Biology 4605/7220 8 November 2007

For each of the following situations (1 and 2):

(A) Define variables in a tabular format, as follows.

symbol scale name

scale = nominal, ordinal, or cardinal cardinal = interval <u>or</u> ratio scale.

- (B) Using the symbols, write a general linear model relating the response variable to explanatory variable(s) and interaction terms (if appropriate).
- (C) Complete the first two columns of the ANOVA table source df
- (D) State the name of the analysis, from the following list. t-test, one-way ANOVA, two-way ANOVA, three-way ANOVA paired comparisons, randomized blocks, hierarchical (nested) ANOVA regression, multiple regression, ANCOVA (at least 1 nominal and at least 1 cardinal scale explanatory variable) none of the above.

1. Huntsberger (1967, *Elements of Statistical Inference*, p309) reported the results of an experiment to compare yields (in bushels per acre) or three varieties of barley. The experiment was conducted by planting all three varieties in each of 6 blocks.

A=9 B=4 C=8 D=1

A. <u>name</u> <u>symbol</u> <u>scale</u>

B. = $+ \epsilon$

D.

nv = number of variablesnt = number of termsA. score = 3nvB. score = nt C. score = 2nv + 2D. score = 1

Exam #2a

Name

2. Huntsberger (1967, p281) reported the results of a survey to see if boulder size was related to distance downstream. Samples were taken every half mile, beginning at mile 1 and continuing to mile 6.5.

A=9 B=4 C=8 D=1

A. <u>name symbol scale</u>	C. <u>source</u> <u>df</u>

B. _____ = _____+ e

D.

3. (From Huntsberger, 1967, Problem 8, p 173) Given *n* random samples of the variable *Y*, which is distributed normally, the quantity *t* will follow a t-distribution with n - 1 degrees of freedom. The quantity F will follow the F-distribution, where $F = t^2$

$$t = \frac{\sqrt{n} \left(\overline{Y} - \mu\right)}{s}$$

Find *t*, given n =37, s = 3, $\overline{Y} - \mu = 6$ [2]

Find s², given n =37, $\overline{Y} - \mu = 6$, t = 2.339 [2]

Find *F*, given n =50, s = 3,
$$Y - \mu = 6$$
 [2]

4. Huntsberger (1967 p224) reported the yields in bushels per acre for 2 oat varieties. Each was tried on 8 plots. Complete the ANOVA table. [7]

Source of Variation	SS	df	MS	F	P-value
Varieties			52.201	0.3389	0.5697
Within varieties (error)					
Total	2208.9				

5. Huntsberger (1967 p281) reported on heights of trees in relation to water availability. Here are the fitted and residual values for the regression of tree height on available water.

Prodicted Posiduals						
	Г					
30.84715 2.152852		20				
30.8681 3.231905		20 -	•	•		
30.83667 -9.836674			•			
30.52246 -21.02246		10 +	•			
31.20325 4.196747		<u>s</u>				
30.50152 -5.201517		a 0 +		- +		
30.71099 -9.31099		06 J <u>ji</u>	30.5	31	31.5	32
30.85762 16.84238		8 -10 +	•	* •		•
30.93094 -10.93094		ш.				
31.89452 -8.794515		-20 +	•			
30.8262 7.273799						
30.71099 15.88901		-30 ⊥				
30.72146 -9.621464			Fitted Valu	ιος - Availa	hle Water	
30.88904 8.010957						
30.63767 8.062325	L					
30.94141 9.058589						

List and evaluate 5 assumptions for the regression, stating the evidence you used. [15]

6. To compare the average gains of pigs fed 2 different rations, 9 pairs of pigs were used. The pigs within each pair were littermates, and the rations were assigned at random to the 2 animals within each pair, and they were individually housed and fed. The gains, in pounds, after 30 days are given below. (Huntsberger, 1967, p226).

Ration	Litter						Sum			
	1	2	3	4	5	6	7	8	9	
Α	60	38	39	49	49	62	53	42	58	450
В	53	39	29	41	47	50	56	47	52	414

Define response and explanatory variables, with symbols.

[3]

In the space below, arrange the data in model format, with column headings for explanatory and response variables. [6]