Department of Chemistry Memorial University of Newfoundland

Chemistry 1050

FINAL EXAMINATION

Fall 2017

TIME: 3 hours

READ THE FOLLOWING CAREFULLY

- 1. This examination consists of 13 pages including a Data Sheet. Ensure that this examination paper is complete, *i.e.* that all **13 pages** are present.
- 2. A Data Sheet with a periodic table, equations and physical constants is provided. These are on the last sheet of the exam and may be detached for use during the examination.
- 3. DO NOT REMOVE ANY PART OF THIS EXAM FROM THE EXAM ROOM
- 4. Answer each question in the space provided. Should you require more space, use the back of the previous page and **indicate clearly** where this has been done.
- 5. Show all relevant calculations and justify all simplifying assumptions.
- 6. Numerical answers must be reported to the **appropriate number of significant digits with the correct units (if any)**.

Do not write in the table below.

Good Luck!

Page	Value	Mark
2	9	
3	10	
4	8	
5	10	
6	13	
7	9	
8	8	
9	12	
10	9	
11	11	
12	6	
	Total Marks	/105

1. A rigid 3.00 L container was found in a lab. The label reads "pure hydrocarbon gas", and it was determined to be one of methane (CH₄, $M_w = 16.04 \text{ g mol}^{-1}$), ethane, (C₂H₆, $M_w = 30.07 \text{ g mol}^{-1}$), propane (C₃H₈, $M_w = 44.10 \text{ g mol}^{-1}$) or butane (C₄H₁₀, $M_w = 55.08 \text{ g mol}^{-1}$). At 20.0 °C the pressure of the gas is 3.80 bar. When cooled, the gas condenses to give 20.4 g of liquid. What is the unknown gas? (3 marks)

2. If it takes 1.25 minutes for 0.010 mol of He to effuse through a small hole, how long will it take for the same amount of ethane (C_2H_6) to effuse? (3 marks)

3. Calculate the density of oxygen gas, $O_2(g)$, at 0 °C and at 745 torr (745 mmHg). (3 marks)

4. A mixture of argon and xenon contains 30% argon by mass and has a total pressure of 0.940 bar. Calculate the partial pressure of argon in the container. (2 marks)

5. A sample of NH₄NO₃(*s*) is placed in a 3.60 L container where it completely decomposes at 195 °C according to the following reaction:

 $NH_4NO_3(s) \rightarrow N_2O(g) + 2 H_2O(g)$

The total pressure of the gases in the container produced from the decomposition is 100 kPa. Calculate the mass of NH_4NO_3 ($M_w = 80.0 \text{ g mol}^{-1}$) that was placed in the container. (4 marks)

6. The following reaction occurs with "Magic Baking Powder", a mixture of sodium bicarbonate (NaHCO₃) and an acid such as tartaric acid (C₄H₆O₆). When dissolved in water the reaction produces $CO_2(g)$ (M_w = 44.01 g mol⁻¹), which helps bread rise.

2 NaHCO₃(*aq*) + C₄H₆O₆(*aq*) \rightarrow Na₂C₄H₄O₆(*aq*) + 2 H₂O(*l*) + 2 CO₂(*g*) Δ H = -45.3 kJ mol⁻¹

How much heat is produced in the reaction when 12.0 g of CO₂ are formed? (4 marks)

7. A 5.00 mL volume of a 0.60 M solution of phosphoric acid, $H_3PO_4(aq)$, reacts with 45.00 mL of 0.25 M NaOH(aq) according to the reaction below. The temperature of the solution rises from 26.0 °C to 28.0 °C. Assume the volumes of the solutions are additive, the density of the final solution is 1.10 g mL^{-1} , the heat capacity of the solution is the same as water and the water produced by the reaction does not affect the volume of the resulting solution. Calculate the molar enthalpy change for the reaction. (5 marks)

 $H_3PO_4(aq) + 3 \text{ NaOH}(aq) \rightarrow \text{Na}_3PO_4(aq) + 3 H_2O(l)$ $\Delta H_{rxn} = ?$

8. Determine the standard molar enthalpy of formation of diborane, $B_2H_6(g)$ using the following thermochemical information: (3 marks)

 $4 \operatorname{B}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{B}_2\operatorname{O}_3(s)$ $2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{H}_2\operatorname{O}(l)$ $\Delta H^{\circ} = -5/1.7 \text{ kJ mol}^{-1}$ B₂H₆(g) + 3 O₂(g) \rightarrow B₂O₃(s) + 3 H₂O(l) $\Delta H^{\circ} = -2147.5 \text{ kJ mol}^{-1}$

 $\Delta H^{o} = -2509.1 \text{ kJ mol}^{-1}$ $\Delta H^{o} = -571.7 \text{ kJ mol}^{-1}$

9. A tray holding 100 g of water at 22 °C was placed into a freezer to make ice cubes. If the temperature of the freezer is kept constant at -20 °C, calculate the amount of heat absorbed by the freezer for this process. Use the data provided on the Periodic Table and Data page. (4 marks)

