\qquad
Quiz 5b

In 1950, Marien (Journal of the Bombay Natural History Society 49:471) reported wing lengths (in mm) of males of 3 species of starling, Sturnus contra, Sturnus ginginiamus, and Sturnus fusca.
The number of birds measured was 11 S . contra, 12 S . ginginiamus, and 8 S . fusca.

1. Write a symbol for the

$$
\text { response variable }\left(Y_{-}=\underset{\text { explanatory variable }\left(X_{_}=S . c ., S . g ., \text { or } S . f .\right)}{ }\right)
$$

2. Write a general linear model relating the response variable to the explanatory variable.

$$
\begin{equation*}
\underline{y}=\ldots \beta_{0} \ldots+\beta_{x} \cdot \underline{x}+\text { residual } \tag{4}
\end{equation*}
$$

Any symbol acceptable for Y and X, as long as the symbols in (1) appear in correct place in (2) Greek symbol $€$ or error both acceptable in place of the word residual .

3a. If the symbol for the true (parametric) wing length of S. contra is $\mu_{\text {sc }}$ then write a symbol for the true or parametric wing lengths of

$$
\begin{equation*}
\text { S. ginginiamus ___ } \mu_{s g} _\quad \text { S. fusca __ } \mu_{s f} \tag{2}
\end{equation*}
$$

$3 b$. Using these three symbols, write an $\mathrm{H}_{\mathrm{A}} / \mathrm{H}_{\mathrm{o}}$ pair for testing whether wing length depends on species.

$$
\begin{align*}
& \mathrm{H}_{\mathrm{A}}: \ldots \mu_{S c} \neq \mu_{S g} \neq \mu_{S f} \tag{2}\\
& \mathrm{H}_{\mathrm{o}}: \ldots
\end{align*}
$$

4. Complete the following table. [7]
$\mathrm{df}=$ degrees of freedom
$\mathrm{SS}=$ Sums of squares
$\mathrm{MS}=$ mean square $=$ SS/df
$\mathrm{F}=$ observed F-ratio of mean squares
$\mathrm{p}=$ Type I error in accepting H_{0}

Source	df	SS	MS	F	p
Species	2	81	40.5	8.1	<0.005
Residual	28	140	5		
total	30	221			

$4 b$. The total df is 30 . Show how this is computed.

$$
d f=(11+12+8)-1=31-1=30
$$

