


1. Write a general linear model for the following tests. Use Y for response variable, X1 (and X2 if necessary) for nominal scale (classification) variables, and Z1 (Z2 if necessary) for ratio scale (regression) variables.

One-way ANOVA 
$$\underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} = \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}}$$

Multiple regression \_\_\_\_S\_ = \_\_
$$\beta_c$$
+  $\beta_z$ \*Z\_+  $\beta_{Z1}$ \*Z1\_+  $\beta_{Z1}$ \*Z1\*Z2\_

2. Complete an ANOVA table for a regression where the F-ratio is 6, the MSerror is 2, and there were 8 observations of the response variable.

| Source     | df | SS        | MS | F |
|------------|----|-----------|----|---|
| regression | 1  | 12        | 12 | 6 |
| error      | 6  | <u>12</u> | 2  |   |
| Total      | 7  | 24        |    |   |

3. Review question 21 (page 339) from Rosner (1995). Write a general linear model to examine whether arterial plasma epinephrine concentrations (nanograms per milliliter) in 10 laboratory animals varies with type of anesthesia (A, B, or C). All 3 types were applied to each animal, in random order. Be sure to assign a name and symbol to all response and explanatory variables

[APE] Arterial Plasma Epinephrine, as a concentration

Atype Anesthesia level

B Block (experimental unit = animal)

APE = 
$$\beta_a + \beta_{Atype}$$
 \*Atype +  $\beta_B$  \*B + error