10. Nitrous oxide, N₂O(g), reacts with carbon disulfide, CS₂(g) according to the equation below. When performed in a constant volume bomb calorimeter with a heat capacity of 8.775 kJ °C⁻¹, the temperature of the calorimeter rises from 22.5 °C to 29.1 °C and forms 2.48 g of sulfur, S₈. Determine the molar internal energy, ΔU, and the molar enthalpy, ΔH (both in kJ mol⁻¹) of the following reaction at 25.0 °C.
(6 marks)

 $3 N_2O(g) + CS_2(l) \rightarrow 3 N_2(g) + CO(g) + 1/8 S_8(s)$

11. Provide the condensed ground state electron configuration and condensed orbital diagram (as shown in the example using nitrogen) for the following: **(4 marks)**

Ν	$[He]2s^22p^3$	[He]	1 2s	1	2p
Cr					
Те					
Co ³⁺					

12. Provide responses to the following questions on atomic structure and periodic trends (1 mark each, 9 marks total).

(a) How many electrons have quantum number n = 2?

 Sn^{2+}

- (b) How many electrons have quantum numbers n = 3 and l = 2.
- (c) How many electrons have quantum numbers n = 3, l = 2, $m_l = 1$, $m_s = +\frac{1}{2}$?
- (d) Circle the atom with the largest radius from the following set

Al	S	Cl

(e) Circle the atom with the largest first ionization energy from the following sets:

i.	Na	Mg	Ca
ii.	Al	Р	Cl

(f) Circle the ionic compound having the highest lattice enthalpy from the following sets:

- i. NaCl MgCl₂ LiF
- ii. NaCl Na₂O CaBr₂

(g) Which period 3 element has the following successive ionization energies (in kJ/mol)?

786.3 1,580 3,230 4,360 16,000 20,000

13. Write balanced equations for the following: (3 marks)

- (a) _____ $\operatorname{Li}(s) + ____ O_2(g) \rightarrow$ (b) _____ $F_2(g) + ____ H_2(g) \rightarrow$ (c) _____ $\operatorname{Ca}(s) + ____ H_2O(l) \rightarrow$
- 14. a) Sketch the radial probability diagrams for the 2s and 2p orbitals on the set of axes below. The probability diagram for the 1s orbital is given as an example. (2 marks)

b) Draw a $2p_x$ orbital indicating any radial or angular nodes if they exist. Show the correct Cartesian (xyz) axes and correct phases. (1 mark)

15. Write balanced chemical equations to describe the following: (3 marks)

- (a) The enthalpy of formation of NaCl(*s*)
- (b) The enthalpy of combustion of propane, $C_3H_8(g)$
- (c) The lattice enthalpy of KBr(*s*)

16. The first ionization energy of nitrogen (N) is 1402 kJ mol⁻¹ and that of oxygen (O) is 1319 kJ mol⁻¹ despite the general trend for ionization energies to increase going from left to right across the periodic table. Use the electron configurations for N and O to explain why O has the lower ionization energy. **(2 marks)**

17. The following is the Lewis structure for the amino acid histidine. In the table below it, provide the molecular geometry and hybridization of the atoms labeled a) to d). (4 marks)

Atom	Molecular Geometry	Hybridization
a)		
b)		
C)		
d)		

18. Explain why using pure atomic orbitals alone to describe the bonding geometry of NH₃ gives an inaccurate prediction of bond angles compared to those that are observed. **(2 marks)**

19. Complete the following table to provide the missing data. For Lewis Structures, use the expanded octet/minimized formal charge model if applicable. (8 marks)

	Boron trifluoride, BF ₃	Chlorine pentafluoride, ClF ₅	Tellurium tetrafluoride, TeF4
Total valence electron count (0.5 mark each)			
Lewis structure (1 mark each)	: Ё——В——Ё : : Е : 		
Sketch of VSEPR predicted shape including ideal bond angles (1 mark each)			F—Te—F F F 90° and 120°
Name of shape (0.5 mark each)		Square pyramidal	
Is it polar or non-polar? (0.5 mark each)			

20. The Lewis structure of the nitrite anion is given at right.

(a) Calculate the average N-O bond order in the nitrite anion. (1 mark)

(b) Using valence bond and orbital hybridization theories, draw the atomic or hybrid orbitals that overlap to form the sigma (σ) or pi (π) bonds in the nitrite ion shown. In your drawing clearly label the orbitals and the bonds formed. (3 marks)

..⊖ 0:

21. Using molecular orbital theory, provide the following:

a) Draw the molecular orbital diagram for the He_2^+ cation. Don't forget to label the atomic and molecular orbitals and populate the MOs with the correct number of electrons. (2 marks)	b) What is the bond order for He ₂ ⁺ ? (1 mark)
	c) What is the bond order for He ₂ ? (1 mark)

- 22. Sketch and **correctly label** the orbitals indicated below showing the phases (+ or -), the position of the nucleus (or nuclei) and the appropriate xyz axes.
 - (a) any 3d orbital and correctly name it (1 mark)

