\qquad

1. In an experiment on peas, Mendel obtained the following results from a dihybrid cross. Fill in the five blanks. $G=2 \Sigma \ln \mathrm{~L}$

Observed		Theory	Expected		
	f		fhat	f/fhat	$\ln \mathrm{ln}$
Round Yellow	315	9			
Round Green	108	3	104.25	-	
Wrinkled Yellow	101	3	104.25		-

2. For the following data situations, state whether regression or correlation is appropriate, and then state why. State whether the coefficient (β for regression, r for correlation) is expected to be positive, negative, or unknown.
a. A biochemist is interested in the relation of three different anions in a solution.
Corr/regr \qquad Why? +/-/unknown
\qquad
b. An epidemiologist is interested in whether cancer rates depend on age.

Corr/regr _ Why? +/-/unknown \qquad
c. A botanist is interested in tree age and the number of trees per hectare.

Corr/regr \qquad Why? +/-/unknown \qquad
3. In a prospective study, an ichthyologist finds that the odds of recapture of a species of fish drop from $2: 1$ at site A, down to $1.4: 1$ at site B.

Compute the odds ratio (odds at $\mathrm{A} /$ odds at B)
OR \qquad
Obtain the parameter β where $\mathrm{OR}=\mathrm{e}^{\beta}$

$$
\beta=
$$

