Biology 4605 / 7220	Name
Quiz #11b	27 November 2007 (Quiz9 29Nov 2000)

1. The relation of a response to an explanatory variable can be quantified in categories (categorical explanatory variable) or as a continuous function (explanatory variable on a ratio type of scale). For the following analyses, list the number of categorical explanatory variables, the number of ratio-scale explanatory variables, and the number of interaction terms.

	Categorical	Ratio-scale	Interaction
Rate of shrinkage of area covered by coral reefs.	_0	1	0
Two-way ANOVA.	_2	0	<u> </u>
Goodness of fit of number of surviving colonies in 2 petri dishes each innoculated with 10 colonies.	1	0_	0
Analysis of growth rate in relation to temperature in five microbial cultures. (2 terms + interact	ion)1	1	_<1
Hierarchical ANOVA.	<u>></u> 2	0	0
Growth rate of plants at 4 levels of exposure to CO controlled for light and temperature. (3 total terms + interaction)	² ,2	1	<u> <3</u>
Randomized block design.	2	0	<u> <</u> 1

2a. Under the assumption of equal sprouting rates, compute the expected <u>proportion</u> of sprouting seeds in each of 4 plots if seed release in each plot was 80, 40, 40, and 20 respectively.

8:4:4:2 or 4:2:2:1 or 4/9, 2/9, 2/9, 1/9

2b. Compute the expected <u>number</u> of sprouting seeds in each plot if a total 45 seeds sprouted.

45(8/18) = 20 45(4/18) = 10 45(4/18) = 10 45(2/18) = 5

2c. The observed sprout numbers were 15, 12, 12, and 6 in the 4 plots.

Write a model to test the goodness of fit of observed to expected number of sprouts.

(Give names to symbols in the model).