents a glass box view of C, according to the
distinction suggested by [4].

Future works along the lines established in this paper may stem from the fact that we
have here decided to associate compensatability and retriability with composite activities
instead of just individual transactions; what new consequences can be derived from
this? Guaranteed termination is implied by our model, but what about termination
within predefined bounds (e.g., meeting a deadline, not exceeding a given budget, etc.)?
Another question is whether it is possible to quantify the “added value” that is supposed
to be brought along by a service composition.
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