Chemistry 1011 Curriculum Outline

Nivaldo J. Tro Travis D. Fridgen Lawton E. Shaw

Chemistry (2nd Canadian Edition) A Molecular Approach

The lecture and tutorial materials required for this course include:

- Chemistry (2nd Canadian Edition) A Molecular Approach by Nivaldo J. Tro Travis D. Fridgen Lawton E. Shaw
- Mastering Chemistry Access Code (for all online assignments)
- Learning Catalytics Access Code (for tutorial sessions)

**Important note: If you purchase a used book and are taking this course for the first time, be careful that you consider the pricing below since if you buy a used book, you will be required to purchase <u>additionally</u> a separate and new Mastering Chemistry access code at \$66 (online purchase) followed by a Learning Catalytics access code at \$12 US/6 months or \$20 US/12 months (online purchase) for use in this course. Note that the Mastering Chemistry code and Learning Catalytics codes cannot be purchased used.

Course Materials available in bookstore as follows:

Loose Leaf Version + Mastering with ebook Code\$120Hardcover Version + Mastering with ebook Code\$180Note: The above options include Learning Catalytics codes as well.

Chemistry Textbook Bundles:

There are several special packages that can be purchased at the MUN bookstore which include textbooks from chemistry and certain physics and biology courses. If you are taking Chemistry and the additional courses as indicated below then consider these packages as better pricing then purchasing them individually. Note that these bundles include a loose leaf copy of each text and Mastering (with ebook) codes for each course.

Biology/Chemistry Bundle (Bio1001/Chem)	\$199.95
Physics/Chemistry Bundle (Phys1020/Chem)	\$199.95
Biology/Physics/Chemistry Bundle (Bio1001/Phys1020/Chem)	\$299.95
Note: The above options include Learning Catalytics codes as well	

There is also a Phys1050/Chem bundle for 199.95 and the books not only contain learning catalytics but Mastering Chemistry as well.

*On-line Codes Only (ie. student already has textbook) *

Mastering Chemistry (available at www.pearsonmylabandmastering.com only) \$ 66 Learning Catalytics \$12 US/6 months or \$20 US/12 months (Online only) Be careful about the choices you make with respect to the purchase of course materials since you don't want to have to spend more than necessary. If you have questions, please feel free to speak with your instructor upon the start of the semester.

Some of the material in the curriculum is listed as "Suggested Reading" from the textbook. These sections will not be covered to any great extent in class but you are responsible for the material in the "Suggested Reading" sections.

Chapter 16: Aqueous Ionic Equilibrium p. 683

16.1	The Danger of Antifreeze (Suggested Reading)	p. 684
16.2	Buffers: Solutions that Resist pH Change	p. 685
	Calculating the pH of a Buffer Solution	p. 686
	(Emphasis on Equilibrium Approach)	
	(Note: Henderson-Hasselbalch will be discussed briefly in cla	ss) p. 687
	Calculating pH Changes in a Buffer Solution	p. 690
	Buffers Containing a Base and Its Conjugate Acid	p. 693
16.3	Buffer Effectiveness: Buffer Range and Buffer Capacity	p. 695
	Relative Amounts of Acid and Base	p. 695
	Absolute Concentrations of the Acid and Conjugate Base	p. 695
	Buffer Range	p. 696
	Chemistry and Medicine – Buffer Effectiveness in Human Bloo	d p. 697
	Buffer Capacity	p. 698
16.5	Solubility Equilibria and the Solubility Product Constant	p. 712
	K _{sp} and Molar Solubility	p. 712
	Chemistry in your Day – Hard Water	p. 714
	K _{sp} and Relative Solubility	p. 715
	The Effect of a Common Ion on Solubility	p. 715
	The Effect of an Uncommon Ion on Solubility (Salt Effect)	p. 717
	The Effect of pH on Solubility	p. 717
16.6	Precipitation	p. 718 - 719 (only)

Chapter 18: Electrochemistry p. 785

18.1	Pulling the Plug on the Power Grid (Suggested Reading)	p. 786
18.2	Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous	
	Chemical Reactions	p. 786
	Electrochemical Cell Notation	p. 789
18.3	Standard Electrode Potentials	p. 789
	Predicting the Spontaneous Direction of an Oxidation-Reduction	
	Reaction	p. 795
	Predicting Whether a Metal Will Dissolve in Acid	p. 798
18.6	Batteries: Using Chemistry to Generate Electricity	p. 809
18.7	Electrolysis: Driving Nonspontaneous Chemical Reactions with	

