1. Austin and Clarke (1991 *Journal of Dairy Research* 58:219-229) investigated the calcium ion activity in cooled and aged reconstituted and recombined milks. They measured calcium ion activity and pH for 5 samples taken in each of 18 categories resulting from 3 categories of milk composition and 6 categories of heat treatment. Does calcium ion activity depend on pH, composition, and heat treatment? Assign symbols to variables. Assuming no interaction terms, write a general linear model to address this question.

Symbol		

Source	df	

GLM ____ = ___

Complete the first two columns of the ANOVA table (above).

2. For a 2 allele locus we let p = frequency of one allele in the parental generation, and q = 1 - p = the frequency of the other allele. At Hardy Weinberg equilibrium, the expected proportion of homozygous and heterozygous offspring is given by

$$\hat{p} = (p+q)^2 = (p^2 + q^2) + 2pq$$

where $(p^2 + q^2)$ is the expected frequency of homozygous offspring 2pq is the expected frequency of heterozgygous offspring.

For 1000 offspring, compute the expected proportion (\hat{p}) of homozygous and heterozygous offspring at Hardy-Weinberg equilibrium, when p=0.2 in the parents. Compute the expected frequency $\hat{f}=1000~\hat{p}$.

ĵ=	 homozygous	$\mathbf{\hat{f}} =$	
	 heterozygous		

3. Compute the goodness of fit G for the following frequencies of offspring relative to Hardy -Weinberg equilibrium with p = 0.7 in the parents.

 $G = 2 \Sigma f \ln(f/\hat{f})$ where \hat{f} is the value expected from theory.

Expected	Observed	
f	f	
420	480	heterozygous
580	520	homozygous