Biology 4605/7220
Quiz #9b

Name	
	17 November 2003

The General*ized* Linear Model allows one to use non-normal errors. Generalized Linear models are written as follows.

Identity Link: Response = $\mu + \varepsilon$

 $Log\ Link$: $Response = e^{\mu} + \varepsilon$

Logit Link: $\frac{p}{1-p} = e^{\mu} + \varepsilon$

Power Link: Response = $\mu^k + \varepsilon$

Response is	Canonical link is
Normal	Identity
Poisson	Log
Binomial	Logit

where μ is the systematic or structural model ($\beta_o + \beta_1 X_1 + \beta_2 X_2 \dots etc$) ϵ is the error, and the canonical link is the link typically used with a particular error type.

1. Daniel (1995 *Biostatistics*) reported the following data for 150 carriers of a certain antigen, compared to 500 noncarriers, in relation to blood group.

 Blood Group
 Carriers
 Noncarriers
 Total
 Odds

 O
 72
 230
 302

 A
 54
 92
 146

 B
 16
 63
 79

1a Compute the odds that a person is a carrier, if their blood group is AB

1b Compute the odds ratio for blood group A, relative to blood group O

15

2 In the following example (Daniel, 1995, p559), state whether the response variable is a binomial count or a poisson count, define a symbol for the response variable and write a generalized linear model. A health department official tallies the number of cases of mumps

by age group in 3 different schools.

3 In the following example (Daniel, 1995, p558), state whether the response variable is a binomial count or a poisson count. In a survey in the inner part of a large city, 695 children under in 3 ethnic groups were classified as having hemoglobin above or below 10 g per ml.