2017-201	8
----------	---

	Electricity	p. 813
18.8	Corrosion: Undesirable Redox Reactions	p. 821

Chapter 7: The Quantum-Mechanical Model of the Atom p.241

7.1	Quantum Mechanics: The Theory that Explains the Behaviour of the	
	Absolutely Small (Suggested Reading)	p. 242
7.2	The Nature of Light	p. 242
	The Wave Nature of Light	p. 243
	The Electromagnetic Spectrum	р. 245
	Interference and Diffraction	р. 246
	The Particle Nature of Light	p. 249
7.3	Atomic Spectroscopy and the Bohr Model	p. 253
	Chemistry in Your Day – Atomic Spectroscopy, a Bar Code for Atoms	p. 257
7.4	The Wave Nature of Matter: The de Broglie Wavelength, the Uncertainty	
	Principle, and Indeterminacy	p. 259
	The de Broglie Wavelength	p. 260
	The Uncertainty Principle	p. 261
	Indeterminacy and Probability Distribution Maps	p. 263
7.5	Quantum Mechanics and the Atom	p. 264
	Solutions to the Schrodinger Equation for the Hydrogen Atom	p. 264
7.6	The Shapes of Atomic Orbitals	p. 266
	s orbitals ($\ell = 0$)	p. 267
	p orbitals ($\ell = 1$)	p. 269
	d orbitals ($\ell = 2$)	p. 270
	f orbitals ($\ell = 3$)	p. 270
	(Phase of Orbitals and the Hydrogen-like wave functions will not be cover	ed)
7.7	Electron Configurations: How Electrons Occupy Orbitals	p. 274
	Electron Spin and the Pauli Exclusion Principle	p. 275
	Sublevel Energy Splitting in Multielectron Atoms	p. 276
	Electron Configurations for Multielectron Atoms	p. 280
	Electron Configurations of Transition Metals	p. 282
	Electron Configurations and Magnetic Properties of Ions	p. 285
Chap	oter 8: Periodic Properties of the Elements p. 294	
8.1	Nerve Signal Transmission (Suggested Reading)	p. 295
8.2	The Development of the Periodic Table	p. 295
8.3	Electron Configurations, Valence Electrons, and the Periodic Table	p. 297
	Orbital Blocks in the Periodic Table	p. 298
	Writing an Electron Configuration for an Element from its Position in	1
	the Periodic Table	p. 299
	The d-block and f-block Elements	p. 300

8.4The Explanatory Power of the Quantum-Mechanical Modelp. 3018.5Periodic Trends in the Size of Atoms and Effective Nuclear Chargep. 302

	Effective Nuclear Charge Slater's Rules Atomic Radii of d-block Elements	p. 304 p. 306 p. 308
8.6	Ionic Radii	р. 309
8.7	Ionization Energy	р. 312
	Trends in First Ionization Energy	p. 312
	Exceptions to Trends in First Ionization Energy	p. 314
	Ionization Energies of Transition Metals	p. 315
	Trends in Second and Successive ionization Energies	p. 315
8.8	Electron Affinities and Metallic Character	p. 316
	Electron Affinity	p. 317
	Metallic Character	p. 317
8.9	Some Examples of Periodic Chemical Behaviour: The Alkali Metals,	
	Halogens and Noble Gases	p. 318
	The Alkali Metals (Group 1)	p. 319
	The Alkaline Earth Metals (Group 2)	p. 320
	The Halogens (Group 17)	p. 321
	The Noble Gases (Group 18)	р. 322
	Chemistry and Medicine – Potassium Iodide in Radiation Emergencies	p. 323

Chapter 9: Chemical Bonding I: Lewis Theory p. 330

9.1	Bonding Models and AIDS Drugs (Suggested Reading)	p. 331
9.2	Types of Chemical Bonds	p. 331
9.3	Representing Valence Electrons and Dots	p. 333
9.4	Lewis Structures: An Introduction to Ionic and Covalent Bonding	p. 334
	Drawing Lewis Structures for Molecular Compounds	p. 334
	Writing Lewis Structures for Polyatomic Ions	p. 337
	Ionic Bonding and Electron Transfer	p. 338
9.7	Electronegativity and Bond Polarity	p. 350
	Electronegativity	p. 351
	Bond Polarity, Dipole Moment and Percent Ionic Character	p. 352
9.8	Resonance and Formal Charge	p. 355
	Resonance	p. 355
	Formal Charge	p. 357
9.9	Exceptions to the Octet Rule: Drawing Lewis Structures for	
	Odd-Electrons Species and Incomplete Octets	p. 360
	Odd-Electron Species	p. 360
	Chemistry in the Environment – Free Radicals and the Atmosphere	
	Vacuum Cleaner	p. 361
	Incomplete Octets	p. 360
9.10	Lewis Structures for Hypercoordinate Compounds (Expanded Octet)	p. 362

