\qquad

An agronomist expects that, on average, high bush blueberry production will be negatively associated with cloud cover. The agronomist obtains records of cloud cover and berry production. The observed correlation is $r=-0.40$ based on 15 years. Test whether correlation is significantly less than zero (one-tailed test).

For small sample sizes the statistic t_{s} is normally distributed.
$t_{S}=(z-0)(\mathrm{n}-3)^{1 / 2} \quad$ where $\quad z=(0.5) \ln \left(\frac{1+r}{1-r}\right)$
Thus we can use the normal distribution to calculate p -values for t_{s}. Here is the cumulative distribution function for negative values of t_{S}, at values of r ranging from 0 to -0.9

```
MTB > set into c1
DATA> 0 -. }1\mathrm{ -. 2 -. . -. 4 -. 5 -. 6 -. }7\mathrm{ -. }8\mathrm{ -. . 
DATA> end
MTB > let c2 = 0.5*log((1+c1)/(1-c1))*sqrt(15-3)
MTB > cdf c2;
SUBC> normal 0 1.
    0.0000 0.5000
    -0.3476 0.3641
    -0.7023 0.2413
    -1.0722 0.1418
    -1.4676 0.0711
    -1.9029 0.0285
    -2.4011 0.0082
    -3.0044 0.0013
    -3.8057 0.0001
    -5.0999 0.0000
```

column 1 of the output is the normal score (z) for t_{S} values of ranging from 0 to -0.9 column 2 of the output is the p -value corresponding to several negative values of z and hence the t_{S} statistic.

What is the probability of obtaining a normal score of -1.9 or less? \qquad 0.0285

The normal distribution is symmetrical.
What is the probability of obtaining a normal score of 1.9 or more? \qquad
What is the value of t_{S} when $\mathrm{r}=0$?

$$
t_{s}=0 \text { when } r=0
$$

Be sure to state null and alternative hypotheses concerning r,

state your significance criterion, \qquad $\alpha=5 \%$
(or $\alpha=1 \%$ or $\alpha=10 \%$)_
calculate the t -statistic for the observed correlation ($\mathrm{r}=-0.40$),
-1.4676 and declare a decision.

