

Presentation roadmap

- Context and scope of research
 - The theories and their predictions
 - Empirical approach
- The evidence
 - Developmental order of verbal forms
 - U-shaped performance curve at a critical moment
- Discussion

Context

- Competing linguistic theories offer radically different outlooks on the nature of the lexicon
 - Generative approach: Set of morphemes dynamically combined through grammatical rules or constraints
 - Constructivist approach: No rules needed.
 All 'used' forms are memorized as separate entries in the lexicon

Context (cont'd)

- These views have implications for theories of language acquisition
- Today's aim:
 Testing the different predictions made by these models

Grammatical (generative) approach

- Acquisition as grammatical generalizations across the memorized lexicon
- Potential (over-)generalizations of the most transparent aspects of the system during the developmental period
- Driving factor: grammatical transparency
 - Basic/transparent units acquired first
 - Abstract properties acquired progressively
 - Idiosyncrasies must be memorized
 - Frequency: a potential influence, but does not drive the developmental sequence

Constructivist (exemplar) approach

- Acquisition from stacking of memory traces
 - "Storage is processing" (Bybee 2001)
 - Every used form (in perception or production) leaves a trace in the lexicon
 - No generalizations beyond semantic and/or phonological similarity (analogy)
- Repetition/frequency = determining
 - Early word productions reflect salient/ frequent properties of the memorized forms
 - Low-level production issues may hinder initial pronunciations

Pitting the approaches

- The two approaches differ significantly with regard to the roles of <u>frequency</u> versus grammatical transparency
- We compare these approaches based on acquisition data from Northern East Cree
 - We suggest that an analysis based on input frequency fails to account for our acquisition data
 - We show that a grammatical approach enables a straightforward account of many of the facts observed in the data

The empirical base: CCLAS

- Longitudinal naturalistic study of L1 acquisition of Cree
 - Memorial University
 - Cree School Board of Québec
- Chisasibi, Québec, approx. 4,000 Cree
 - Mostly Cree L1 (dominant)
 - English (L2)
- 2004-07: video recording at 2-3 week intervals, 45 minute sessions
 - Cohort A (3), 1;09 4;06 yrs
 - Cohort B (3), 3;08 6;06 yrs
 - Today: 10 regularly spaced sessions for Child A1 ('Ani'), age 2;01 to 3;08 (basis for Terry 2010)

Today's focus: Ani's development of verbal morphology (1)

- Focus: Animate Intransitive (AI) verbs
 - Cree verbs are traditionally classified along lines of transitivity and animacy, intransitive subjects, transitive objects
 - AI verbs are the most frequently occurring form in the 10 sessions (and in target language, 41% for NE Cree)
 - We consider two of the three verbal inflectional "orders", Independent, Conjunct, and Imperative

Independent vs. Conjunct orders

	Independent	Conjunct
Syntax	Restricted to a	Required in:
	subset of main clause contexts,	• subordinate clauses
	and is posited to	• wh-clauses
	be the elsewhere	• focus
	inflection	constructions
	(Brittain 2001)	
Morphology	Less fusional	• More fusional
		• Initial change (IC)

Representative examples

Independent Conjunct

Aakusiu. Awaan iyaakusit?

aakusi-u awaan iyaakusi-t

be.sick-3 who (IC)be.sick-3.s

"S/he's sick." "Who's sick?"

Input frequency: Independent versus Conjunct

• (Woods) Cree, inflection types in main clauses (Starks 1994)

[Recall: Conjunct is required in subordinate clauses]

	Conversation		Narrative		
	#	%	#	%	
Independent	89	45%	11	23%	
Conjunct	95	48%	35	75%	
Imperative	14	7%	1	2%	
Total	198	100%	47	100%	

Predictions from frequency data

- The Conjunct order is arguably the most frequent order used in Cree
 - We are in the process of verifying this claim for child-directed speech
- Usage-based approaches predict the early emergence of this order over the Independent order
 - This is not the case in our case study