Chapter 10: Chemical Bonding II: Molecular Shapes, Valence Bond Theory,

and Molecular Orbital Theory p. 373

10.1	Artificial Sweeteners: Fooled by Molecular Shape (Suggested Reading)	p. 374
10.2	VSEPR Theory: The Five Basic Shapes	p. 374
	Two Electron Groups: Linear Geometry	p. 375
	Three Electron Groups: Trigonal Planar Geometry	p. 375
	Four Electron Groups: Tetrahedral Geometry	p. 376
	Five Electron Groups: Trigonal Bipyramidal Geometry	p. 377
	Six Electron Groups: Octahedral Geometry	p. 377
10.3	VSEPR Theory: The Effect of Lone Pairs	p. 378
	Four Electrons Groups with Lone Pairs	p. 378
	Five Electron Groups with Lone Pairs	p. 380
	Six Electron Groups with Lone Pairs	p. 381
10.4	VSEPR Theory: Predicting Molecular Geometries	p. 383
	Predicting the Shapes of Larger Molecules	p. 384
10.5	Molecular Shape and Polarity	p. 386
	Chemistry in Your Day – How Soap Work	p. 389
10.6	Valence Bond Theory: Orbital Overlap as a Chemical Bond	p. 389
10.7	Valence Bond Theory: Hybridization of Atomic Orbitals	р. 392
	<i>sp</i> ³ Hybridization	р. 393
	<i>sp</i> ² Hybridization and Double Bonds	p. 394
	sp Hybridization and Triple Bonds	р. 399
	Writing Hybridization and Bonding Schemes	p. 400

Chapter 11: Liquids, Solids, and Intermolecular Forces p. 427

Climbing Geckos and Intermolecular Forces (Suggested Reading)	p. 428
Solids, Liquids and Gases: A Molecular Comparison	p. 428
Changes Between States	p. 430
Intermolecular Forces: The Forces that Hold Condensed States	-
Together	p. 431
Ion-Induced Dipole Forces	p. 432
Dispersion Force	p. 432
Dipole-dipole- Force	p. 434
Hydrogen Bonding	p. 437
Dipole-Induced Dipole Forces	p. 439
Ion-Dipole Force	p. 439
Vaporization and Vapour Pressure	p. 445
The Process of Vaporization	p. 445
The Energetics of Vaporization	p. 446
Vapour Pressure and Dynamic Equilibrium	p. 448
Sublimation and Fusion	p. 455
Sublimation	p. 455
	Solids, Liquids and Gases: A Molecular Comparison Changes Between States Intermolecular Forces: The Forces that Hold Condensed States Together Ion-Induced Dipole Forces Dispersion Force Dipole-dipole- Force Hydrogen Bonding Dipole-Induced Dipole Forces Ion-Dipole Force Vaporization and Vapour Pressure The Process of Vaporization The Energetics of Vaporization Vapour Pressure and Dynamic Equilibrium Sublimation and Fusion

	Fusion	p. 456
	Energetics of Melting and Freezing	p. 456
11.7	Heating Curve for Water	p. 457
11.12	Crystalline Solids: The Fundamental Types	p. 472
	Molecular Solids	p. 472
	Ionic Solids	p. 472
	Atomic Solids	p. 474

Chapter 12: Solutions p. 485

12.1	Thirsty Solutions: Why you Shouldn't Drink Seawater	
	(Suggested Reading)	p. 485
12.2	Types of Solutions and Solubility	p. 487
	Nature's Tendency Toward Mixing: Entropy	p. 487
	The Effect of Intermolecular Forces	p. 488
12.4	Solution Equilibrium and Factors Affecting Solubility	p.495-496
12.5	Expressing Solution Concentration	p. 500
	Molarity	p. 501
	Molality	p. 502
	Parts by Mass and Parts by Volume	p. 502
	Mole Fraction and Mole Percent	p. 504
12.6	Colligative Properties: Vapour Pressure Lowering, Freezing Point	
	Depression, Boiling Point Elevation, and Osmotic Pressure	p. 507
	Vapour Pressure Lowering	p. 507-508
	Freezing Point Depression and Boiling Point Elevation	p. 513
	Osmotic Pressure	p. 516