1. Austin and Clarke (1991 *Journal of Dairy Research* 58:219-229) investigated the calcium ion activity in cooled and aged reconstituted and recombined milks. They measured calcium ion activity and pH for 5 samples taken in each of 18 categories resulting from 3 categories of milk composition and 6 categories of heat treatment. Does calcium ion activity depend on pH, composition, and heat treatment? Assign symbols to variables. Assuming no interaction terms, write a general linear model to address this

question.	
Name	Symbol
Calcium ion activity	[Ca]_
_milk composition	Mtype
_heat treatment	trt
pH	pH

Source	df	
Mtype	2	
trt	5	
рН	1	
error	81	
total	89	

GLM [Ca] =
$$\beta_o$$
 + β_{Mtype} ·Mtype + β_{trt} ·trt + β_{pH} ·pH + error

Complete the first two columns of the ANOVA table (above).

2. For a 2 allele locus we let p = frequency of one allele in the parental generation, and q = 1 - p = the frequency of the other allele. At Hardy Weinberg equilibrium, the expected proportion of homozygous and heterozygous offspring is given by $\hat{p} = (p+q)^2 = (p^2 + q^2) + 2pq$

where $(p^2 + q^2)$ is the expected frequency of homozygous offspring 2pq is the expected frequency of heterozgygous offspring.

For 1000 offspring, compute the expected proportion (\hat{p}) of homozygous and heterozygous offspring at Hardy-Weinberg equilibrium, when p = 0.2 in the parents. Compute the expected frequency $\hat{f} = 1000 \ \hat{p}$.

	0.68	homozygous	<u>680</u>
$\hat{p}=$			$\hat{\mathbf{f}} =$
	0.32	heterozygous	<u>320</u>

3. Compute the goodness of fit G for the following frequencies of offspring relative to Hardy -Weinberg equilibrium with p = 0.7 in the parents.

 $G = 2 \Sigma f \ln(f/\hat{f})$ where \hat{f} is the value expected from theory.

$G = 2\left(480\ln\left(\frac{480}{420}\right) + 520\ln\left(\frac{520}{580}\right)\right) = 14.62$

Expected	Observe	d
f	f	
420	480	heterozygous
580	520	homozygous