1. In an experiment with fruit flies, a geneticist obtained the following results from a dihybrid cross for sepia eye mutant and yellow bristle colour mutant. Fill in the five blanks. $G = 2 \Sigma \ln L$

	Observed	Theory	Expected		
	f		fhat	f/fhat	lnL
WildS WildY	272	9			
WildS Yellov	v 64	3	82.875		
Sepia WildY	85	3	82.875		
Sepia Yellow	21	1			
Total					

- 2. For the following data situations, state whether regression or correlation is appropriate, and then state why. State whether the coefficient (β for regression, r for correlation) is expected to be positive, negative, or unknown.
- a. A biochemist is interested in the relation of rate of reaction to temperature.

Corr/regr _____ Why?

+/-/unknown____

b. An entomologist is interested in leaf damage in relation to insecticide dose.

Corr/regr _____ Why?

+/-/unknown_____

c. A botanist is interested in the association of 5 species of trees in 28 plots.

Corr/regr ____ Why?

+/-/unknown____

3. In a retrospective study an epidemiologist finds that the odds of Down's syndrome are 0.002:1 for a control group, and 0.03:1 for cases with a familial history of the syndrome.

Compute the case/control odds ratio (odds for cases / odds for control)

OR____

Obtain the parameter β where OR= e^{β}

 β = _____