Working hypothesis

- Memorization of amalgams (unanalyzed chunks) involved in building an initial lexicon, with the onset of creative rule use at around age 3;04
- Pre-3;04: implicit grammatical analysis during the amalgam-storing stage
- From 3;04 onward: productive use of grammatical rules

Supporting evidence

- Favouring the Independent
 - Grammatically transparent
 - Not the most frequent in the input
- Productive (innovative) inflection of child forms
 - From age 3;04, Ani inflects 'child' forms (AI verbs)
 - Child forms are inconsistently, if at all, inflected in the input
- Performance drop
 - The onset of productive grammatical analysis (3;04) coincides with a drop in performance, suggesting a move from use of stored amalgams to creative use of rules

Verbal productions: numbers

- Between 2;01 and 3;01
 - 67% of Ani's attempted verbs are Independent
 - 7% are Conjunct
- Between 3;04 and 3;08
 - 55% of Ani's attempted verbs are Independent
 - 26% are Conjunct
- This preference runs counter to expectations if input frequency is a significant force in the acquisition of these forms

Ani's child forms at ages 2;06 and 3;08

	Age 2;06	Age 3;08			
Orthography	mîmî		mîmî	-u	
IPA target	[ˈmimi]		[miˈmij	-o]	
IPA actual	[mimi]		[mimij	-o:]	
Gloss	sleep		sleep	-3	
Morpheme type	Child form		Child form	-IIN	
Translation		's/he's asleep'			
Orthography	kîkî	ni-	kîkîsh	-n	
IPA target	[ˈgigi]	[nə-	ˈgigiʃ	-ɪn]	
IPA actual	[digi]	[Ø-	gigis	-jɪd]	
Gloss	hurt	1-	be.hurt.dim	-non.3	
Morpheme type	Ch.form	1-	Ch.form.dim	-IIN	
Translation		'I'm hurt, I'm in pain'			

≈ 3;04: A drop in performance

- As Ani begins to inflect child forms, she starts making errors on forms previously produced close to target
- Focus: 1st person (Independent) forms, which require prefix and suffix
 - Gradual emergence of the prefix; performance drop at 3;04
 - Suffix: performance decreases at 3;04

Inflection of 1st person singular (on AI Independent verbs)

	Prefix (ni-)		Suffix (-n)			
Age	Target	Actual	%	Target	Actual	%
2;01.12						
2;03.24						
2;06.05						
2;07.19	4	0	0	4	4	100
2;09.28	2	0	0	2	2	100
2;11.15	3	1	33.3	3	3	100
3;01.18	2	1	50	2	2	100
3;04.09	1	0	0	1	1	100
3;06.23	3	0	0	3	3	100
3;08.24	14	7	50	14	7	50

(4)

Summary of observations

- Prior to 3;04, Ani generalized her use of the language's default inflectional system
 - Default order easier to interpret, acquired faster (despite unfavourable input frequency)
- At around 3;04: emergence of a productive grammatical system
 - Grammatical innovation (inflected child forms)
 - Dip in performance on produced inflections
 - Both prefixes and suffixes are affected

Discussion

- We cannot build a receptive lexicon for polysynthetic languages without rules
 - A single verbal root can yield over a million forms (Hankamer 1989, on Turkish; Sadock 1980, on West Greenlandic)
- This claim holds true of Cree
 - Most (NE) Cree words (80%) are verbs
 - Verbs encode varied and complex semantic (and, we assume, structural) relationships
- Form-meaning associations within the verb complex logically require some degree of decomposition into smaller units

Discussion

- Initial productions are stress-driven
 - Segmentation driven by prosodic salience (Mithun 1989, Slobin 1985)
- Ani's initial word forms: (W)S foot (Swain 2009)
 - Prefix deletion: falls outside the foot
 - Suffix production: part of the foot
- The emerging morphological system overrides these phonological constraints

Discussion

- Emergence of morphology enables largerdomain analysis
 - Gradual revisions of the lexicon incorporate units matching morphological analysis
- Memorization remains an important component of the story
 - Early generalizations arise from phonologically-conditioned, memorized amalgams
- But exemplar storage is **not** processing!