(c) the π_{2p} and π_{2p}^* molecular orbitals (2 marks)

23. Two possible Lewis structures can be given for the sulfate anion, SO₄²⁻. Draw the Lewis structure in which S obeys the octet rule, and the other where the formal charge on S is zero. Assign formal charges to all atoms in both structures. **(4 marks)**

- 24. The following questions concern intermolecular forces.
 - (a) Briefly explain, in terms of the relevant intermolecular forces, why H₂O has a higher boiling point than H₂S. (1 mark)
 - (b) Define the term "normal boiling point". (1 mark)
 - (c) For the following pairs of compounds, **circle** the one with the highest boiling point and briefly **explain** your choice for full marks. **(5 marks)**

25. Determine the *normal* boiling point of ethanol, CH₃CH₂OH, if it has a vapour pressure of 340 torr (45.33 kPa) at 60.0 °C, given that ΔH_{vap} for ethanol is 38.56 kJ mol⁻¹. (3 marks)

The End

1																	18
1 H 1.0079	2	_				6 C	atomic	number				13	14	15	16	17	2 He 4.0026
3 Li 6.941	4 Be 9.0122			atomi	c mass	12.0107						5 B 10.811	6 C 12.0107	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050	3	4	5	6	7	8	9	10	11	12	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.065	17 Cl 35.453	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9380	26 Fe 55.8475	27 Co 58.9332	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.798
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (99)	44 Ru 101.07	45 Rh 102.9055	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.75	52 Te 127.60	53 126.9045	54 Xe 131.29
55 Cs 132.9054	56 Ba 137.327	57 La 139.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.9665	80 Hg 200.59	81 TI 204.3833	82 Pb 207.2	83 Bi 208.9804	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)									
La	nthanic	les	58 Ce 140.116	59 Pr 140.9077	60 Nd 144.24	61 Pm (147)	62 Sm 150.36	63 Eu 151.964	64 Gd 157.25	65 Tb 158.925	66 Dy 162.50	67 Ho 164.9303	68 Er 167.259	69 Tm 168.9342	70 Yb 173.04	71 Lu 174.967	
Α	ctinide	s	90 Th 232.0381	91 Pa 231.0359	92 U 238.0289	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

Parenthesis indicates the most stable isotope

°C

Constants

$$\Delta_{\text{fus}} H^{\circ}_{\text{H}_{2}\text{O}(s)} = 6.01 \text{ kJ mol}^{-1} \text{ at } 273 \text{ K}$$

$$\Delta_{\text{vap}} H^{\circ}_{\text{H}_{2}\text{O}(l)} = 40.7 \text{ kJ mol}^{-1} \text{ at } 373 \text{ K}$$

$$\Delta_{\text{vap}} H^{\circ}_{\text{H}_{2}\text{O}(l)} = 44.0 \text{ kJ mol}^{-1} \text{ at } 298 \text{ K}$$

specific heat of H₂O(*l*) = 4.184 J g⁻¹ K⁻¹
specific heat of H₂O(*s*) = 1.960 J g⁻¹ K⁻¹ at 0
density of H₂O(*l*) near 0 °C = 1.000 g mL⁻¹

Some Useful Equations

 $PV = nRT \qquad E_n(J) = -2.179 \times 10^{-18} \times \frac{Z^2}{n^2}$ $\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT \qquad \Delta U = q + w$ $\Delta E(J) = -Z^2 \times 2.179 \times 10^{-18} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$ $\Delta_r H^o = \sum v_p \Delta_f H_{\text{products}}^o - \sum v_r \Delta_f H_{\text{reactants}}^o$ $\ln\left(\frac{P_2}{P_1}\right) = \frac{-\Delta_{\text{vap}} H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$ $\Delta_r H = \Delta_r U + \Delta nRT \qquad E_k = \frac{1}{2}mv^2$ $E_n = hv \qquad \lambda v = c$ $r_n = \frac{n^2 a_o}{Z^2} \qquad u_{\text{rms}} = \sqrt{\frac{3RT}{M}} \qquad \lambda = \frac{h}{mv}$

$$c = 2.998 \times 10^{8} \text{ m s}^{-1}$$

$$R_{H} = 1.0793 \times 10^{7} \text{ m}^{-1}$$

$$h = 6.626 \times 10^{-34} \text{ J s}$$

$$N_{A} = 6.022 \times 10^{23} \text{ mol}^{-1}$$

$$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$$

$$= 0.08314 \text{ L bar mol}^{-1} \text{ K}^{-1}$$

$$F = 9.6485 \times 10^{4} \text{ C mol}^{-1}$$

Conversion Factors

 $\frac{Z^{2}}{n^{2}}$ 1 bar L = 100 J 1 atm L = 101.325 J W
1 cal = 4.184 J (exactly) 1 L = 1 dm³ 1 mL = 1 cm³ 1 J = 1 kg m² s⁻² 1 bar = 10⁵ Pa = 100 kPa = 750.1 torr = 0.9869 atm